首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.

Objective

The evaluation of alfaxalone as a premedication agent and intravenous anaesthetic in pigs.

Study design

Prospective, clinical trial.

Animals

Nine healthy, 6–8-week-old female Landrace pigs weighing 22.2 ± 1.0 kg, undergoing epidural catheter placement.

Methods

All pigs were premedicated with 4 mg kg?1 alfaxalone, 40 μg kg?1 medetomidine and 0.4 mg kg?1 butorphanol administered in the cervical musculature. Sedation was subjectively scored by the same observer from 1 (no sedation) to 10 (profound sedation) prior to induction of anaesthesia with alfaxalone intravenously to effect. All pigs were maintained on alfaxalone infusions with the rate of administration adjusted to maintain appropriate anaesthetic depth. Quality of induction was scored from 1 (poor) to 3 (smooth) and basic cardiorespiratory variables were recorded every 5 minutes during anaesthesia. Results are reported as mean ± standard deviation or median (range) as appropriate.

Results

Sedation scores were 9 (7–10). Inductions were smooth in all pigs and cardiovascular variables remained within normal limits for the duration of anaesthesia. The induction dose of alfaxalone was 0.9 (0.0–2.3) mg kg?1. Three pigs did not require additional alfaxalone after premedication to facilitate intubation.

Conclusions and clinical relevance

Intramuscular alfaxalone in combination with medetomidine and butorphanol produced moderate to deep sedation in pigs. Alfaxalone produced satisfactory induction and maintenance of anaesthesia with minimal cardiovascular side effects. Appropriate monitoring of pigs premedicated with this protocol is required as some pigs may become anaesthetized after intramuscular administration of this combination of drugs.  相似文献   

3.

Objective

To compare the performance of an alfaxalone constant rate intravenous (IV) infusion versus a 3-step IV infusion, both following a loading dose, for the maintenance of a target plasma alfaxalone concentration of 7.6 mg L–1 (effective plasma alfaxalone concentration for immobility in 99% of the population) in cats.

Study design

Prospective randomized crossover study.

Animals

A group of six healthy, adult male neutered cats.

Methods

Catheters were placed in a jugular vein for blood sampling and in a medial saphenous vein for drug administration. An IV bolus of alfaxalone (2 mg kg–1) was administered, followed by either 0.2 mg kg?1 minute?1 for 240 minutes (single infusion; SI) or 0.4 mg kg?1 minute?1 for 10 minutes, then 0.3 mg kg?1 minute?1 for 30 minutes, and then 0.2 mg kg?1 minute?1 for 200 minutes (3-step infusion; 3-step). Plasma alfaxalone concentration was measured at six time points during the infusions. Measures of performance were calculated for each infusion regimen and compared using the paired Wilcoxon signed-rank test.

Results

Median (range) absolute performance error, divergence, median prediction error and wobble were 15 (8–19)%, ?8 (?12 to ?6)% hour?1, ?12 (?19 to ?7)% and 10 (8–19)%, respectively, in the SI treatment, and 6 (2–16)%, 0 (?13 to 2)% hour?1, 1 (?16 to 4)% and 4 (3–6)% respectively, in the 3-step treatment and were significantly smaller in the 3-step treatment than in the SI treatment.

Conclusion and clinical relevance

After IV administration of a bolus dose, a 3-step infusion regimen can better maintain stable plasma alfaxalone concentrations close to the target concentration than a single constant rate infusion.  相似文献   

4.

Objective

To assess quality of sedation following intramuscular (IM) injection of two doses of alfaxalone in combination with butorphanol in cats.

Study design

Prospective, randomized, ‘blinded’ clinical study.

Animals

A total of 38 cats undergoing diagnostic imaging or noninvasive procedures.

