共查询到18条相似文献,搜索用时 78 毫秒
1.
基于光谱红边位置提取算法的番茄叶片叶绿素含量估测 总被引:1,自引:0,他引:1
为了快速、准确估测番茄叶片叶绿素含量,分析了不同营养水平下的番茄叶片光谱红边参数变化规律,发现红边位置最能表征番茄叶绿素状况,统计分析了6种算法提取的光谱红边位置的差异性,并为每种算法分别建立了5种估测模型,验证结果表明每种红边位置提取算法所对应的最佳模型为线性四点内插法的指数曲线模型和其他红边位置算法的对数曲线模型。其中线性外推法模型精度最高,校正集决定系数R2c为0.618 6,验证集决定系数R2v达到0.771 1,验证集均方根误差RMSEv为8.359 6,可以有效诊断番茄叶绿素含量。线性四点内插法根据670、700、740、780 nm 4个波段的叶片反射率计算红边位置,运算简单,模型精度较高,R2c为0.621 7,R2v达到0.766 6,RMSEv为8.568 2,可以作为开发番茄叶绿素含量监测仪器的依据。 相似文献
2.
为了快速准确地诊断枸杞水分需求,利用地物光谱仪实测枸杞关键生育期不同灌溉水平的叶片反射高光谱数据,应用光谱一阶微分方程,获取枸杞微分光谱680~760 nm波段的红边参数,分析红边位置λre、红边面积Sdre、红边振幅Dλre、红边偏度Dλre和红边峰度Kλre在不同处理下的变化,探讨了不同生育期内土壤水分与红边参数的相关性.结果表明,同一生育期内红边位置不会随着灌溉水平变化而发生偏移,各处理同一生育期内红边位置基本相同;土壤水分在枸杞休眠期和开花期与红边偏度相关性最好,在新梢开花期与红边峰度的相关性最好,展叶期与红边面积的相关性最好,选择各生育期与土壤水分相关性最好的红边参数建立水分估算反演模型,反演方程分别为休眠期:Y=151.581 X-261.325 X2-3.169;开花期:Y=e(1.748-0.016/X);新梢开花期:Y=e(-28.786-44.35/X);展叶期:Y=82.116 X-116.648 X2+13.037. 相似文献
3.
基于SVR算法的苹果叶片叶绿素含量高光谱反演 总被引:3,自引:0,他引:3
为实现苹果叶片叶绿素含量的高光谱反演,分析了多种光谱参数与实测SPAD值的相关性,并将归一化光谱参数值及SPAD值进行多项式回归及支持向量回归。其中以归一化植被指数为变量的SVR(Support vector regression)反演模型在建模及模型检验中决定系数分别为0.741 0、0.891 4,均方根误差分别为0.133 2、0.125 6,具有较高的精度及良好的预测能力。与多项式回归相比,SVR具有更好的反演效果,可以作为叶绿素高光谱反演的优选算法。 相似文献
4.
受水稻冠层几何结构的影响,传统的无人机高光谱获取到的反射光谱信息中包含与水稻内部组成物质无关的镜面反射信息,从而影响水稻氮素含量的反演精度,因此在利用无人机获取水稻冠层反射光谱信息时,有必要考虑通过偏振测量技术去除反射光谱中的镜面反射分量,进而实现提升水稻氮素含量反演精度的目的。基于无人机偏振遥感测量得到的水稻分蘖期多角度偏振光谱数据和与之对应的氮素含量数据,采用植被指数方法分析二者之间的相关性,得到了水稻冠层偏振光谱数据与其对应氮素含量相关性最高时对应的角度,选取该观测角度下的偏振光谱数据,利用连续投影法(Successive projections algorithm, SPA)提取特征波段,在此基础上,基于数学变换的方法,提出了构建植被指数的新思路,构建了由2个波段组成的偏振光谱植被指数(Polarisation spectrum vegetation index, PSVI),并利用线性回归方法建立水稻冠层氮素含量的反演模型。结果表明,通过对不同观测天顶角下水稻冠层偏振光谱数据与氮素含量相关性分析,得到最佳观测角度为-15°(后向观测15°);利用连续投影法提取得到该角度下偏振... 相似文献
5.
