首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ObjectiveTo evaluate the perioperative opioid-sparing effect of a medetomidine (MED) infusion compared to a saline (SAL) infusion in otherwise healthy dogs undergoing thoraco-lumbar hemilaminectomy surgery.Study designRandomized, partially blinded, clinical study.AnimalsA total of 44 client-owned adult dogs.MethodsAll dogs were administered a 1 μg kg–1 MED loading dose, followed by a 1.7 μg kg–1 hour–1 constant rate infusion (CRI) intravenously or equivalent volumes of SAL. Infusions were started 10–15 minutes before surgical incision and continued throughout the surgical procedure. All dogs were administered a standardized anaesthetic and analgesic protocol (including a ketamine CRI). Multiparametric monitoring, including invasive arterial blood pressure, was performed. A trained investigator, unaware of the treatment, performed pain scores for 4 hours postoperatively. Rescue analgesia consisted of fentanyl administered intraoperatively and methadone postoperatively. Data were tested for normality and analysed with Fisher’s exact test, Mann–Whitney U-test, analysis of variance and Kaplan–Meier survival analysis. Data are shown as median (interquartile range) and p-value was set at < 0.05.ResultsThe total dose of fentanyl was significantly lower with MED 0 (0–0.8) μg kg–1 hour–1 compared to SAL 3 (1.8–5.3) μg kg–1 hour–1 (p = 0.004). In the MED group, one dog compared to 12 dogs in the SAL group required a fentanyl CRI (p = 0.001). There were no statistically significant differences between groups regarding the total dose of methadone administered.Conclusions and clinical relevanceThe addition of a low-dose medetomidine CRI to the anaesthetic protocol decreased the need for a fentanyl CRI in otherwise healthy dogs undergoing thoraco-lumbar hemilaminectomy surgery during administration of a ketamine CRI.  相似文献   

2.
ObjectiveTo determine the thermal and mechanical antinociceptive effects of two different subanesthetic constant rate infusions of racemic ketamine in cats.Study designProspective, randomized, blinded, experimental study.AnimalsEight healthy adult domestic shorthair cats (two intact females and six neutered males).MethodsThe thorax and the lower thoracic limbs of each cat were shaved for thermal (TT) and mechanical threshold (MT) testing and a cephalic catheter was placed. Three intravenous treatments of equivalent volume were given as loading dose (LD) followed by an infusion for 2 hours: (K5) 0.5 mg kg?1 ketamine followed by 5 μg kg?1 minute?1 ketamine infusion, (K23) 0.5 mg kg?1 ketamine followed by 23 μg kg?1 minute?1 ketamine infusion or (S) 0.9% saline solution. Effects on behavior, sedation scores, MT and TT were obtained prior to drug treatment and 0.25, 0.5, 0.75, 1, 1.5, 2, 2.25, 2.5 2.75, 3 hours then every 0.5 hours for 7 hours and 10, 12, 14 and 26 hours after loading dose administration.ResultsKetamine induced mild sedation for the period of the infusion, no adverse behavioral effects were observed. Thermal threshold was significantly higher than baseline (K5: 44.5 ± 0.7 °C; K23: 44.5 ± 0.5 °C) at 15 minutes in the K5 group (46.8 ± 3.5 °C) and at 45 minutes in the K23 group (47.1 ± 4.1 °C). In the K23 group TT was significantly increased compared to S and K5 at 45 minutes. In K5 at 15 minutes MT (9.6 ± 4.0 N) was different to baseline (6.1 ± 0.8 N) and to the S group (5.9 ± 2.3 N).Conclusion and clinical relevanceLow dose rate ketamine infusions minimally affect thermal and mechanical antinociception in cats. Further studies with different nociceptive testing methods are necessary to assess whether ketamine could be a useful analgesic in cats.  相似文献   