Methods

Cats were allocated randomly to be administered butorphanol 0.2 mg kg?1 combined with alfaxalone 2 mg kg?1 (group AB2) or 5 mg kg?1 (group AB5) IM. If sedation was inadequate, alfaxalone 2 mg kg?1 IM was administered and cats were excluded from further analysis. Temperament [1 (friendly) to 5 (aggressive)], response to injection, sedation score at 2, 6, 8, 15, 20, 30, 40, 50 and 60 minutes, overall sedation quality scored after data collection [1 (excellent) to 4 (inadequate)] and recovery quality were assessed. Heart rate (HR), respiratory rate (fR) and arterial haemoglobin saturation (SpO2) were recorded every 5 minutes. Groups were compared using t tests and Mann–Whitney U tests. Sedation was analysed using two-way anova, and additional alfaxalone using Fisher's exact test (p < 0.05).

Results

Groups were similar for sex, age, body mass and response to injection. Temperament score was lower in group AB2 [2 (1–3)] compared to AB5 [3 (1–5)] (p = 0.006). Group AB5 had better sedation at 6, 8, 20 and 30 minutes and overall sedation quality was better in AB5 [1 (1–3)], compared to AB2 [3 (1–4)] (p = 0.0001). Additional alfaxalone was required for 11 cats in AB2 and two in AB5 (p = 0.005). Recovery quality, HR, fR and SpO2 were similar. Seven cats required oxygen supplementation. Complete recovery times were shorter in AB2 (81.8 ± 24.3 versus 126.6 ± 33.3 minutes; p = 0.009). Twitching was the most common adverse event.

Conclusions and clinical relevance

In combination with butorphanol, IM alfaxalone at 5 mg kg?1 provided better quality sedation than 2 mg kg?1. Monitoring of SpO2 is recommended.  相似文献   

5.

Objective

To determine the minimum infusion rate (MIR) of alfaxalone required to prevent purposeful movement in response to standardized stimulation while co-administered with lidocaine at three different doses by constant infusion rate infusion (CRI) in goats.

Study design

Prospective, blinded, randomized crossover, experimental.

Animals

A total of eight healthy goats: four does and four wethers.

Methods

Anaesthetic induction was with lidocaine at 1 mg kg?1 [low dose of lidocaine (L-Lid)], 2 mg kg?1 [moderate dose (M-Lid)] or 4 mg kg?1 [high dose (H-Lid)] and alfaxalone at 2 mg kg?1. Anaesthetic maintenance was with alfaxalone initially at 9.6 mg kg?1 hour?1 combined with one of three lidocaine treatments: 3 mg kg?1 hour?1 (L-Lid), 6 mg kg?1 hour?1 (M-Lid) or 12 mg kg?1 hour?1 (H-Lid). The MIR of alfaxalone was determined by testing for responses to a stimulation in the form of clamping on a digit with a Vulsellum forceps every 30 minutes during lidocaine CRI. Basic cardiopulmonary parameters were measured.

Results

The alfaxalone MIRs were 8.64 (6.72–10.56), 6.72 (6.72–8.64) and 6.72 (6.72–6.72) mg kg?1 hour?1 during L-Lid, M-Lid and H-Lid, respectively, without any significant differences among treatments. Compared to the initial rate of 9.6 mg kg?1 hour?1, these reductions in MIR are equivalent to 10, 30 and 30%, respectively. Significant increases in heart rate (HR) and arterial carbon dioxide partial pressure (PaCO2) and decreases in arterial haemoglobin saturation (SaO2), arterial oxygen partial pressure (PaO2) and respiratory frequency (fR) immediately after induction were observed during all lidocaine treatments.

Conclusions and clinical relevance

Lidocaine reduces the alfaxalone MIR by up to 30% with a tendency towards a plateauing in this effect at high CRIs. Immediate oxygen supplementation might be required to prevent hypoxaemia.  相似文献   

6.

Objective

To compare incidence and duration of postinduction apnoea in dogs after premedication with methadone and acepromazine (MA) or methadone and dexmedetomidine (MD) followed by induction with propofol (P) or alfaxalone (A).

