首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary After a -D-1,3-linked glucan had been isolated from compression wood, identified, and named laricinan, other researchers suggested that it occupied the helical cavities in the S2 layer of those tracheids. They postulated that the glucan was responsible for the capacity of compression wood to generate the large forces associated with reorientation of displaced stems and branches, and also caused its severe shrinkage with drying.Analyses herein indicate that it is improbable that such a glucan could be the primary factor responsible for those characteristics of compression wood. An alternative significance is proposed, namely that its presence strengthens the already well-supported deduction that the helical cavities have a schizogenous origin.  相似文献   

2.
The structure of cellulose, especially the microfibril angles (MFAs), in compression wood of Norway spruce [Picea abies (L.) Karst.] was studied by wide- and small-angle X-ray scattering and polarizing microscopy. On the basis of the X-ray scattering experiments the average MF As of the cell wall layers S2 and S1 of the studied sample are 39 and 89, respectively; and the average diameter and length of the cellulose crystallites are 2.9 and 20.0nm, respectively. The average of the whole MFA distribution is shown to agree with the one obtained by polarizing microscopy of macerated fibers.  相似文献   

3.
Cortical microtubules (MTs) in differentiating compression wood tracheids of Taxus cuspidata stems were visualized by confocal laser microscopy. They were oriented obliquely at an angle of about 45° to the tracheid axis during formation of the secondary wall. Artificial inclination altered the pattern of alignment of MTs. Banding MTs were helically oriented late during the formation of the secondary walls. These results indicate that MTs might control the orientation and localized deposition of cellulose microfibrils in the secondary walls of compression wood tracheids.Part of this report was presented at the 46th annual meeting of the Japan Wood Research Society, Kumamoto, April 1996  相似文献   

4.
Measurement of mean microfibril angles of wood tracheids   总被引:1,自引:0,他引:1  
  相似文献   

5.
Summary Compression wood (CW) of the giant sequoia studied had higher values than normal wood (NW) in crushing strength and ultimate stress in tension parallel to grain, in toughness, in modulus of rupture, and in work to maximum load and total work in static bending. In the green condition CW had higher values than NW in stress at the proportional limit and work to the proportional limit, and about the same modulus of elasticity in static bending. In the dry condition CW was about equivalent to NW in work to the proportional limit, but was slightly weaker in stress at proportional limit and modulus of elasticity in static bending. The compression wood of this giant sequoia, even though formed when the tree was suppressed and having relatively narrow rings, can therefore be said to be essentially equivalent to normal wood so far as the mechanical properties tested in this study are concerned.Given at FPRS meeting in Dallas, Texas, June 1972  相似文献   

6.
Summary The distribution of lignin in normal and compression wood of loblolly pine (Pinus taeda L.) has been studied by the technique of lignin skeletonizing. Hydrolysis of the wood carbohydrates with hydrofluoric acid left normal wood tracheids with a uniform distribution of lignin in the S1 and S2 cell wall layers. However, the S3 region of both earlywood and latewood tracheids consistently retained a dense network of unhydrolyzable material throughout, perhaps lignin.Lignin content in compression wood averaged about 7% more than in normal wood and appears to be concentrated in the outer zone of the S2 layer. The inner S2 region, despite helical checking, is also heavily lignified. The S1 layer, although thicker than normal in compression wood tracheids, contains relatively little lignin.Ray cells, at least in normal wood, appear to be lignified to the same extent, if not more so in certain cases, than the longitudinal tracheids. Other locations where lignin may be concentrated include initial pit border regions and the membranes of bordered pits.This report is a detailed excerpt from the Ph. D. dissertation of R. A. P. Financial support provided by the College of Forestry at Syracuse University and the National Defense Education Act is hereby gratefully acknowledged.  相似文献   