针对智慧农业中叶绿素的精准预测问题,本文提出了基于双分支网络的玉米叶片叶绿素含量高光谱与多光谱协同反演的方法。使用欠完备自编码器进行数据降维,捕捉数据中最为显著的特征,使降维后的数据可以代替原始数据进行训练,从而加快训练效率,使用双分支卷积网络将多光谱数据用于填充高光谱数据信息,充分利用高光谱数据的空间细节信息,再结合1DCNN建立玉米叶片叶绿素含量预测模型。结果表明,与传统降维算法相比较,欠完备自编码器处理后预测结果最佳,决定系数R2为0.988,均方根误差(RMSE)为0.273,表明使用欠完备自编码器进行降维可以有效提高数据反演精度;与单一的高光谱数据反演模型和多光谱数据反演模型相比,双分支卷积网络预测模型均取得较优的预测结果,R2在0.932以上,RMSE均在1.765以下,表明基于双分支卷积网络的高光谱与多光谱图像协同反演模型可以有效地利用数据的特征;对于其他数据结合本文提及的双分支卷积网络模型进行反演,其R2均在0.905以上,RMSE均在2.149以下,表明该预测模型具有一定的普适性。 相似文献
6.
杨树叶片叶绿素含量高光谱估算模型研究 总被引:3,自引:0,他引:3
以盆栽107号杨树为研究对象,在验证杨树叶片的SPAD值可作为衡量其叶绿素含量指标的基础上,基于最佳指数-相关系数法(OIFC),提取了杨树叶绿素特征波段(中心波长350、715、1 150 nm),建立了以该组合波段原始光谱数据为自变量的杨树叶片叶绿素含量估算模型;利用相关系数法,提取了杨树叶绿素归一化植被指数的计算波段(中心波长705、953 nm)与一阶光谱导数的叶绿素特征波段(中心波长647、691、721 nm),且分别建立了基于归一化植被指数、叶面叶绿素指数、一阶光谱导数为自变量的杨树叶片叶绿素含量估算模型;比较分析所建立的模型精度,筛选出杨树叶片的叶绿素含量最优估算模型。结果表明:化学法测得杨树叶片叶绿素含量与其对应的SPAD值之间具有显著的幂函数关系,R2可达0.902 3。利用OIFC法提取的叶绿素最佳三波段组合的高光谱数据为自变量,与叶片叶绿素含量构建的模型预测值与实测值具有显著的线性关系,决定系数为0.944 5;相比其他模型,该模型的精度最高且均方根误差最小。可见,基于OIFC法构建的杨树叶绿素高光谱模型具有较高的精度,是估算杨树叶片叶绿素含量的最优模型。 相似文献
7.
针对现有监测方式难以大面积准确监测植株个体水分状况,且猕猴桃果园的郁闭性导致根域土壤含水率(Root domain soil water content,RSWC)监测方法匮乏的问题,使用多层感知机(Multi-layer perceptron,MLP)和冠层植被指数来预测果实膨大期(5—9月)徐香猕猴桃植株40cm深度的RSWC。在MLP训练数据的预处理中,采用Pearson相关系数作为输入(植被指数)与输出(RSWC)的相关性评价指标,采用单因素方差分析作为输入与输出的显著性评价指标。进一步考虑冠层采集范围可能对模型精度造成的影响,将数据分割为不同尺度对MLP进行训练评估。结果表明,重归一化植被指数(Renormalized difference vegetation index,RDVI)与RSWC具有最高的相关性与显著性,相关系数和P分别为0.744和0.007,该指数可以作为RSWC反演的输入量。对不同尺度RDVI的建模数据表明,模型精度与RDVI采样面积A及对角线长度L有着较强的相关性(R2分别为0.991和0.993),为了使模型精度最大化,采样面积应在2.540~3.038m2之间。通过使用该尺度的RDVI建立的MLP模型达到最大精度(R2为0.638,RMSE为0.016)。本研究可为建立非接触性猕猴桃果园土壤含水率估算方法与果园灌溉系统设计提供依据。 相似文献
8.
基于高光谱图像的龙眼叶片叶绿素含量分布模型 总被引:2,自引:0,他引:2
针对传统高光谱单点法检测叶绿素含量效率低、精度不足等问题,提出一种基于高光谱图像和卷积神经网络(CNN)多特征融合的深度学习龙眼叶片叶绿素含量分布预测模型。首先进行Savitzky-Golay光谱去噪,然后通过奇异值分解(SVD)和独立成分分析(ICA)提取特征光谱,再对特征光谱图像提取灰度共生矩阵(GLCM)和CNN纹理特征,最后建立粒子群优化(PSO)支持向量回归(SVR)、深度神经网络(DNNs)分布模型。结果表明,基于特征光谱建模的PSO-SVR预测效果最佳,全期的校正集和验证集模型决定系数R2为0.822 0和0.815 2。对比多种主流模型,基于特征光谱、GLCM纹理、CNN纹理特征的ICA-DNNs模型预测精度最高,校正集和验证集R2分别为0.835 8和0.821 0。试验结果表明,高光谱图像可快速无损地对龙眼叶片叶绿素含量分布进行检测,可为龙眼树实时营养监测和病害早期防治提供理论依据。 相似文献
9.