Study design

Prospective, randomized clinical trial.

Animals

A total of 32 American Society of Anesthesiologists class I dogs (15 females, 17 males), aged between 4 months and 4 years, weighing between 3 and 46 kg.

Methods

Dogs were randomly allocated to be administered MA+P, MA+A, MD+P or MD+A (methadone 0.5 mg kg?1 and acepromazine 0.05 mg kg?1 or dexmedetomidine 5 μg kg?1). Induction agents were administered intravenously via syringe driver (P at 4 mg kg?1 minute?1 or A at 2 mg kg?1 minute?1) until successful endotracheal intubation and the endotracheal tube connected to a circle system with oxygen flow at 2 L minute?1. Oxygen saturation of haemoglobin (SpO2), end tidal partial pressure of carbon dioxide and respiratory rate were monitored continuously. If apnoea (≥ 30 seconds without breathing) occurred, the duration until first spontaneous breath was measured. If SpO2 decreased below 90% the experiment was stopped and manual ventilation initiated. Data were analysed with general linear models with significance set at p ≤ 0.05.

Results

There was no statistical difference in the incidence (11 of 16 dogs in A groups and 12 of 16 dogs in P groups), or mean ± standard deviation duration (A groups 125 ± 113 seconds, P groups 119 ± 109 seconds) of apnoea. The SpO2 of one dog in the MD+P group decreased below 90% during the apnoeic period.

Conclusions and clinical relevance

Propofol and alfaxalone both cause postinduction apnoea and the incidence and duration of apnoea is not influenced by the use of acepromazine or dexmedetomidine in premedication. Monitoring of respiration is recommended when using these premedication and induction agent combinations.  相似文献   

7.
8.

Objective

To determine the effects of two dexmedetomidine continuous rate infusions on the minimum infusion rate of alfaxalone for total intravenous anaesthesia (TIVA), and subsequent haemodynamic and recovery effects in Greyhounds undergoing laparoscopic ovariohysterectomy.

Study design

Prospective, randomized and blinded clinical study.

Animals

Twenty-four female Greyhounds.

Methods

Dogs were premedicated with dexmedetomidine 3 μg kg?1 and methadone 0.3 mg kg?1 intramuscularly. Anaesthesia was induced with IV alfaxalone to effect and maintained with a TIVA mixture of alfaxalone in combination with two different doses of dexmedetomidine (0.5 μg kg?1 hour?1 or 1 μg kg?1 hour?1; groups DEX0.5 and DEX1, respectively). The alfaxalone starting dose rate was 0.07 mg kg?1 minute?1 and was adjusted (± 0.02 mg kg?1 minute?1) every 5 minutes to maintain a suitable depth of anaesthesia. A rescue alfaxalone bolus (0.5 mg kg?1 IV) was administered if dogs moved or swallowed. The number of rescue boluses was recorded. Heart rate, arterial blood pressure and arterial blood gas were monitored. Qualities of sedation, induction and recovery were scored. Differences between groups were tested for statistical significance using a Student’s t test or Mann–Whitney U test as appropriate.

Results

There were no differences between groups in sedation, induction and recovery quality, the median (range) induction dose of alfaxalone [DEX0.5: 2.2 (1.9–2.5) mg kg?1; DEX1: 1.8 (1.2–2.9) mg kg?1], total dose of alfaxalone rescue boluses [DEX0.5: 21.0 (12.5–38.8) mg; DEX1: 22.5 (15.5–30.6) mg] or rate of alfaxalone (DEX0.5: 0.12 ± 0.04 mg kg?1 minute?1; DEX1: 0.12 ± 0.03 mg kg?1 minute?1).

