首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo evaluate the effects of methadone, administered alone or in combination with acepromazine or xylazine, on sedation and on physiologic values in dogs.Study designRandomized cross-over design.AnimalsSix adult healthy mixed-breed dogs weighing 13.5 ± 4.9 kg.MethodsDogs were injected intramuscularly with physiologic saline (Control), or methadone (0.5mg kg−1) or acepromazine (0.1 mg kg−1) or xylazine (1.0 mg kg−1), or acepromazine (0.05 mg kg−1) plus methadone (0.5 mg kg−1) or xylazine (0.5 mg kg−1) plus methadone (0.5 mg kg−1) in a randomized cross-over design, with at least 1-week intervals. Sedation, pulse rate, indirect systolic arterial pressure, respiratory rate (RR), body temperature and pedal withdrawal reflex were evaluated before and at 15-minute intervals for 90 minutes after treatment.ResultsSedation was greater in dogs receiving xylazine alone, xylazine plus methadone and acepromazine plus methadone. Peak sedative effect occurred within 30 minutes of treatment administration. Pulse rate was lower in dogs that received xylazine either alone or with methadone during most of the study. Systolic arterial pressure decreased only in dogs receiving acepromazine alone. When methadone was administered alone, RR was higher than in other treatments during most of the study and a high prevalence of panting was observed. In all treatments body temperature decreased, this effect being more pronounced in dogs receiving methadone alone or in combination with acepromazine. Pedal withdrawal reflex was absent in four dogs receiving methadone plus xylazine but not in any dog in the remaining treatments.Conclusions and clinical relevanceMethadone alone produces mild sedation and a high prevalence of panting. Greater sedation was achieved when methadone was used in combination with acepromazine or xylazine. The combination xylazine–methadone appears to result in better analgesia than xylazine administered alone. Both combinations of methadone/sedative were considered effective for premedication in dogs.  相似文献   

2.
Objective  To compare the effects of morphine (MOR), methadone (MET), butorphanol (BUT) and tramadol (TRA), in combination with acepromazine, on sedation, cardiorespiratory variables, body temperature and incidence of emesis in dogs.
Study design  Prospective randomized, blinded, experimental trial.
Animals  Six adult mixed-breed male dogs weighing 12.0 ± 4.3 kg.
Methods  Dogs received intravenous administration (IV) of acepromazine (0.05 mg kg−1) and 15 minutes later, one of four opioids was randomly administered IV in a cross-over design, with at least 1-week intervals. Dogs then received MOR 0.5 mg kg−1; MET 0.5 mg kg−1; BUT 0.15 mg kg−1; or TRA 2.0 mg kg−1. Indirect systolic arterial pressure (SAP), heart rate (HR), respiratory rate ( f R), rectal temperature, pedal withdrawal reflex and sedation were evaluated at regular intervals for 90 minutes.
Results  Acepromazine administration decreased SAP, HR and temperature and produced mild sedation. All opioids further decreased temperature and MOR, BUT and TRA were associated with further decreases in HR. Tramadol decreased SAP whereas BUT decreased f R compared with values before opioid administration. Retching was observed in five of six dogs and vomiting occurred in one dog in MOR, but not in any dog in the remaining treatments. Sedation scores were greater in MET followed by MOR and BUT. Tramadol was associated with minor changes in sedation produced by acepromazine alone.
Conclusions and clinical relevance  When used with acepromazine, MET appears to provide better sedation than MOR, BUT and TRA. If vomiting is to be avoided, MET, BUT and TRA may be better options than MOR.  相似文献   