3.
OBJECTIVE: To evaluate the isoflurane-sparing and clinical effects of two constant rate infusions of remifentanil in healthy dogs undergoing orthopaedic surgery. STUDY DESIGN: Prospective, randomized clinical study. ANIMALS: Forty-one American Society of Anesthesiologists I-II client-owned dogs (age, 7 months-9 years; body mass 11-59 kg). METHODS: Dogs were randomly assigned to one of three groups and received either: intramuscular (IM) meperidine 2 mg kg(-1) every 2 hours throughout surgery (control group (C); n = 13); remifentanil infused intravenously (IV) at 0.1 microg kg(-1) minute(-1) (low remifentanil group (L); n = 14) or remifentanil infused at 0.25 microg kg(-1) minute(-1) IV (high remifentanil group (H); n = 14). Anaesthesia was induced with thiopental administered to effect and maintained using isoflurane in 100% oxygen. During controlled ventilation when the end-tidal CO(2) was maintained between 4.65 and 5.98 kPa [35-45 mmHg], the end-tidal isoflurane concentration (e'iso%), mean arterial blood pressure (MAP) and heart rate (HR) were measured every 5 minutes. Bradycardia (HR < 40 minute(-1) lasting >5 minutes) was corrected with 0.01 mg kg(-1) IV glycopyrrolate. Data were analysed using the Kruskal-Wallis test with a post-hoc Mann-Whitney U-test and Bonferroni correction. Statistical significance was accepted at < or = 0.05. Data are expressed as mean +/- standard deviation. RESULTS: The e'iso% was reduced in a dose-dependent manner by remifentanil. In C, e'iso% was 1.28 +/-0.13 and was significantly different from L (0.78 +/- 0.17, p < 0.001) and H (0.65 +/- 0.16, p < 0.001). HR was significantly different between groups (p < 0.001). There were no significant differences in MAP between groups. Glycopyrrolate was required in two, three and six dogs in the C, L and H groups respectively. CONCLUSIONS: Remifentanil infusion reduced the isoflurane concentration required for surgical anaesthesia during orthopaedic surgery. CLINICAL RELEVANCE: Remifentanil infusions may be a useful additive to isoflurane anaesthesia in healthy dogs.  相似文献   

4.

Objective

To evaluate motor and sensory blockade of combining dexmedetomidine with ropivacaine, administered perineurally or systemically, for femoral and sciatic nerve blocks in conscious dogs.

Study design

Randomized, controlled, experimental study.

Animals

Seven healthy Beagle dogs, aged 3.3 ± 0.1 years and weighing 11.0 ± 2.4 kg.

Methods

Dogs were anesthetized with isoflurane on three separate occasions for unilateral femoral and sciatic nerve blocks and were administered the following treatments in random order: perineural ropivacaine 0.75% (0.1 mL kg–1) on each nerve and intramuscular (IM) saline (0.2 mL kg–1) (GCON); perineural dexmedetomidine (1 μg mL–1) and ropivacaine 0.75% (0.1 mL kg–1) on each nerve and IM saline (0.2 mL kg–1) (GDPN); and perineural ropivacaine 0.75% (0.1 mL kg–1) on each nerve and IM dexmedetomidine (1 μg mL–1, 0.2 mL kg–1) (GDIM). Nerve blocks were guided by ultrasound and electrical stimulation and dogs were allowed to recover from general anesthesia. Sensory blockade was evaluated by response to clamp pressure on the skin innervated by the saphenous/ femoral, common fibular and tibial nerves. Motor blockade was evaluated by observing the ability to walk and proprioception. Sensory and motor blockade were evaluated until their full recovery.

Results

No significant differences in onset time to motor and sensory blockade were observed among treatments. Duration of motor blockade was not significantly different among treatments; however, duration of tibial sensory blockade was longer in the GDPN than in the GDIM treatment.

Conclusions and clinical relevance

Although a longer duration of sensory blockade was observed with perineural dexmedetomidine, a significant increase compared with the control group was not established. Other concentrations should be investigated to verify if dexmedetomidine is a useful adjuvant to local anesthetics in peripheral nerve blocks in dogs.  相似文献   

5.
OBJECTIVE: To evaluate histamine release and selected physiologic variables during constant rate infusion (CRI) of morphine in dogs. ANIMALS: Five healthy, conscious, intact female dogs. MATERIAL AND METHODS: Using a Latin square, repeated-measures design, dogs were randomly assigned to three treatment groups to receive a 4-hour CRI of saline (SAL), or a loading dose of morphine at 0.3 mg kg(-1) (LM), or 0.6 mg kg(-1) (HM), followed by an infusion of 0.17 mg kg(-1) hour(-1) (LM) and 0.34 mg kg(-1) hour(-1) (HM) respectively. Dogs received each of the three treatments at intervals of at least 7 days. Plasma histamine concentration, skin flushing, edema and wheals, heart rate and rhythm and non-invasive arterial blood pressure were measured before the loading dose and at 1, 2, 5, 15, 30, 60, 120, 180 and 240 minutes during the CRI, or at the time of occurrence. RESULTS: The loading dose induced the highest histamine release in the HM group being statistically higher than the SAL group. The histamine release obtained in the LM group after the loading dose did not differ from SAL. During the infusion, plasma histamine levels were numerically higher in the LM group. Besides one dog that developed hypotension for 2 minutes after the loading dose in the HM group and one dog that showed occasional ventricular premature contractions during both morphine infusions, cardiovascular variables were similar among the three treatment groups. CONCLUSIONS AND CLINICAL RELEVANCE: Both doses of morphine induced variable histamine release with minimal adverse cardiovascular effects in these conscious, healthy dogs. The plasma histamine levels obtained may be associated with significant hemodynamic changes in patients with limited cardiovascular reserve and sympathetic nervous tone.  相似文献   