Conclusions and clinical relevance

Co-administration of dexmedetomidine 1 μg kg?1 hour?1 failed to reduce the dose rate of alfaxalone compared with dexmedetomidine 0.5 μg kg?1 hour?1 in Greyhounds undergoing laparoscopic ovariohysterectomy. The authors recommend an alfaxalone starting dose rate of 0.1 mg kg?1 minute?1. Recovery quality was good in the majority of dogs.  相似文献   

9.

Objective

To evaluate the clinical effects and quality of sedation, induction, maintenance and recovery in Lemur catta after dexmedetomidine–butorphanol–midazolam sedation and alfaxalone anaesthesia.

Study design

Prospective, observational study.

Animals

Six male L. catta weighing 3.0 ± 0.6 kg undergoing surgical castration.

Methods

Lemurs were sedated with intramuscular dexmedetomidine (0.015 mg kg?1), butorphanol (0.2 mg kg?1) and midazolam (0.2 mg kg?1). Anaesthesia was induced with intravenous alfaxalone 0.5 mg kg?1 over 60 seconds; further boluses were administered until tracheal intubation was feasible and final dose recorded. Alfaxalone continuous infusion was used to maintain anaesthesia. Atipamezole (0.15 mg kg?1) was administered during recovery. The quality of sedation, induction, intubation, maintenance and recovery was assessed using a scoring system. Physiological parameters were recorded during sedation, maintenance and recovery.

Results

Sedation was achieved in 13.6 ± 5.6 minutes and no reactions were observed during handling or venepuncture. The mean dose of alfaxalone required for induction and maintenance was 2.09 ± 0.65 and 0.08 ± 0.02 mg kg?1 minute?1, respectively. Quality of induction, intubation and maintenance was good in almost all animals. Mild self-limiting muscle twitching was observed after alfaxalone administration in three animals. Cardiorespiratory function was stable in all animals but one. One lemur showed respiratory depression and required oxygen administration and manual ventilation. The mean maintenance time was 29.2 ± 7.4 minutes. The mean times from the end of alfaxalone administration to extubation, atipamezole administration and full recovery were: 15.3 ± 8.0, 22.2 ± 4.6 and 60.0 ± 8.4 minutes, respectively. Recovery was considered good in all animals.

Conclusions and clinical relevance

Dexmedetomidine–butorphanol–midazolam combination provided reliable sedation and adequate muscle relaxation in L. catta. Alfaxalone proved to be a useful drug for induction and maintenance of anaesthesia and might be considered an option for injectable anaesthesia in lemurs.  相似文献   

10.

Objective

To compare the effects of thiopentone, propofol and alfaxalone on arytenoid cartilage motion and establish the dose rates to achieve a consistent oral laryngoscopy examination.

Study design

Randomised crossover study.

Animals

Six healthy adult Beagle dogs.

Methods

Each dog was randomly administered three induction agents with a 1-week washout period between treatments. Thiopentone (7.5 mg kg?1), propofol (3 mg kg?1) or alfaxalone (1.5 mg kg?1) was administered over 1 minute for induction of anaesthesia. If the dog was deemed inadequately anaesthetised, then supplemental boluses of 1.8, 0.75 and 0.4 mg kg?1 were administered, respectively. Continual examination of the larynx, using a laryngoscope, commenced once an adequate anaesthetic depth was reached until examination end point. The number of arytenoid motions and vital breaths were counted during three time periods and compared over time and among treatments. Data were analysed using Friedman and Mann–Whitney U tests, Spearman rho and a linear mixed model with post hoc pairwise comparison with Tukey correction.

Results

The median (range) induction and examination times were 2.8 (2.0–3.0), 2.7 (2.0–3.3) and 2.5 (1.7–3.3) minutes (p = 0.727); and 14.1 (8.0–41.8), 5.4 (3.3–14.8) and 8.5 (3.8–31.6) minutes (p = 0.016) for thiopentone, propofol and alfaxalone, respectively. The median dose rates required to achieve an adequate anaesthetic depth were 6.3 (6.0–6.6), 2.4 (2.4–2.4) and 1.2 (1.2–1.2) mg kg?1 minute?1, respectively. There was no significant difference for the total number of arytenoid motions (p = 0.662) or vital breaths (p = 0.789) among induction agents.