3.
ObjectiveTo evaluate the sedative effects of intravenous (IV) medetomidine (1 μg kg?1) and butorphanol (0.1 mg kg?1) alone and in combination in dogs.Study designProspective, blinded, randomized clinical trial.AnimalsSixty healthy (American Society of Anesthesiologists I) dogs, aged 6.2 ± 3.2 years and body mass 26 ± 12.5 kg.MethodsDogs were assigned to four groups: Group S (sodium chloride 0.9% IV), Group B (butorphanol IV), Group M (medetomidine IV) and Group MB (medetomidine and butorphanol IV). The same clinician assessed sedation before and 12 minutes after administration using a numerical scoring system in which 19 represented maximum sedation. Heart rate (HR), respiratory rate, pulse quality, capillary refill time and rectal temperature were recorded after each sedation score assessment. Sedation scores, sedation score difference (score after minus score before administration) and patient variables were compared using one-way anova for normally distributed variables and Kruskal–Wallis test for variables with skewed distributions and/or unequal variances. Where significance was found, further evaluation used Bonferroni multiple comparisons for pair-wise testing.ResultsBreed, sex, neuter status, age and body mass did not differ between groups. Sedation scores before substance administration were similar between groups (p = 0.2). Sedation scores after sedation were significantly higher in Group MB (mean 9.5 ± SD 5.5) than in group S (2.5 ± 1.8) (p < 0.001), group M (3.1 ± 2.5) (p < 0.001) and group B (3.7 ± 2.0) (p = 0.003). Sedation score difference was significantly higher in Group MB [7 (0–13)] than in Group S [0 (?1 to 4)] (p < 0.001) and Group M [0 (0–6)] (p < 0.001). HR decreased significantly in Groups M and MB compared with Group S (p < 0.05).Conclusion and clinical relevanceLow-dose medetomidine 1 μg kg?1 IV combined with butorphanol 0.1 mg kg?1 IV produced more sedation than medetomidine or butorphanol alone. HR was significantly decreased in both medetomidine groups.  相似文献   

4.
ObjectiveTo evaluate the feasibility of gastroduodenoscopy in dogs premedicated with acepromazine in combination with butorphanol or methadone.Study designProspective, randomized, double-blinded clinical trial.AnimalsA group of 40 client-owned dogs.MethodsDogs were randomly allocated to one of two groups and give intramuscular acepromazine 0.02 mg kg–1 combined with either butorphanol 0.3 mg kg–1 (group ACEBUT) or methadone 0.2 mg kg–1 (group ACEMET). General anaesthesia was induced with propofol and ketamine and maintained with sevoflurane (2.3%) in oxygen. Cardiopulmonary variables were recorded at 5 minute intervals during anaesthesia. Feasibility of the entire gastroduodenoscopy was evaluated with a visual analogue scale (VAS) from 0 (best) to 100 (worst) (primary outcome of the study). Lower oesophageal sphincter dilatation and duodenal intubation were scored. Pylorus diameter was measured with standard endoscopic inflatable balloons. Overall cardiovascular stability was assessed during anaesthesia, using a VAS (0-100), as was the presence of fluid in the oesophagus, regurgitation, need for mechanical ventilation, and intraoperative and postoperative rescue analgesia (secondary outcomes of the study). Differences between treatments were analysed with Mann–Whitney U, Student t test, Fisher exact test or mixed model analysis of variance as appropriate. Subsequently, feasibility VAS of the gastroduodenoscopy was assessed for noninferiority between groups. The noninferiority margin was set as –10.ResultsAll gastroduodenoscopies were successfully completed in both groups using an endoscope tip diameter of 12.8 mm in all but one dog. Feasibility of gastroduodenoscopy was evaluated as 2.9 ± 5.6 in group ACEBUT and 5.1 ± 5.8 in group ACEMET. No significant differences between groups were detected in any measured or assessed variables, and noninferiority was confirmed.Conclusion and clinical relevanceIn our study population, the effects of methadone and butorphanol when combined with acepromazine were comparable.  相似文献   

5.

Objective

To compare intraocular pressure (IOP) and pupillary diameter (PD) following intravenous (IV) administration of dexmedetomidine and acepromazine in dogs.

Study design

Prospective, randomized experimental trial.