【目的】快速准确获取大面积果园冠层叶片全氮含量(LNC ,Leaf Nitrogen Content)是实现现代精准农业的基本要求。【方法】本试验通过无人机高光谱成像仪(391.9nm ~ 1006.2nm)采集了甘肃省静宁县两个典型果园的果树冠层光谱图像,包括人工灌溉的苹果示范园与自然降雨的苹果园,综合比较两区共160份冠层叶片样本的原始光谱反射率(OD)、倒数光谱(RT)、对数光谱(LF)、一阶微分光谱(FD),构建任意两个光谱波段集组合的差值植被指数(Difference spectral index,DSI )、土壤调节植被指数(Soil Adjusted Vegetation Index ,SAVI)、归一化光谱指数(Normalized Different Spectral Index, NDSI),分析三种光谱指数与叶片氮含量的相关性,利用一元线性回归模型与光谱指数构建两区最佳苹果冠层LNC估测模型。【结果】研究表明:人工灌溉区的FD-SAVI(825,536)、自然降雨区的LF-SAVI(854,392)与LNC的相关性最强,并基于FD-SAVI、LF-SAVI构建一元线性回归模型。人工灌溉区构建的FD-SAVI-ULRM估测模型精度最高,验证集R2和RMSE为0.6601和0.0678;自然降雨区构建的LF-SAVI-ULRM估测模型精度最高,验证集R2和RMSE为0.6746和0.0665。本试验采用LNC模型绘制出两个试验区的苹果树冠层叶片LNC估测图,实现对果园叶片全氮含量的精准掌握及精细化管理。 相似文献
10.
《灌溉排水学报》2019,(3)
【目的】实现小麦农田土壤含水率大面积快速监测。【方法】以冬小麦冠层高光谱数据为基础,计算得到8种植被指数,通过对关键生育时期(拔节期、抽穗期、灌浆期)不同水分处理下冬小麦不同土层(0~20、20~40、40~60 cm)土壤含水率与植被指数拟合状况进行分析和筛选,分别构建了基于植被指数的不同土层土壤含水率反演模型,并对模型进行检验。【结果】①各时期植被指数拟合效果有所差异,拔节期0~20 cm土层以植被指数VOG1拟合效果较好,相关系数为0.88,20~40 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.75,40~60 cm土层以植被指数VOG3拟合效果较好,相关系数为0.59;抽穗期0~20 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.70,20~40 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.72,40~60 cm土层以植被指数mSR705拟合效果较好,相关系数为0.57;灌浆期0~20 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.88,20~40 cm土层以植被指数SARVI拟合效果较好,相关系数为0.68,40~60 cm土层以植被指数SARVI拟合效果较好,相关系数为0.71;②各土层土壤含水率与植被指数拟合效果有所差异,其中利用VOG1和mNDVI705组合构建的模型反演0~20 cm土层,决定系数R2为0.743,利用mNDVI705和SARVI组合构建的模型反演20~40 cm土层,决定系数R2为0.707,利用VOG3、mSR705和SARVI组合构建的模型反演40~60 cm土层,决定系数R2为0.484;③通过建立植被指数对土壤含水率的反演模型,0~20 cm土层含水率反演效果好于20~40 cm和40~60 cm。【结论】高光谱植被指数反演模型中,以0~20 cm土层的估算模型最佳,植被指数组合为VOG1和mNDVI705。综上可知,该研究方法进行土壤含水率的反演是可行的。 相似文献
11.
基于Sentinel-2遥感影像的玉米冠层叶面积指数反演 总被引:9,自引:0,他引:9
叶面积指数是描述玉米冠层结构的重要参数之一,决定玉米冠层的光合作用、呼吸作用、蒸腾和碳循环等生物物理过程,因此精确反演叶面积指数对玉米长势监测具有重要意义。以河北省保定市的涿州市、高碑店市、定兴县为研究区,利用Sentinel-2遥感影像和LAI-2000地面同步实测数据进行玉米冠层叶面积指数反演,使用归一化差异光谱指数和比值型光谱指数两类指数,构建了单变量和多变量玉米冠层叶面积指数反演模型,通过决定系数(R2)和均方根误差(RMSE)筛选出最佳模型。研究结果表明,由NDSI(783,705)构建的单变量模型为最优反演模型,其决定系数为0.534 2,均方根误差为0.288 5。因此,基于Sentinel-2遥感影像利用植被指数反演玉米冠层叶面积指数的方法可作为判断玉米长势状况的初步判断依据。 相似文献
12.