6.
ObjectiveTo evaluate the effects of constant rate infusions (CRIs) of dexmedetomidine and remifentanil alone and their combination on minimum alveolar concentration (MAC) of sevoflurane in dogs.Study designRandomized crossover experimental study.AnimalsA total of six (three males, three females) healthy, adult neutered Beagle dogs weighing 12.6 ± 1.4 kg.MethodsAnesthesia was induced with sevoflurane in oxygen until endotracheal intubation was possible and anesthesia maintained with sevoflurane using positive-pressure ventilation. Each dog was anesthetized five times and was administered each of the following treatments: saline (1 mL kg–1 hour–1) or dexmedetomidine at 0.1, 0.5, 1.0 or 5.0 μg kg–1 loading dose intravenously over 10 minutes followed by CRI at 0.1, 0.5, 1.0 or 5.0 μg kg–1 hour–1, respectively. Following 60 minutes of CRI, sevoflurane MAC was determined in duplicate using an electrical stimulus (50 V, 50 Hz, 10 ms). Then, CRI of successively increasing doses of remifentanil (0.15, 0.60 and 2.40 μg kg–1 minute–1) was added to each treatment. MAC was also determined after 30 minutes equilibration at each remifentanil dose. Isobolographic analysis determined interaction from the predicted doses required for a 50% MAC reduction (ED50) with remifentanil, dexmedetomidine and remifentanil combined with dexmedetomidine, with the exception of dexmedetomidine 5.0 μg kg–1 hour–1, obtained using log-linear regression analysis.ResultsThe sevoflurane MAC decreased dose-dependently with increasing infusion rates of dexmedetomidine and remifentanil. Remifentanil ED50 values were lower when combined with dexmedetomidine than those obtained during saline–remifentanil. Synergistic interactions between dexmedetomidine and remifentanil for MAC reduction occurred with dexmedetomidine at 0.5 and 1.0 μg kg–1 hour–1.Conclusions and clinical relevanceCombined CRIs of dexmedetomidine and remifentanil synergistically resulted in sevoflurane MAC reduction. The combination of dexmedetomidine and remifentanil effectively reduced the requirement of sevoflurane during anesthesia in dogs.  相似文献   

7.

Objective

To determine the effects of low and high dose infusions of dexmedetomidine and a peripheral α2-adrenoceptor antagonist, MK-467, on sevoflurane minimum alveolar concentration (MAC) in dogs.

Study design

Crossover experimental study.

Animals

Six healthy, adult Beagle dogs weighing 12.6 ± 0.9 kg (mean ± standard deviation).

Methods

Dogs were anesthetized with sevoflurane in oxygen. After a 60-minute instrumentation and equilibration period, the MAC of sevoflurane was determined in triplicate using the tail clamp technique. PaCO2 and temperature were maintained at 40 ± 5 mmHg (5.3 ± 0.7 kPa) and 38 ± 0.5 ºC, respectively. After baseline MAC determination, dogs were administered two incremental loading and infusion doses of either dexmedetomidine (1.5 μg kg?1 then 1.5 μg kg?1 hour?1 and 4.5 μg kg?1 then 4.5 μg kg?1 hour?1) or MK-467 (90 μg kg?1 then 90 μg kg?1 hour?1 and 180 μg kg?1 then 180 μg kg?1 hour?1); loading doses were administered over 10 minutes. MAC was redetermined in duplicate starting 30 minutes after the start of drug administration at each dose. End-tidal sevoflurane concentrations were corrected for calibration and adjusted to sea level. A repeated-measures analysis was performed and comparisons between doses were conducted using Tukey's method. Statistical significance was considered at p < 0.05.