Animals

A group of 16 healthy adult dogs aged (mean ± standard deviation) 4.9 ± 3.3 years and weighing 15.7 ± 9.6 kg, without pre-existing ophthalmic disease.

Methods

IV dexmedetomidine hydrochloride (0.002 mg kg–1; DEX) or acepromazine maleate (0.015 mg kg–1; ACE) was administered randomly to 16 dogs (eight per group). The IOP and PD, measured using applanation tonometry and Schirmer's strips mm scale, respectively, and the heart rate (HR), systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures and respiratory rate (fR) were recorded at baseline, at time of injection, and then 5, 10, 15, 20 and 25 minutes after injection. A single ophthalmologist, unaware of treatment, performed all measurements under consistent light conditions. Values were compared with baseline and among treatments using a multivariate mixed-effects model (p ≤ 0.05).

Results

The IOP was significantly lower in the DEX group compared with the ACE group at 10 (p < 0.01) and 15 minutes (p < 0.01) after drug injection. PD was significantly smaller compared to baseline for the entire duration of the study (p < 0.01) in both groups. Dogs in the DEX group had significant lower HR (p < 0.01) and fR (p < 0.01), higher SAP (p < 0.01) and DAP (p < 0.01) at all time points, and higher MAP (p < 0.01) during the first 15 minutes following drug injection in comparison with the ACE group.

Conclusions and clinical relevance

Our results suggest that premedication with IV dexmedetomidine temporarily decreases IOP when compared with IV acepromazine. Both drugs cause miosis.  相似文献   

6.
ObjectiveTo evaluate the sedative and analgesic effects of intramuscular buprenorphine with either dexmedetomidine or acepromazine, administered as premedication to cats and dogs undergoing elective surgery.Study designProspective, randomized, blinded clinical study.AnimalsForty dogs and 48 cats.MethodsAnimals were assigned to one of four groups, according to anaesthetic premedication and induction agent: buprenorphine 20 μg kg?1 with either dexmedetomidine (dex) 250 μg m?2 or acepromazine (acp) 0.03 mg kg?1, followed by alfaxalone (ALF) or propofol (PRO). Meloxicam was administered preoperatively to all animals and anaesthesia was always maintained using isoflurane. Physiological measures and assessments of pain, sedation and mechanical nociceptive threshold (MNT) were made before and after premedication, intraoperatively, and for up to 24 hours after premedication. Data were analyzed with one-way, two-way and mixed between-within subjects anova, Kruskall–Wallis analyses and Chi squared tests. Results were deemed significant if p ≤ 0.05, except where multiple comparisons were performed (p ≤ 0.005).ResultsCats premedicated with dex were more sedated than cats premedicated with acp (p < 0.001) and ALF doses were lower in dex cats (1.2 ± 1.0 mg kg?1) than acp cats (2.5 ± 1.9 mg kg?1) (p = 0.041). There were no differences in sedation in dogs however PRO doses were lower in dex dogs (1.5 ± 0.8 mg kg?1) compared to acp dogs (3.3 ± 1.1 mg kg?1) (p < 0.001). There were no differences between groups with respect to pain scores or MNT for cats or dogs.ConclusionChoice of dex or acp, when given with buprenorphine, caused minor, clinically detectable, differences in various characteristics of anaesthesia, but not in the level of analgesia.Clinical relevanceA combination of buprenorphine with either acp or dex, followed by either PRO or ALF, and then isoflurane, accompanied by an NSAID, was suitable for anaesthesia in dogs and cats undergoing elective surgery. Choice of sedative agent may influence dose of anaesthetic induction agent.  相似文献   

7.
8.

Objective

To compare the effects of alfaxalone and propofol, with and without acepromazine and butorphanol followed by doxapram, on laryngeal motion and quality of laryngeal examination in dogs.

Study design

Randomized, crossover, blinded study.

Animals

Ten female Beagle dogs, aged 11–13 months and weighing 7.2–8.6 kg.