基于无人机多光谱遥感的夏玉米冠层叶绿素含量估计 总被引:1,自引:0,他引:1
为探讨利用无人机多光谱遥感影像监测夏玉米冠层叶绿素含量的可行性,基于2019年不同施氮水平下(0,105,210,315 kg·N/hm2)夏玉米多光谱遥感影像和田间实测冠层叶绿素含量数据,分析了不同施氮水平下夏玉米冠层叶绿素含量的变化规律,同时选取10种常用光谱植被指数与实测冠层叶绿素含量进行相关性分析,采用与实测叶绿素含量极显著相关的9种植被指数,构建了基于遥感光谱指数的夏玉米冠层叶绿素含量遥感监测模型,并通过精度检验确定最优估测模型.结果表明,施用氮肥能够提高夏玉米冠层叶绿素含量,过量氮肥不能持续提高叶绿素含量,同一施氮水平下不同追肥处理之间叶绿素含量没有明显差异.绿色归一化植被指数与叶绿素含量的相关性系数最高,达到了0.892.采用逐步回归分析方法建立的模型表现最优,决定系数为0.87,均方根误差及相对误差分别为0.15和2.68%.因此,无人机多光谱遥感结合逐步回归模型可以实现田间尺度的夏玉米冠层叶绿素含量的实时监测. 相似文献
13.
基于无人机遥感与植被指数的冬小麦覆盖度提取方法 总被引:14,自引:0,他引:14
基于开源飞控Pixhawk开发了一套集成稳定云台、位置与姿态系统(Position and orientation system,POS)数据采集模块的无人机多光谱遥感图像采集系统,同步采集520~920 nm范围内的红、绿和近红外波段信息。以冬小麦为例,分别在越冬期、拔节期、挑旗期和抽穗期进行飞行实验,飞行高度55 m,多光谱影像地面分辨率2.2 cm。采用监督分类与植被指数统计直方图相结合的方式,提出了一种田间尺度小麦覆盖度快速提取的方法,给出归一化植被指数(Normalized difference vegetation index,NDVI)、土壤调节植被指数(Soil-adjusted vegetation index,SAVI)及修正土壤调节植被指数(Modified soil-adjusted vegetation index,MSAVI)对应的植被像元与土壤像元的分类阈值,分别为0.475 6、0.705 6和0.635 0。同时利用基于同步采集的地面分辨率可达0.8 cm的高清可见光遥感图像提取了相应时期的冬小麦覆盖度参考值。结果表明,基于无人机多光谱遥感技术及植被指数法可以较好地提取冬小麦越冬期、拔节期、挑旗期和抽穗期的植被覆盖度信息。与SAVI、MSAVI相比,基于NDVI分类阈值的提取效果最好,绝对误差最小。 相似文献
14.
夏玉米叶面积指数遥感反演研究 总被引:4,自引:0,他引:4
利用LAI-2000的观测数据与基于HJ卫星遥感数据生成的植被指数,结合3种常用的回归模型,构造了夏玉米分别按全生育期、不同生育阶段和阈值分段的叶面积指数(Leaf area index,LAI)反演模型;获取了3种模式下LAI的最优反演模型;在验证和评价各模型可靠性之后,生成了夏玉米在营养生长期、抽雄期和生殖生长期的LAI分布图;并将基于HJ影像反演得到的LAIHJ与MODIS LAI产品(MOD15A2)LAIM进行了对比。研究发现,与各种通用植被指数相比,针对HJ CCD数据构造的环境植被指数HJVI与LAI的相关性在3种反演模式中均为最佳。HJVI与全生育期LAI的相关性达到0.875,在不同生育阶段与LAI的相关性也高于其他植被指数(营养生长期线性模型最佳,决定系数为0.769;抽雄期对数模型最佳,决定系数为0.783;生殖生长期指数模型最佳,决定系数为0.703)。普适性植被指数中,OSAVI适用于夏玉米生长前中期的LAI反演,NDVI适用于夏玉米生长后期的LAI反演。在夏玉米全生育期内,各植被指数与LAI的相关性整体较高,但最优回归模型出现在按不同生育阶段反演的模式中。LAI小于3时EVI为精度最佳指数(决定系数为0.358),LAI不小于3时OSAVI为精度最佳指数(决定系数为0.515)。在夏玉米3个生育阶段,LAIM与LAIHJ的相关性分别达到0.732、0.761、0.661。HJ遥感数据具有较强的LAI反演能力,其高时间和高空间分辨率的特征可以使其代替传统的中分辨率遥感数据而成为农业遥感研究的重要数据源。 相似文献
15.