Results

Sevoflurane MAC decreased significantly from 1.86 ± 0.3% to 1.04 ± 0.1% and 0.57 ± 0.1% with incremental doses of dexmedetomidine. Sevoflurane MAC significantly increased with high dose MK-467, from 1.93 ± 0.3% to 2.29 ± 0.5%.

Conclusions and clinical relevance

Dexmedetomidine caused a dose-dependent decrease in sevoflurane MAC, whereas MK-467 caused an increase in MAC at the higher infusion dose. Further studies evaluating the combined effects of dexmedetomidine and MK-467 on MAC and cardiovascular function may elucidate potential benefits of the addition of a peripheral α2-adrenergic antagonist to inhalation anesthesia in dogs.  相似文献   

8.
ObjectiveTo evaluate the isoflurane‐sparing effects of an intravenous (IV) constant rate infusion (CRI) of fentanyl, lidocaine, ketamine, dexmedetomidine, or lidocaine‐ketamine‐dexmedetomidine (LKD) in dogs undergoing ovariohysterectomy.Study designRandomized, prospective, blinded, clinical study.AnimalsFifty four dogs.MethodsAnesthesia was induced with propofol and maintained with isoflurane with one of the following IV treatments: butorphanol/saline (butorphanol 0.4 mg kg?1, saline 0.9% CRI, CONTROL/BUT); fentanyl (5 μg kg?1, 10 μg kg?1 hour?1, FENT); ketamine (1 mg kg?1, 40 μg kg?1 minute?1, KET), lidocaine (2 mg kg?1, 100 μg kg?1 minute?1, LIDO); dexmedetomidine (1 μg kg?1, 3 μg kg?1 hour?1, DEX); or a LKD combination. Positive pressure ventilation maintained eucapnia. An anesthetist unaware of treatment and end‐tidal isoflurane concentration (Fe′Iso) adjusted vaporizer settings to maintain surgical anesthetic depth. Cardiopulmonary variables and Fe′Iso concentrations were monitored. Data were analyzed using anova (p < 0.05).ResultsAt most time points, heart rate (HR) was lower in FENT than in other groups, except for DEX and LKD. Mean arterial blood pressure (MAP) was lower in FENT and CONTROL/BUT than in DEX. Overall mean ± SD Fe′Iso and % reduced isoflurane requirements were 1.01 ± 0.31/41.6% (range, 0.75 ± 0.31/56.6% to 1.12 ± 0.80/35.3%, FENT), 1.37 ± 0.19/20.8% (1.23 ± 0.14/28.9% to 1.51 ± 0.22/12.7%, KET), 1.34 ± 0.19/22.5% (1.24 ± 0.19/28.3% to 1.44 ± 0.21/16.8%, LIDO), 1.30 ± 0.28/24.8% (1.16 ± 0.18/32.9% to 1.43 ± 0.32/17.3%, DEX), 0.95 ± 0.19/54.9% (0.7 ± 0.16/59.5% to 1.12 ± 0.16/35.3%, LKD) and 1.73 ± 0.18/0.0% (1.64 ± 0.21 to 1.82 ± 0.14, CONTROL/BUT) during surgery. FENT and LKD significantly reduced Fe′Iso.Conclusions and clinical relevanceAt the doses administered, FENT and LKD had greater isoflurane‐sparing effect than LIDO, KET or CONTROL/BUT, but not at all times. Low HR during FENT may limit improvement in MAP expected with reduced Fe′Iso.  相似文献   

9.
ObjectiveTo determine the effects of propofol or etomidate on induction quality, arterial blood pressure, blood gases, and recovery quality in normal dogs.Study designRandomized, blinded trial.AnimalsEighteen purpose-bred adult Beagles.MethodsDogs were randomly assigned to receive propofol at 8 mg kg−1 or etomidate at 4 mg kg−1 intravenously (IV) administered to effect. Midazolam was administered at 0.3 mg kg−1 IV as pre-medication at least 1 minute prior to induction. Direct arterial blood pressure, arterial blood gases, and heart rate were obtained at baseline, before induction, after induction, and for every 5 minutes afterwards until the dog began to swallow and the trachea was extubated. The dogs were allowed to breathe room air with the endotracheal tube in place.ResultsThe systolic arterial pressure (SAP) was higher in the etomidate group compared with the propofol group after induction. The SAP and mean arterial pressure (MAP) were higher in the etomidate group compared with the propofol group at 5 minutes. The recovery quality and ataxia score were worse in the etomidate group compared with the propofol group. Time from extubation to sternal recumbency and sternal recumbency to standing was longer in the etomidate group compared with the propofol group. The heart rate, PaCO2, and HCO3 were higher in the propofol group compared with the etomidate group after induction. The PaO2 and SaO2 were lower in the propofol group compared with the etomidate group after induction. The SAP and MAP were lower in the propofol group at 5 minutes compared with baseline.Conclusion and clinical relevancePropofol caused a decrease in SAP and MAP which was not observed with etomidate. Etomidate caused longer and poorer recoveries than propofol.  相似文献   