Methods

The dogs were administered four intravenous (IV) treatments: alfaxalone (ALF), alfaxalone + acepromazine and butorphanol (ALF–AB), propofol (PRO) and propofol + AB (PRO–AB). AB doses were standardized. Dogs were anesthetized 5 minutes later by administration of alfaxalone or propofol IV to effect. Arytenoid motion during maximal inspiration and expiration was captured on video before and after IV doxapram (0.25 mg kg?1). The change in rima glottidis surface area (RGSA) was calculated to measure arytenoid motion. An investigator blinded to the treatment scored laryngeal examination quality.

Results

A 20% increase in RGSA was the minimal arytenoid motion that was detectable. RGSA was significantly less in ALF before doxapram compared with all other treatments. A <20% increase in RGSA was measured in eight of 10 dogs in PRO and in all dogs in ALF before doxapram. After doxapram, RGSA was significantly increased for PRO and ALF; however, 20% of dogs in PRO and 50% of dogs in ALF still had <20% increase in RGSA. A <20% increase in RGSA was measured in five of 10 dogs in PRO–AB and ALF–AB before doxapram. All dogs in PRO–AB and ALF–AB with <20% increase in RGSA before doxapram had ≥20% increase in RGSA after doxapram. Examination quality was significantly better in PRO–AB and ALF–AB.

Conclusions and clinical relevance

The use of acepromazine and butorphanol improved the quality of laryngeal examination. Any negative impact on arytenoid motion caused by these premedications was overcome with doxapram. Using either propofol or alfaxalone alone is not recommended for the evaluation of arytenoid motion.  相似文献   

9.
10.
ObjectiveTo evaluate the effects of nalbuphine, butorphanol and morphine combined with acepromazine on intraoperative and early postoperative pain management in dogs anesthetized for ovariohysterectomy.Study designProspective, randomized blinded clinical study.AnimalsA total of 48 healthy female dogs of different breeds, aged 1–6 years, weighing (mean ± standard deviation) 14.5 ± 4.8 kg.MethodsDogs were randomly assigned into four groups to be intravenously administered nalbuphine (0.5 mg kg–1; group N0.5), nalbuphine (1.0 mg kg–1; group N1.0), butorphanol (0.4 mg kg–1; group B0.4) or morphine (0.2 mg kg–1; group M0.2) combined with acepromazine (0.02 mg kg–1) prior to propofol and isoflurane for anesthesia. Heart rate (HR), respiratory rate, systolic arterial pressure and rectal temperature (RT) were recorded at time points during anesthesia. A dynamic interactive visual analog scale applied in three phases (DIVAS I, II and III) and the modified Glasgow composite measure pain scale were used to assess pain before premedication and 1, 2, 3, 4, 5 and 6 hours after extubation. Administration of rescue analgesia was recorded.ResultsAt the left ovarian pedicle ligation, HR was higher in N1.0 than in B0.4 (p = 0.020). RT decreased significantly by the end of surgery in N0.5 (p = 0.043) and B0.4 (p = 0.010). Rescue analgesia was administered postoperatively over 6 hours to eight, seven, nine and 10 dogs in N0.5, N1.0, B0.4 and M0.2, respectively (p = 0.57). DIVAS II was higher in B0.4 than in N1.0 at 2 and 3 hours (p = 0.038 and p = 0.002, respectively) and N0.5 at 3 hours (p = 0.003).Conclusions and clinical relevanceAt the doses used, all premedication protocols provided insufficient intraoperative analgesia, with minimal clinical differences between groups. No premedication provided satisfactory analgesia in the first 6 hours postoperatively.  相似文献   