Conclusion and clinical relevance

The number of arytenoid motions were similar among the induction agents. However, at the dose rates used in this study, propofol provided adequate conditions for evaluation of the larynx with a shorter examination time which may be advantageous during laryngoscopy in dogs.  相似文献   

11.

Objective

To compare the induction and recovery characteristics and selected cardiopulmonary variables of midazolam–alfaxalone or midazolam–ketamine in donkeys sedated with xylazine.

Study design

Randomized, blinded, crossover experimental trial.

Animals

A group of seven adult male castrated donkeys weighing 164 ± 14 kg.

Methods

Donkeys were randomly administered midazolam (0.05 mg kg?1) and alfaxalone (1 mg kg?1) or midazolam (0.05 mg kg?1) and ketamine (2.2 mg kg?1) intravenously following sedation with xylazine, with ≥ 7 days between treatments. Donkeys were not endotracheally intubated and breathed room air. Time to lateral recumbency, first movement, sternal recumbency and standing were recorded. Induction and recovery were assigned scores between 1 (very poor) and 5 (excellent). Heart rate (HR), respiratory rate (fR), invasive arterial blood pressures and arterial blood gases were measured before induction and every 5 minutes following induction until first movement.

Results

Time to lateral recumbency (mean ± standard deviation) was shorter after alfaxalone (29 ± 10 seconds) compared with ketamine (51 ± 9 seconds; p = 0.01). Time to first movement was the same between treatments (27 versus 23 minutes). Time to standing was longer with alfaxalone (58 ± 15 minutes) compared with ketamine (33 ± 8 minutes; p = 0.01). Recovery score [median (range)] was of lower quality with alfaxalone [3 (2–5)] compared with ketamine [5 (3–5); p = 0.03]. There were no differences in HR, fR or arterial pressures between treatments. No clinically important differences in blood gases were identified between treatments. Five of seven donkeys administered alfaxalone became hypoxemic (PaO2 <60 mmHg; 8.0 kPa) and all donkeys administered ketamine became hypoxemic (p = 0.13).

Conclusions and clinical relevance

Both midazolam–alfaxalone and midazolam–ketamine produced acceptable anesthetic induction and recovery in donkeys after xylazine sedation. Hypoxemia occurred with both treatments.  相似文献   

12.

Objective

To describe the sedative and physiologic effects of two doses of alfaxalone administered intramuscularly in dogs.

Study design

Randomized, blinded, crossover experimental trial.

Animals

Ten adult mixed-breed dogs.

Methods

Dogs were assigned randomly to be administered one of three intramuscular injections [saline 0.1 mL kg?1 (S), alfaxalone 1 mg kg?1 (A1) or alfaxalone 2 mg kg?1 (A2)] on three occasions. Heart rate (HR), respiratory rate (fR) and sedation score were assessed before injection (T0) and at 5 (T5), 10 (T10), 15 (T15), 20 (T20), 30 (T30), 45 (T45) and 60 (T60) minutes postinjection. Rectal temperature was determined at T0 and T60. Adverse events occurring between the time of injection and T60 were recorded.

Results

Sedation scores were higher in group A2 at T15 and T30 compared with group S. There were no additional differences between groups in sedation score. The A2 group had higher sedation scores at T15, T20 and T30 compared with T0. The A1 group had higher sedation scores at T10 and T30 compared with T0. Temperature was lower in groups A1 and A2 compared with S at T60, but was not clinically significant. There were no differences between or within groups in HR or fR. Adverse effects were observed in both A1 and A2 groups. These included ataxia (17/20), auditory hyperesthesia (5/20), visual disturbance (5/20), pacing (4/20) and tremor (3/20).