10.
舒眠宁是本实验室研制的一种新型犬、猫用复方麻醉剂,在犬肌肉及静脉推注麻醉的基础上,用微量注射泵持续静脉输注舒眠宁,研究其对犬心血管、呼吸系统及麻醉效果的影响。选用成年杂种犬8只,无麻醉前用药,先静注舒眠宁0.05 mL/kg,然后接微量注射泵持续输注,其输注速率为0.1 mL/(kg.h),持续输注1 h。每隔5 min测定心率、呼吸频率、体温、血压、血氧饱和度、呼气末二氧化碳分压、血气指标,评分镇静、镇痛、肌松效果。结果表明:舒眠宁单次给药后起效迅速,微量注射泵持续输注麻醉平稳,各时相呼吸数、体温、血氧饱和度、呼气末二氧化碳分压、血气指标与麻醉前比较差异不显著(P>0.05),心率、血压个别时相差异显著(P<0.05),但均在正常生理范围内;在整个输注过程中,试验犬镇静、镇痛、肌松效果好。说明舒眠宁单次麻醉起效快,持续微量静脉输注麻醉平稳,外科麻醉期长,苏醒快,对心血管、呼吸系统影响小,未见明显不良反应。  相似文献   

11.
12.
ObjectiveTo determine the alfaxalone dose reduction during total intravenous anaesthesia (TIVA) when combined with ketamine or midazolam constant rate infusions and to assess recovery quality in healthy dogs.Study designProspective, blinded clinical study.AnimalsA group of 33 healthy, client-owned dogs subjected to dental procedures.MethodsAfter premedication with intramuscular acepromazine 0.05 mg kg-1 and methadone 0.3 mg kg-1, anaesthetic induction started with intravenous alfaxalone 0.5 mg kg-1 followed by either lactated Ringer’s solution (0.04 mL kg-1, group A), ketamine (2 mg kg-1, group AK) or midazolam (0.2 mg kg-1, group AM) and completed with alfaxalone until endotracheal intubation was achieved. Anaesthesia was maintained with alfaxalone (6 mg kg-1 hour-1), adjusted (±20%) every 5 minutes to maintain a suitable level of anaesthesia. Ketamine (0.6 mg kg-1 hour-1) or midazolam (0.4 mg kg-1 hour-1) were employed for anaesthetic maintenance in groups AK and AM, respectively. Physiological variables were monitored during anaesthesia. Times from alfaxalone discontinuation to extubation, sternal recumbency and standing position were calculated. Recovery quality and incidence of adverse events were recorded. Groups were compared using parametric analysis of variance and nonparametric (Kruskal-Wallis, Chi-square, Fisher’s exact) tests as appropriate, p < 0.05.ResultsMidazolam significantly reduced alfaxalone induction and maintenance doses (46%; p = 0.034 and 32%, p = 0.012, respectively), whereas ketamine only reduced the alfaxalone induction dose (30%; p = 0.010). Recovery quality was unacceptable in nine dogs in group A, three dogs in group AK and three dogs in group AM.Conclusions and clinical relevanceMidazolam, but not ketamine, reduced the alfaxalone infusion rate, and both co-adjuvant drugs reduced the alfaxalone induction dose. Alfaxalone TIVA allowed anaesthetic maintenance for dental procedures in dogs, but the quality of anaesthetic recovery remained unacceptable irrespective of its combination with ketamine or midazolam.  相似文献   

13.

Objective

To compare the efficacy and quality of analgesia provided by constant rate infusions (CRIs) of hydromorphone and fentanyl in dogs in the intensive care unit (ICU).

Study design

Prospective, randomized, blinded, clinical trial.

Animals

A total of 29 client-owned dogs.