11.
Cardiopulmonary and sedative effects of intravenous or epidural methadone were compared. Six beagles were randomly assigned to group MIV (methadone 0.5 mg/kg IV + NaCl 0.9% epidurally) or MEP (methadone 0.5 mg/kg epidurally + NaCl 0.9% IV). Cardiopulmonary, blood gas and sedation were assessed at time (T) 0, 15, 30, 60, 120, 240 and 480 min after drug administration. Compared to T0, heart rate decreased at T15–T120 in MIV (< .001) and T15–T240 in MEP (< .05); mean arterial pressure was reduced at T15–T60 in MEP (< .01); respiratory rate was higher at T15 and T30 in both groups (< .05); pH was lower at T15–T120 in MIV (< .01) and T15, T30 and T120 in MEP (< .05); PaCO2 was higher at T15–T60 in MIV (< .01) and T15, T30 and T120 in MEP (< .01); sedation scores were higher at T15 and T30 in MIV and T15–T60 in MEP (< .05). At T120 and T240, sedation score was higher in group MEP compared with group MIV (< .01) In conclusion, cardiopulmonary and sedative effects of identical methadone doses are similar when administered IV or epidurally to conscious healthy dogs.  相似文献   

12.
13.
OBJECTIVE: To evaluate the effects of acepromazine maleate on the cardiovascular changes induced by dopamine in isoflurane-anesthetized dogs. STUDY DESIGN: Prospective, randomized cross-over experimental design. ANIMALS: Six healthy adult spayed female dogs weighing 16.4 +/- 3.5 kg (mean +/- SD). METHODS: Each dog received two treatments, at least 1 week apart. Acepromazine (0.03 mg kg(-1), IV) was administered 15 minutes before anesthesia was induced with propofol (7 mg kg(-1), IV) and maintained with isoflurane (1.8% end-tidal). Acepromazine was not administered in the control treatment. Baseline cardiopulmonary parameters were measured 90 minutes after induction. Thereafter, dopamine was administered intravenously at 5, 10, and 15 microg kg(-1) minute(-1), with each infusion rate lasting 30 minutes. Cardiopulmonary data were obtained at the end of each infusion rate. RESULTS: Dopamine induced dose-related increases in cardiac index (CI), stroke index, arterial blood pressure, mean pulmonary arterial pressure, oxygen delivery index (DO(2)I) and oxygen consumption index. In the control treatment, systemic vascular resistance index (SVRI) decreased during administration of 5 and 10 microg kg(-1) minute(-1) of dopamine and returned to baseline with the highest dose (15 microg kg (-1) minute(-1)). After acepromazine treatment, SVRI decreased from baseline during dopamine administration, regardless of the infusion rate, and this resulted in a smaller increase in blood pressure at 15 microg kg (-1) minute(-1). During dopamine infusion hemoglobin concentrations were lower following acepromazine and this contributed to significantly lower arterial O(2) content. CONCLUSIONS: Acepromazine prevented the return in SVRI to baseline and reduced the magnitude of the increase in arterial pressure induced by higher doses of dopamine. However, reduced SRVI associated with lower doses of dopamine and the ability of dopamine to increase CI and DO(2)I were not modified by acepromazine premedication. CLINICAL RELEVANCE: Previous acepromazine administration reduces the efficacy of dopamine as a vasopressor agent in isoflurane anesthetized dogs. Other beneficial effects of dopamine such as increased CO are not modified by acepromazine.  相似文献   

14.
Objective: To retrospectively evaluate the incidence of seizures in dogs presenting with a history of seizures that were treated with acepromazine (ACE) during hospitalization. Design: Retrospective study. Setting: Privately owned emergency and referral hospital. Animals: Thirty‐one client‐owned dogs. Interventions: Administration of ACE. Measurements and main results: The medical records from dogs with an acute or chronic seizure history that received ACE were reviewed. Factors evaluated included presenting complaint, seizure history, ACE dosage, duration of observation, seizure activity, and other medications used. Thirty‐one dogs qualified for the study: 20 males and 11 females. Age range was 3 months to 14.9 years. Presenting complaint was seizure in 28/31 dogs. There was a prior history of seizures in 22/31 dogs, and 15/22 were currently on antiseizure medication. ACE was given 1–5 times per dog. Mean ACE dose was 0.029 mg/kg IV (range: 0.008–0.057 mg/kg; n=46), 0.036 mg/kg IM (range: 0.017–0.059 mg/kg; n=14), 0.53 mg/kg PO (n=2). Twenty‐seven dogs did not seizure after administration of ACE within the observation period (mean: 16.4 hours, range: 0.25–66 hours). Twenty‐five dogs received antiseizure medication before ACE. Eight seizure episodes occurred in 4 dogs (all of whom presented for seizures) within 0.3–10 hours after ACE administration. Conclusions: There was no observed correlation between ACE administration in dogs with a seizure history and the recurrence of seizure activity during hospitalization. The time from ACE administration to seizure activity was greater than expected for measurable effects to be seen in 1 dog (10 hour). Further studies with a larger group and alternative ACE doses are needed to more thoroughly evaluate the safety of short‐term ACE use in dogs with a seizure history.  相似文献   