7.
8.
9.
Summary The distribution of lignin has been studied in tracheids and ray cells of normal and compression wood of tamarack [Larix laricina (Du Roi) K. Koch]. The three layers in the secondary wall of normal wood tracheids are lignified to approximately the same extent, and previous evidence that the S 3 layer should contain a higher proportion of lignin than the other regions has not been confirmed. The lignin follows closely the orientation of the cellulose microfibrils in all three layers. Compared to the tracheids, the ray cells contain a denser network of lignin in their secondary wall.Only a small proportion of the total lignin in compression wood tracheids is present in the compound middle lamella. The thick S 1 layer is only slightly lignified; the orientation of the lignin in this region is that of the transversely oriented, lamellated microfibrils. The outer portion of S 2 consists largely of lignin but also contains lamellae of cellulose microfibrils which probably have the same helical orientation as the microfibrils in the inner part of S 2. The latter region, which contains the helical cavities, consists of lamellae of cellulose microfibrils which are uniformly encrusted with lignin. The ray cells in compression wood appear to be lignified to the same extent as in normal wood. Transverse sections of the cells reveal a lateral orientation of the lignin. The orientation of the cellulose microfibrils in the S 2 layer of the first-formed springwood tracheids of compression wood is the same as in the cells which are formed later. It is suggested that for ease of reference, the outer, lignin-rich layer in compression wood tracheids be referred to as the S 2(L) layer.
Zusammenfassung Im Druckholz und im normalen Holz von Tamarack (Larix laricina (Du Roi) K. Koch) wurde die Verteilung des Lignins in Tracheiden und Markstrahlzellen untersucht. Die drei Schichten der Sekundärwand in den Tracheiden normalen Holzes werden in nahezu demselben Umfange lignifiziert. Frühere Feststellungen, daß die S 3-Schicht einen höheren Ligningehalt erreicht als andere Zellwandbereiche, konnten also nicht bestätigt werden. Das Lignin folgt sehr genau der Orientierung der Cellulose-Mikrofibrillen aller drei Schichten. Im Vergleich zu den Tracheiden erfahren die Sekundärwände der Markstrahlzellen eine stärkere Ligninauskleidung.Nur ein geringer Prozentsatz des gesamten Lignins der Druckholztracheiden befindet sich in der Mittellamelle. Die dicke S 1-Schicht ist nur wenig lignifiziert. Die Orientierung des Lignins in diesem Bereich entspricht den transversal orientierten, lamellierten Mikrofibrillen. Der äußere Teil der S 2-Schicht enthält sehr viel Lignin, daneben aber auch Lamellen von Cellulose-Mikrofibrillen, die wahrscheinlich dieselbe spiralige Orientierung besitzen wie die Mikrofibrillen des inneren Teiles der S 2-Schicht. Der letzterwähnte Bereich, der spiralige Kavitäten enthält, weist Lamellen von Cellulose-Mikrofibrillen auf, in welche gleichmäßig Lignin eingelagert ist. Die Markstrahlzellen des Druckholzes erscheinen ebenso stark lignifiziert wie die Markstrahlzellen des Normalholzes. Querschnitte durch diese Zellen lassen die laterale Orientierung des Lignins erkennen. Die Orientierung der Cellulose-Mikrofibrillen in der S 2-Schicht der zuerst gebildeten Frühholztracheiden des Druckholzes ist dieselbe wie in jenen Zellen, die später ausgeformt werden. Es wird vorgeschlagen, daß zur eindeutigeren Kennzeichnung die äußere ligninreiche Schicht der Druckholztracheiden als S 2(L)-Schicht bezeichnet wird.


The authors wish to express their gratitude to Messrs. A. K. Bentum, D. C. Jones, and B. W. Simson for technical assistance. They are also thankful to Dr. D. A. I. Goring, McGill University, Montreal, Canada, for valuable discussions and for making available to them important, unpublished information. This investigation was supported by the United States Department of Agriculture, Forest Service, through Forest Service Research Grant No. 1, which is hereby gratefully acknowledged.  相似文献   