Methods

Dogs prescribed a μ-opioid agonist infusion for postsurgical or medical pain were randomized to be administered either hydromorphone (0.025 or 0.05 mg kg?1 bolus, followed by a 0.03 mg kg?1 hour?1 infusion) or fentanyl (2.5 or 5 μg kg?1 bolus, followed by a 3 μg kg?1 hour?1 infusion). The technical staff and clinicians were blinded as to which drug was administered. Pain scores, using the Colorado State University Canine Acute Pain Scale, sedation scores and nausea scores were assigned at regular intervals and compared between groups. Dose escalation and de-escalation of the study drug were performed according to set protocols. Adverse clinical signs and all other medications administered were recorded and compared between groups. The study drug was discontinued if the animal remained painful despite dose escalations, or if adverse effects were noted.

Results

The pain scores were of low magnitude and were not significantly different between groups. The use of concurrent analgesia, sedation/anxiolytic medications and antacid/antiemetic medications was not different between groups. Sedation and nausea scores were not statistically different between groups.

Conclusions and clinical relevance

Hydromorphone and fentanyl CRIs appear to be equally effective for adequate pain relief in dogs, with no significant differences in adverse effects. Therefore, either drug may be chosen for control of postsurgical or medical pain in an ICU setting.  相似文献   

14.
Objective: To evaluate the cardiorespiratory effects of continuous infusion of ketamine in hypovolemic dogs anesthetized with desflurane. Design: A prospective experimental study. Animals: Twelve mixed breed dogs allocated into 2 groups: saline (n=6) and ketamine (n=6). Interventions: After obtaining baseline measurements (time [T] 0) in awake dogs, hypovolemia was induced by the removal of 40 mL of blood/kg over 30 minutes. Anesthesia was induced and maintained with desflurane (1.5 minimal alveolar concentration) and 30 minutes later (T75) a continuous intravenous (IV) infusion of saline or ketamine (100 μg/kg/min) was initiated. Cardiorespiratory evaluations were obtained 15 minutes after hemorrhage (T45), 30 minutes after desflurane anesthesia, and immediately before initiating the infusion (T75), and 5 (T80), 15 (T90), 30 (T105) and 45 (T120) minutes after beginning the infusion. Measurements and main results: Hypovolemia (T45) reduced the arterial blood pressures (systolic arterial pressure, diastolic arterial pressure [DAP] and mean arterial pressure [MAP]), cardiac (CI) and systolic (SI) indexes, and mean pulmonary arterial pressure (PAP) in both groups. After 30 minutes of desflurane anesthesia (T75), an additional decrease of MAP in both groups was observed, heart rate was higher than T0 at T75, T80, T90 and T105 in saline‐treated dogs only, and the CI was higher in the ketamine group than in the saline group at T75. Five minutes after starting the infusion (T80), respiratory rate (RR) was lower and the end‐tidal CO2 (ETCO2) was higher compared with values at T45 in ketamine‐treated dogs. Mean values of ETCO2 were higher in ketamine than in saline dogs between T75 and T120. The systemic vascular resistance index (SVRI) was decreased between T80 and T120 in ketamine when compared with T45. Conclusions: Continuous IV infusion of ketamine in hypovolemic dogs anesthetized with desflurane induced an increase in ETCO2, but other cardiorespiratory alterations did not differ from those observed when the same concentration of desflurane was used as the sole anesthetic agent. However, this study did not evaluate the effectiveness of ketamine infusion in reducing desflurane dose requirements in hypovolemic dogs or the cardiorespiratory effects of ketamine–desflurane balanced anesthesia.  相似文献   

15.
ObjectiveTo evaluate the postoperative analgesic effects of a constant rate infusion (CRI) of either fentanyl (FENT), lidocaine (LIDO), ketamine (KET), dexmedetomidine (DEX), or the combination lidocaine-ketamine-dexmedetomidine (LKD) in dogs.Study designRandomized, prospective, blinded, clinical study.AnimalsFifty-four dogs.MethodsAnesthesia was induced with propofol and maintained with isoflurane. Treatments were intravenous (IV) administration of a bolus at start of anesthesia, followed by an IV CRI until the end of anesthesia, then a CRI at a decreased dose for a further 4 hours: CONTROL/BUT (butorphanol 0.4 mg kg−1, infusion rate of saline 0.9% 2 mLkg−1 hour−1); FENT (5 μg kg−1, 10 μg kg−1hour−1, then 2.5 μg kg−1 hour−1); KET (1 mgkg−1, 40 μg kg−1 minute−1, then 10 μg kg−1minute−1); LIDO (2 mg kg−1, 100 μg kg−1 minute−1, then 25 μg kg−1 minute−1); DEX (1 μgkg−1, 3 μg kg−1 hour−1, then 1 μg kg−1 hour−1); or a combination of LKD at the aforementioned doses. Postoperative analgesia was evaluated using the Glasgow composite pain scale, University of Melbourne pain scale, and numerical rating scale. Rescue analgesia was morphine and carprofen. Data were analyzed using Friedman or Kruskal–Wallis test with appropriate post-hoc testing (p < 0.05).ResultsAnimals requiring rescue analgesia included CONTROL/BUT (n = 8), KET (n = 3), DEX (n = 2), and LIDO (n = 2); significantly higher in CONTROL/BUT than other groups. No dogs in LKD and FENT groups received rescue analgesia. CONTROL/BUT pain scores were significantly higher at 1 hour than FENT, DEX and LKD, but not than KET or LIDO. Fentanyl and LKD sedation scores were higher than CONTROL/BUT at 1 hour.Conclusions and clinical relevanceLKD and FENT resulted in adequate postoperative analgesia. LIDO, CONTROL/BUT, KET and DEX may not be effective for treatment of postoperative pain in dogs undergoing ovariohysterectomy.  相似文献   