Conclusions and clinical relevance

While alfaxalone at 2 mg kg?1 intramuscularly resulted in greater median sedation scores compared with saline, the range was high and adverse effects frequent. Neither protocol alone can be recommended for providing sedation in healthy dogs.  相似文献   

13.
14.

Objective

To compare dexmedetomidine–midazolam with alfaxalone–midazolam for sedation in leopard geckos (Eublepharis macularius).

Study design

Prospective, randomized, blinded, complete crossover study.

Animals

Nine healthy adult leopard geckos.

Methods

Geckos were administered a combination of dexmedetomidine (0.1 mg kg?1) and midazolam (1.0 mg kg?1; treatment D–M) or alfaxalone (15 mg kg?1) and midazolam (1.0 mg kg?1; treatment A–M) subcutaneously craniodorsal to a thoracic limb. Heart rate (HR), respiratory rate (fR), righting reflex, palpebral reflex, superficial and deep pain reflexes, jaw tone and escape response were assessed every 5 minutes until reversal. Conditions for intubation and response to needle prick were evaluated. Antagonist drugs [flumazenil (0.05 mg kg?1) ± atipamezole (1.0 mg kg?1)] were administered subcutaneously, craniodorsal to the contralateral thoracic limb, 45 minutes after initial injection, and animals were monitored until recovery.

Results

HR, but not fR, decreased significantly over time in both treatments. HR was significantly lower than baseline at all time points in D–M and for all but the 5 and 10 minute time points in A–M. HR was significantly higher in A–M at all time points after drug administration when compared with D–M. Sedation scores between protocols were similar for most time points. All animals in A–M lost righting reflex compared with seven out of nine (78%) geckos in D–M. Geckos in A–M lost righting reflex for significantly longer time. Mean ± standard deviation time to recovery after antagonist administration was 6.1 ± 2.2 minutes for D–M and 56 ± 29 minutes for A–M, and these times were significantly different.

Conclusions and clinical relevance

Combination D–M or A–M provided sedation of a level expected to allow physical examinations and venipuncture in leopard geckos. A–M provided a faster onset of sedation compared with D–M. Recovery was significantly faster following antagonist reversal of D–M, compared with A–M.  相似文献   

15.

Objective

To investigate whether an intravenous (IV) lidocaine bolus in calves premedicated with xylazine-butorphanol reduces the amount of ketamine required to allow endotracheal intubation.

Study design

Randomized, prospective clinical study.

Animals

In total, 41 calves scheduled for elective umbilical surgery.

Methods

Calves were randomly assigned to one of two groups (L: lidocaine or S: saline). The calves were administered xylazine (0.07 mg kg?1) and butorphanol (0.1 mg kg?1) intramuscularly and 10 minutes later lidocaine (2 mg kg?1; group L) or saline (group S) IV over 1 minute. After 2 minutes, ketamine (2.5 mg kg?1) was injected IV. If the depth of anaesthesia was insufficient for intubation, additional ketamine (1 mg kg?1) was administered every minute until intubation was successful. The amount of ketamine required for intubation, respiratory rate, pulse rate, arterial pressures, the depth of sedation and conditions of endotracheal intubation after induction of anaesthesia were compared between the two groups.

Results

The calves in group L were sedated more deeply than those in group S; however, neither the median (range) amount of ketamine required for intubation, 3.5 (2.5–4.5) mg kg?1 and 3.5 (2.5–3.5) mg kg?1, respectively, nor the induction quality differed significantly between the groups.

Conclusion and clinical relevance

A bolus of lidocaine (2 mg kg?1) administered 10 minutes after xylazine-butorphanol in calves deepened the degree of sedation but did not decrease the requirement of ketamine for endotracheal intubation. No adverse effects were recorded in the physiological variables measured.  相似文献   

16.
17.

Objective

To study the effect of alternating the order of midazolam and alfaxalone administration on the incidence of behavioural changes, alfaxalone induction dose and some cardiorespiratory variables in healthy dogs.