10.
As the severity of compression wood influences the mechanical and chemical properties of wood it is desirable to be able to measure compression wood severity. However, so far no satisfactory method has been reported in the literature. Here we describe how scanning FTIR micro-spectroscopy can be employed to achieve CW severity measurements on increment cores of Norway spruce (Picea abies (L. Karst.) and Sitka spruce (Picea sitchensis (Bong.) Carrière). Radial wood strips were converted into sawdust by a process that maintained their spatial orientation. Samples prepared in this way were scanned with an FTIR-microscope in reflective mode and from the spectra obtained a CW-indicator was calculated representing aromatic and carboxyl signals. This FTIR CW-indicator correlated well with alternative CW identification techniques (namely microfibril angle, transmitted light and immunolabelling of beta 1–4 galactan), which have been used to validate the method. Repeatability of the measurements was good and no systematic difference between spruce species was found. The achievable resolution of the measurements was of sub-mm order. The CW indicator described offers the opportunity to correlate CW severity with mechanical wood properties in spruce.  相似文献   

11.
12.
13.
This study investigated and clarified the relation between the piezoelectric voltage and microscopic fracture of hinoki (Chamaecyparis obtura Endl.), in particular the deformation of the cross-sectional wall of the tracheid in linear-elastic regions under combined compression and vibration stresses. The piezoelectric voltage-deformation (P-D) curve consisted of a linear region starting from the origin followed by a convex curved region. The linear region of theP-D curve was only about 60% of that of the load-displacement (L-D) curve. By applying combined stresses to a specimen, the cross-sectional walls of the tracheid were deformed mainly at the radial walls. When a tracheid was regarded approximately as a hexagonal prism, the elastic buckling stress of the radial wall was estimated from scanning electron microscope images and our method based on a modification of the Gibson and Ashby method. As a result, it was estimated that the elastic buckling stress was only about 80% of the stress at the proportional limit of theP-D curve. It is found that there are two consecutive regions before the proportional limit of theP-D curve: One is the region up to the spot where the radial cell wall generates the elastic buckling, and the other is the region starting from the end of the aforementioned region up to the proportional limit of theP-D curve.Part of this paper was presented at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 3–5, 1997  相似文献   

14.
Summary Giant sequoia latewood compression wood (CW) tracheids had pit canals that flared toward the lumen with extended poorly defined inner apertures that paralleled the fibrils in the S2 walls. Boiling and drying of CW and normal wood (NW) blocks induced split extensions at the CW pit aperture grooves but not at the NW pit apertures. These split extensions of the CW pit apertures were present also in longitudinal microsections. The mean fibril angle of 21 to 25 degrees of this well-defined CW was appreciably below the 45 degrees frequently reported. The CW tangential/radial shrinkage ratio of about 1 was distinetly lower than NW (1.6 and 2.1), and appeared to be the result of much lower tangential shrinkage. Both NW and CW specimens when dried quickly in an oven at 100° C had higher shrinkage (long., tang. and rad.) than when air-dried first at lower temperature and higher relative humidity.The SEM photographs were made in the Electronics Research Laboratory which is under the direction of Dr. T. E. Everhart who has a Cambridge Stereoscan Mark II SEM operated under NIH Grant No. G. M. 17523.  相似文献   

15.
To improve the impregnation of wood, the pre-treatment by compression was systematically studied in terms of effects of compression ratio, compression direction, compression speed and compression-unloading place on the liquid impregnation in poplar and Chinese fir. The results showed: the impregnation increased 0.0065 or 0.0074 g/cm3 for every 1% increase of compression ratio when the compression ratio was lower or equal to 50 and 40% for poplar and Chinese fir, respectively; it continued to increase afterwards while the variation was quite big. There existed a significant difference of the impregnation of wood compressed at different directions in Chinese fir, but not in poplar. There existed a significant difference of the impregnation of wood compressed at different speed in both species. The impregnation of wood is likely to be in favor of radial compression in terms of the amount of impregnation. 5 and 10 mm/min were recommended as a compromise of impregnation and pre-treatment efficiency. The impregnation of wood that the compression unloaded in water was about 18.2 (poplar) and 9.2% (Chinese fir) higher in amount and was much quicker in speed than that the compression unloaded in air, and the difference between them was significant, suggesting that compression unloaded in water is significant to improve the impregnation.  相似文献   