16.

Objective

To determine the pharmacokinetics and effects on thermal thresholds (TT) of two fentanyl constant rate infusions in awake cats.

Study design

A blinded, randomized crossover study.

Animals

A group of six healthy female cats, aged 3 ± 1 years, weighing 4.1 ± 0.7 kg.

Methods

Skin temperature (TSKIN) and TT were evaluated using a wireless TT device. TSKIN, TT, sedation score (SS) and blood samples were collected before an intravenous loading dose (LD; over 5 seconds) and at specific time points during (360 minutes) and after infusion. Each cat was administered two treatments: fentanyl (LD 3 μg kg?1, infusion 3 μg kg?1 hour?1; treatment F3) or fentanyl (LD 5 μg kg?1, infusion 5 μg kg?1 hour?1; treatment F5). SS between treatments was analyzed using a Kruskal–Wallis test. Statistical analysis of TT and TSKIN was performed using analysis of variance with appropriate post hoc test (p < 0.05).

Results

TSKIN did not vary over time for each treatment. SS did not differ between treatments. TTs were significantly higher than baseline at 15 minutes after LD for F3 and F5. TT was significantly increased at 30, 90, 120, 180 and 300 minutes in treatment F5 but not in F3. Plasma fentanyl concentrations decreased rapidly in both treatments over the first 30 minutes after infusion. The terminal half-life was 3.31 (2.93–4.41) hours for F3 and 3.67 (3.39–4.32) hours for F5 (median, range). Systemic clearance for treatments F3 and F5 was 1.95 (1.46–2.44) and 2.25 (1.98–2.47) L hour?1 kg?1 (median, range), respectively. Plasma concentrations <1.84 ng mL?1 were not associated with a significant increase in TT.

Conclusions

and clinical relevance A fentanyl infusion rate of 5 μg kg?1 hour?1 increased TT during the infusion period. Effects on TT were lost rapidly with cessation of the infusion.  相似文献   

17.
ObjectiveTo compare the effect of intraperitoneal (IP) or incisional (INC) bupivacaine on pain and the analgesic requirement after ovariohysterectomy in dogs.Study designProspective, randomized clinical study.AnimalsThirty female dogs undergoing ovariohysterectomy (OHE).MethodsDogs admitted for elective OHE were anesthetized with acepromazine, butorphanol, thiopental and halothane. Animals were randomly assigned to one of three groups (n = 10 per group). The treatments consisted of preincisional infiltration with saline solution (NaCl 0.9%) or bupivacaine with epinephrine and/or IP administration of the same solutions, as follows: INC and IP 0.9% NaCl (control group); INC 0.9% NaCl and IP bupivacaine (5 mg kg?1, IP group); INC bupivacaine (1 mg kg?1) and IP 0.9% NaCl (INC group). Postoperative pain was evaluated by a blinded observer for 24 hours after extubation by means of a visual analog scale (VAS) and a numeric rating scale (NRS). Rescue analgesia (morphine, 0.5 mg kg?1, IM) was administered if the VAS was >5/10 or the NRS >10/29.ResultsAt 1 hour after anesthesia, VAS pain scores were [medians (interquartile range)]: 6.4 (3.1–7.9), 0.3 (0.0–2.6) and 0.0 (0.0–7.0) in control, IP and INC groups, respectively. VAS pain scores were lower in the IP compared to the control group. Over the first 24 hours, rescue analgesia was administered to 7/10, 5/10 and 3/10 dogs of the control, INC and IP groups, respectively. Total number of dogs given rescue analgesia over the first 24 hours did not differ significantly among groups.Conclusions and clinical relevanceIntraperitoneal bupivacaine resulted in lower pain scores during the first hour of the postoperative period and there was a trend towards a decreased need for rescue analgesia after OHE in dogs.  相似文献   