15.
Objective To investigate the effects of intramuscularly administered hydromorphone hydrochloride and acepromazine on intraocular pressure (IOP) and pupil size (PS). Animals studied Seventeen dogs free of clinically relevant ocular abnormalities. Procedure Measurements of IOP and PS were obtained and the dogs were injected intramuscularly with hydromorphone (0.04–0.08 mg/kg) and acepromazine (0.04 mg/kg). Measurements of IOP and PS were repeated 10 min and 25 min later. Results Though a decreasing trend in IOP values was demonstrated, no significant difference was noted in IOP from the initial examination to examination following intramuscular administration of hydromorphone and acepromazine. Significant miosis was present in 16 of 17 dogs at 10 min and 25 min following administration of hydromorphone and acepromazine. Conclusion Hydromorphone (0.04–0.08 mg/kg) and acepromazine (0.04 mg/kg) cause significant miosis in dogs at 10 and 25 min following intramuscular administration.  相似文献   

16.
ObjectiveTo evaluate the effects of progressively increasing doses of acepromazine on cardiopulmonary variables and sedation in conscious dogs.Study designProspective, experimental study.AnimalsA group of six healthy, adult, mixed-breed dogs weighing 16.5 ± 5.0 kg (mean ± standard deviation).MethodsDogs were instrumented with thermodilution and arterial catheters for evaluation of hemodynamics and arterial blood gases. On a single occasion, acepromazine was administered intravenously to each dog at 10, 15, 25 and 50 μg kg–1 at 20 minute intervals, resulting in cumulative acepromazine doses of 10 μg kg–1 (ACP10), 25 μg kg–1 (ACP25), 50 μg kg–1 (ACP50) and 100 μg kg–1 (ACP100). Hemodynamic data and sedation scores were recorded before (baseline) and 20 minutes after each acepromazine dose.ResultsCompared with baseline, all acepromazine doses significantly decreased stroke index (SI), mean arterial pressure (MAP) and arterial oxygen content (CaO2) with maximum decreases of 16%, 17% and 21%, respectively. Cardiac index (CI) decreased by up to 19% but not significantly. Decreases of 26–38% were recorded for oxygen delivery index (DO2I), with significant differences for ACP50 and ACP100. Systemic vascular resistance index (SVRI) and heart rate did not change significantly. No significant difference was found among acepromazine doses for hemodynamic data. After ACP10, mild sedation was observed in five/six dogs and moderate sedation in one/six dogs, whereas after ACP25, ACP50 and ACP100, moderate sedation was observed in five/six or six/six dogs.Conclusions and clinical relevanceIn conscious dogs, acepromazine decreased MAP, SI, CaO2 and DO2I, but no significant dose effect was detected. SVRI was not significantly changed, suggesting that the reduction in MAP resulted from decreased CI. The ACP25, ACP50 and ACP100 doses resulted in moderate sedation in most dogs; ACP10 resulted in only mild sedation.  相似文献   