16.
Summary Compression wood in the ancient Ginkgo biloba differs from that in most of the younger gymnosperms in the more angular outline of its tracheids, their thinner walls, and their lack of helical cavities. Both normal and compression woods of Ginkgo contain two types of tracheids, one wide, with a thin wall, and another, narrow, with a thicker wall. In all other respects the compression wood tracheids in Ginkgo are ultrastructurally similar to those in other gymnosperms. Helical cavities probably developed relatively late in the evolution of compression wood, since they are missing not only in Ginkgo but also in the Taxales and the Araucariaceae. The occurrence of compression wood in Ginkgo biloba indicates that this tissue probably has existed since the Devonean period. Very likely, the arborescent habit of the gymnosperms has always been dependent on their ability to form compression wood.This investigation was carried out under the McIntire-Stennis Program, Cooperative State Research Service. I am indebted to Mr. A. C. Day of this College and to Mr. A. Rezanowich of the Pulp and Paper Research Institute of Canada for kindly providing the scanning electron micrographs.  相似文献   

17.
Summary The mechanical behaviour of three species of hardwoods soaked in different swelling liquids, compressed at high rates of strain, was investigated using a split Hopkinson pressure bar system. Variations in elastic moduli, proportional limit and maximum stress with respect to the treatments were studied. It was found that the saturated specimens could be as stiff as the dry ones. This result was explained by the behaviour of the liquid present in the large cavities of the wood, i.e. the lumens of the cells, which must be different from that observed at low rates of strain. At large rates of strain, this liquid cannot flow out of the pores and must behave like a solid; therefore the structure of the material is reinforced and, as a consequence, the softening effect of the soaking agent can be masked.  相似文献   

18.
Mechano-sorptive creep mechanism of wood in compression and bending   总被引:1,自引:0,他引:1  
Summary A model is introduced which links the mechano-sorptive behaviour of wood subjected to moderate and high compression or bending stresses parallel to grain to the formation of slip planes in the cell wall. Slip plane formation is dependent on the breaking of hydrogen bonds, which process is directly related to the amount of moisture change. The dramatic change of microfibril orientation in slip plane zones cause an increase of the longitudinal shrinkage/swelling and a decrease of the modulus of elasticity. These features of slip plane formation account for both the magnitude and the oscillation of the excessive mechano-sorptive creep associated with compression and bending parallel to grain. A summary is given of the characteristics of the mechano-sorptive effects, and the model is discussed in the light of these effects.The paper is one of the results of a project on the influence of changing moisture content on the mechanical behavior of wood, currently underway in a co-operation between College of Environmental Science and Forestry, State University of New York, and the Technical University of Denmark. Support for this project is provided by the Danish Technical Research Council and by the USDA C--operative Research Program (proj. 85-FSTY-9-0112). The support is gratefully acknowledged  相似文献   

19.
During refining of mechanical pulp, a process occurring at high speed at temperatures of 140–160°C, the flexibility and bonding ability of wood fibres are increased. To understand the mechanical behaviour of the fibres in this operation, deformations at low speed of wet wood specimens at 50°C were studied under two different combinations of shear and compression loadings. The results were compared with the behaviour of wet wood in pure compression. Some features of the deformation that occurred in earlywood were analysed using an image analysis procedure. During pure compression the cell walls bend independently of the shape of the fibre cells and their cell wall thickness. Under combined shear and compression, however, mainly the corners of the fibre cells get deformed. In a second deformation performed in compression, the fibre cells follow the same deformation pattern as given by the first deformation type whether in compression or in combined shear and compression. The interpretation was that permanent defects in the cells themselves were introduced already in the first load cycle of the wood samples. The load combination with lower shear gave the same permanent strain as the case of pure compression but using less energy.  相似文献   

20.
Summary H v light scattering patterns from single wood fibers were photographically recorded using a laser-based light scattering apparatus. The patterns were semi-quantitatively interpreted with the help of a simplified model for the structure of the wood fiber using computer-assisted procedures. It was concluded that the organization of crystalline cellulose in the helically wound fibrils of the secondary wall is of biaxial type.This work was supported by the National Science Foundation, grant No. GK-12857. The authors thank P. Rushton, Research Assistant, for microscopic measurements. (Contribution No. 63 from the Empire State Paper Research Institute, State University College of Forestry, Syracuse, N. Y., U.S.A.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号