18.
Haemodynamic variables, with emphasis on right ventricular (RV) contractility, were measured in horses prior to, during and following anaesthesia with xylazine/ketamine. In an attempt to elicit mechanisms of anaesthetic-induced alteration of myocardial function, serum ionised and total calcium concentrations were also measured. Xylazine caused decreased cardiac function, including RV contractility, that was not reversed immediately by ketamine but was insignificant from pre-anaesthetic baseline by recovery (45 min following induction). Serum ionised and total calcium concentrations did not change.  相似文献   

19.
ObjectiveTo assess the effect of two intravenous (IV) doses of lidocaine on the minimum anesthetic concentration (MAC) of isoflurane in chickens.Study designBlinded, prospective, randomized, experimental crossover study.AnimalsA total of six adult female chickens weighing 1.90 ± 0.15 kg.MethodsChickens were anesthetized with isoflurane and mechanically ventilated. Isoflurane MAC values were determined (T0) in duplicate using an electrical noxious stimulus and the bracketing method. After MAC determination, a low dose (LD; 3 mg kg–1 followed by 3 mg kg–1 hour–1) or high dose (HD; 6 mg kg?1 followed by 6 mg kg?1 hour–1) of lidocaine was administered IV. MAC determination was repeated at 1.5 (T1.5) and 3 (T3) hours of lidocaine administration and blood was collected for analysis of plasma lidocaine and monoethylglycinexylidide (MEGX) concentrations. Pulse rate, peripheral hemoglobin oxygen saturation, noninvasive systolic arterial pressure and cloacal temperature were recorded at T0, T1.5 and T3. Treatments were separated by 1 week. Data were analyzed using mixed-effects model for repeated measures.ResultsMAC of isoflurane (mean ± standard deviation) at T0 was 1.47 ± 0.18%. MAC at T1.5 and T3 was 1.32 ± 0.27% and 1.26 ± 0.09% (treatment LD); and 1.28 ± 0.06% and 1.30 ± 0.06% (treatment HD). There were no significant differences between treatments or times. Maximum plasma lidocaine concentrations at T3 were 496 ± 98 and 1200 ± 286 ng mL–1 for treatments LD and HD, respectively, and were not significantly different from T1.5. With treatment HD, plasma concentration of MEGX was significantly higher at T3 than at T1.5. Physiological variables were not significantly different among times with either treatment.Conclusions and clinical relevanceAdministration of lidocaine did not significantly change isoflurane MAC in chickens. Within treatments, plasma lidocaine concentrations were not significantly different at 1.5 and 3 hours.  相似文献   

20.
Objective To study the echocardiographic effects of isoflurane at an end‐tidal concentration approximating 1.0 times the minimum alveolar concentration (MAC) in healthy unpremedicated dogs. Study design Prospective experimental trial. Animals Sixteen mature mongrel dogs of either sex weighing 11.06 ± 2.72 kg. Methods After performing a baseline echocardiogram in the awake animal, anesthesia was induced with increasing inspired concentrations of isoflurane via a face mask until tracheal intubation was possible. Following intubation, the end‐tidal concentration was decreased to 1.4% for the rest of the anesthetic period. Serial echocardiograms were recorded at 25, 40, and 55 minutes after the end‐tidal concentration was reached. Results No changes were observed in heart rate. However, significant decreases were seen in left ventricular end‐diastolic diameter (Mean maximal change: 13.8%), interventricular septal thickness during systole (15.2%), interventricular septal thickening fraction (72.2%), left ventricular free wall thickening fraction (63.5%), ejection fraction (39.9%), and fractional shortening (46.7%). In addition, peak flow velocities across mitral, pulmonic, and aortic valves were significantly lower than baseline values. Decreases were also observed in end‐diastolic left ventricular volume index (approximately 32.1% from the awake value), stroke index (58.2%), and cardiac index (55.3%) when compared with awake measurements. Conclusions and clinical relevance Our results indicate that 1 × MAC isoflurane caused significant myocardial depression in healthy dogs. These changes in myocardial function need to be considered carefully when isoflurane is to be used in dogs with poor cardiovascular reserve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号