Study design

Prospective, randomized, controlled, clinical trial.

Animals

A total of 33 client-owned dogs undergoing elective procedures.

Methods

Following intramuscular acepromazine (0.02 mg kg?1) and morphine (0.4 mg kg?1) premedication, anaesthesia was induced intravenously (IV) with a co-induction of either midazolam (0.25 mg kg?1) prior to alfaxalone (0.5 mg kg?1; group MA), or alfaxalone followed by midazolam at identical doses (group AM). The control group (CA) was administered normal saline IV prior to alfaxalone administration. Additional alfaxalone (0.25 mg kg?1 increments) was administered as required in all groups until orotracheal intubation was possible. Changes in behaviour, quality of induction, ease of intubation and incidence of adverse events at induction were recorded. Heart rate (HR), respiratory rate (fR) and systolic arterial blood pressure (SAP) were measured before treatments (baseline values), 30 minutes after premedication and at 0, 2, 5 and 10 minutes postintubation.

Results

The incidence of excitement was higher in group MA compared with groups CA (p = 0.005) and AM (p = 0.013). The mean induction dose of alfaxalone was lower in group AM compared with group CA (p = 0.003). Quality of induction and ease of intubation were similar among groups. Mean HR values decreased after premedication and increased after alfaxalone administration in all groups. Mean SAP values were similar between groups. The number of animals that required manual ventilation was higher in the MA group.

Conclusions and clinical relevance

Despite a lower occurrence of adverse events at induction in group AM compared with group MA and a reduction of alfaxalone dose requirement in group AM compared with group CA, the use of an alfaxalone–midazolam co-induction does not seem to produce any cardiovascular or respiratory benefits in healthy dogs.  相似文献   

18.

Objective

To evaluate whether subcutaneous (SC) metoclopramide (0.2 mg kg?1) administered 30 minutes prior to (T30) or simultaneously with (T0) intramuscular (IM) morphine (0.2 mg kg?1) and dexmedetomidine (0.003 mg kg?1) reduces the incidence of nausea and emesis in healthy dogs.

Study design

Prospective, randomized and blinded study.

Animals

A total of 45 dogs scheduled for elective procedures.

Methods

Dogs were assigned randomly to three groups to be administered SC metoclopramide (0.2 mg kg?1) 30 minutes before (group M30) or simultaneously (group M0) to IM morphine (0.2 mg kg?1) and dexmedetomidine (0.003 mg kg?1). Dogs in the control group (group C) were administered SC saline at T30 and T0. Dogs were observed for 30 minutes after premedication to evaluate signs of nausea (continuous lip-licking and sialorrhoea) and emesis. Signs of pain or discomfort caused by SC injections were also recorded.

Results

There were no statistical differences amongst groups for age, body weight and sex. More dogs developed continuous lip-licking in group C (12/15, 80.0%) compared to dogs in group M30 (1/15, 6.7%) and dogs in group M0 (5/15, 33.3%; p = 0.0001 and p = 0.01, respectively). More dogs developed sialorrhoea in group M0 (8/15, 53.3%) and in group C (10/15, 66.7%) compared to dogs in group M30 (2/15, 13.3%; p = 0.03 and p = 0.004, respectively). More dogs vomited in group M0 (4/15, 26.7%) and in group C (9/15, 60.0%) compared to dogs in group M30 (0/15, 0.0%; p = 0.05 and p = 0.0003, respectively). None of the dogs demonstrated signs of pain or discomfort during SC metoclopramide injection.

Conclusions and clinical relevance:

Subcutaneous metoclopramide at 0.2 mg kg?1 may reduce IM morphine and dexmedetomidine-induced nausea and emesis if administered 30 minutes in advance. It is effective in reducing lip-licking even when administered concurrently with IM morphine–dexmedetomidine.  相似文献   

19.