17.
18.
19.
ObjectiveTo compare the sedative effects of dexmedetomidine administered either intranasally or intramuscularly to healthy dogs.Study designProspective, randomized, blinded, clinical trial.AnimalsA group of 16 client-owned healthy dogs.MethodsDogs were randomly allocated to one of two groups that were administered dexmedetomidine 5 μg kg–1 via either the intranasal route (INDex), through a mucosal atomization device in one nostril, or the intramuscular route (IMDex), into the epaxial muscles. Ease of intranasal administration, sedation score, onset of sedation, cardiopulmonary variables, mechanical nociceptive thresholds (MNTs) and response to venous catheterization were recorded at 0 (baseline), 5, 10, 15, 20, 25, 30, 35, 40 and 45 minutes, following drug administration. Data were compared with the one-way anova, Mann-Whitney U test, and chi-square test, where appropriate.ResultsGroups were not different for age, sex, weight, body condition score or temperament. Sedation scores, MNTs and response to intravenous catheter placement were not different when dexmedetomidine was administered by either route (p = 0.691; p = 0.630 and p = 0.435, respectively). Onset of sedation was not different between groups INDex and IMDex reaching a score of 4.2 ± 0.9 and 5.5 ± 1.2 at 9 ± 5 and 8 ± 4 minutes, respectively (p = 0.467). The highest sedation score was achieved at 30 and 35 minutes and sedation scores were 9.7 ± 2.0 and 9.5 ± 2.3 in groups INDex and IMDex, respectively (p = 0.799). Respiratory rate was higher in group INDex (p = 0.014), while there were no differences between routes in heart rate (p = 0.275), systolic (p = 0.957), diastolic (p = 0.837) or mean arterial pressure (p = 0.921).Conclusions and clinical relevanceIntranasal administration of dexmedetomidine at 5 μg kg–1 provides effective sedation in healthy dogs.  相似文献   

20.
ObjectiveTo describe alfaxalone total intravenous anaesthesia (TIVA) following premedication with buprenorphine and either acepromazine (ACP) or dexmedetomidine (DEX) in bitches undergoing ovariohysterectomy.Study designProspective, randomised, clinical study.AnimalsThirty-eight healthy female dogs.MethodsFollowing intramuscular buprenorphine (20 μg kg?1) and acepromazine (0.05 mg kg?1) or dexmedetomidine (approximately 10 μg kg?1, adjusted for body surface area), anaesthesia was induced and maintained with intravenous alfaxalone. Oxygen was administered via a suitable anaesthetic circuit. Alfaxalone infusion rate (initially 0.07 mg kg?1 minute?1) was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Alfaxalone boluses were given if required. Ventilation was assisted if necessary. Alfaxalone dose and physiologic parameters were recorded every 5 minutes. Depth of sedation after premedication, induction quality and recovery duration and quality were scored. A Student's t-test, Mann–Whitney U and Chi-squared tests determined the significance of differences between groups. Data are presented as mean ± SD or median (range). Significance was defined as p < 0.05.ResultsThere were no differences between groups in demographics; induction quality; induction (1.5 ± 0.57 mg kg?1) and total bolus doses [1.2 (0 – 6.3) mg kg?1] of alfaxalone; anaesthesia duration (131 ± 18 minutes); or time to extubation [16.6 (3–50) minutes]. DEX dogs were more sedated than ACP dogs. Alfaxalone infusion rate was significantly lower in DEX [0.08 (0.06–0.19) mg kg?1 minute?1] than ACP dogs [0.11 (0.07–0.33) mg kg?1 minute?1]. Cardiovascular variables increased significantly during ovarian and cervical ligation and wound closure compared to baseline values in both groups. Apnoea and hypoventilation were common and not significantly different between groups. Arterial haemoglobin oxygen saturation remained above 95% in all animals. Recovery quality scores were significantly poorer for DEX than for ACP dogs.Conclusions and clinical relevanceAlfaxalone TIVA is an effective anaesthetic for surgical procedures but, in the protocol of this study, causes respiratory depression at infusion rates required for surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号