Objective

To evaluate the analgesic efficacy of Yamamoto New Scalp Acupuncture (YNSA) as an adjuvant for postoperative pain management in cats.

Study design

Prospective, randomized, blinded, clinical study.

Animals

Twenty cats aged (mean ± standard deviation) 25 ± 9 months and weighing 2.7 ± 0.6 kg undergoing ovariohysterectomy.

Methods

The cats were sedated with intramuscular (IM) ketamine (5 mg kg?1), midazolam (0.5 mg kg?1) and tramadol (2 mg kg?1). The cats were randomly distributed before induction of anesthesia into two groups of 10 cats each: group YNSA, in which bilateral basic D points were stimulated with a dry needle from 20 minutes prior to anesthetic induction to the end of the surgery; group Control, in which no acupuncture was applied. Postoperative analgesia was assessed at 1, 2, 4, 8, 12, 18 and 24 hours postextubation using an Interactive Visual Analog Scale and Universidade Estadual Paulista-Botucatu Multidimensional Composite Pain Scale (UNESP-Botucatu MCPS). Rescue analgesia was provided with IM tramadol (2 mg kg?1), and the pain scores were reassessed 30 minutes after rescue intervention. If the analgesia remained insufficient, meloxicam (0.2 mg kg?1 as a single dose) was administered IM. Data were analyzed using Student t-test, Fisher exact test, Mann–Whitney U test and Friedman test (p < 0.05).

Results

Significantly lower pain scores were observed in YNSA when compared with Control at 1–4 hours based on the UNESP-Botucatu MCPS scores. Although significant differences were not identified between groups requiring rescue analgesia, additional postoperative analgesia was administered to four of 10 cats in Control and no cats in YNSA.

Conclusion and clinical relevance

Perioperative YNSA resulted in decreased pain scores and a reduction in postoperative requirement for rescue analgesia in cats. This method should be considered a viable option as an adjuvant analgesic therapy for cats undergoing ovariohysterectomy.  相似文献   

20.

Objective

To compare the effect of propofol and alfaxalone on laryngeal motion under a light plane of anaesthesia in nonbrachycephalic and brachycephalic dogs anaesthetized for nonemergency procedures.

Study design

Prospective, randomized clinical trial.

Animals

A total of 48 client-owned dogs (24 nonbrachycephalic and 24 brachycephalic).

Methods

A standardized premedication of methadone (0.2 mg kg?1) and acepromazine (0.01 mg kg?1) was administered intramuscularly. Dogs were randomly assigned to be induced with increments of propofol (1–4 mg kg?1) or alfaxalone (0.5–2 mg kg?1). Laryngeal assessment was performed under a light plane of anaesthesia by a surgeon (GTH) who was unaware of the induction protocol. Laryngeal movement was assessed as either being present when abduction of the laryngeal cartilages upon inspiration was identified, or absent when abduction was not recognized. Simultaneously, a 60-second video was recorded. The same surgeon (GTH) and an additional surgeon (NK) re-evaluated the videos 1 month later. Categorical comparisons were studied using Chi square and Fisher’s exact test where appropriate. Pairwise evaluation of agreement between scorers was undertaken with the kappa statistic (κ).

Results

There were no significant differences (p > 0.05) identified between the presence or absence of laryngeal motion between dogs administered propofol or alfaxalone, as well as when analysing nonbrachycephalic and brachycephalic dogs separately. The majority of dogs (>75%) maintained some degree of laryngeal motion with both protocols. Agreement between assessors was excellent (κ = 0.822).

Conclusions

Alfaxalone maintained laryngeal motion similarly to propofol in nonbrachycephalic and brachycephalic dogs.

Clinical relevance

Both agents would appear appropriate for allowing assessment of laryngeal motion in nonbrachycephalic and brachycephalic dogs. The assessment technique of subjective evaluation of laryngeal motion via peroral laryngoscopy under a light plane of anaesthesia produced consistent results amongst assessors, regardless of the induction agent used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号