基于温度植被干旱指数的云南干旱遥感监测 总被引:2,自引:0,他引:2
土壤水分是干旱监测的一个重要指标,应用中分辨率成像光谱仪(MODIS)数据,利用归一化差值植被指数(NDVI)和分裂窗法反演的地表温度建立的NDVI-Ts特征空间中,得到温度植被干旱指数(TVDI),很好地表征了土壤水分的空间分布,从而实现干旱的监测。对云南省2009年1月、3月和2010年1月、4月干旱的时间、空间特性进行监测,监测结果表明冬春季旱情分布比较广,受旱面积均超过70%,其中重旱主要发生在滇西南和滇中北部,并且从冬季到春季,整个旱情均出现由南向北发展的趋势,发生干旱总面积在减少,但旱情等级在提高,春季重旱比冬季重旱面积大。应用相关研究成果对干旱监测结果进行验证,结果表明利用温度植被干旱指数(TVDI)进行干旱监测,干旱发生范围与实际干旱发生情况是基本吻合的,其中重旱的主要集中区域在空间分布上是基本一致的,监测结果可信,能够为相关决策部门提供有力的信息支持。 相似文献
16.
为进一步提高无人机遥感估产的精度,本研究以2021—2022年的覆膜冬小麦为研究对象,对返青期、拔节期、抽穗期和灌浆期的多光谱影像进行覆膜背景剔除,并优选最佳遥感窗口期,基于最优植被指数构建覆膜冬小麦估产模型。结果表明,利用支持向量机监督分类法剔除覆膜背景后冠层反射率更接近真实值,抽穗期和灌浆期的估产精度更高。将不同生育期的植被指数与产量进行相关性分析发现,最佳遥感窗口期为抽穗期。基于逐步回归和全子集回归法优选最优植被指数时发现,基于逐步回归法筛选变量为MCARI、MSR、EVI2、NDRE、VARI、NDGI、NGBDI、ExG时产量反演模型精度最高。此外,利用偏最小二乘法、人工神经网络和随机森林3种机器学习法构建的产量反演模型中,基于逐步回归法的随机森林模型的反演精度最高,R2为0.82,RMSE为0.84t/hm2。该研究可为提高遥感估产精度、实现农业生产精细化管理提供技术支持。 相似文献
17.
基于无人机遥感技术获取农田土壤盐分信息为盐渍化治理提供了快速、准确、可靠的理论依据。本文在内蒙古河套灌区沙壕渠灌域试验地上采集了取样点0~20cm的土壤含盐量,并使用M600型六旋翼无人机平台搭载Micro-MCA多光谱相机采集图像。利用Otsu算法对多光谱图像进行图像分类(土壤背景和植被冠层),基于分类结果分别提取剔除土壤背景前后的光谱指数和图像纹理特征,采用支持向量机(SVM)和极限学习机(ELM)构建土壤含盐量监测模型,其4种建模策略分别为:未剔除土壤背景的光谱指数(策略1)、剔除土壤背景后的光谱指数(策略2)、未剔除土壤背景的光谱指数+图像纹理特征(策略3)、剔除土壤背景的光谱指数+图像纹理特征(策略4),通过比较4种建模策略的模型精度以筛选出最优变量组合。结果表明:策略3、4所计算出的土壤含盐量反演精度高于策略1、2,策略1~4验证集决定系数R2v分别为0.614、0.640、0.657、0.681,因此利用图像纹理特征+植被指数对提高土壤含盐量的反演精度有重要意义。对比策略3、4,图像纹理特征+植被指数受到土壤背景的影响,策略4精度低于策略3精度,其R2v分别为0.614、0.657;各变量处理的最优模型均为ELM模型,建模集R2c分别为0.625、0.644、0.618、0.683,标准均方根误差分别为0.152、0.134、0.206、0.155。相比于SVM模型,ELM模型提高了土壤含盐量的反演精度。 相似文献
18.
基于无人机遥感与随机森林的荒漠草原植被分类方法 总被引:2,自引:0,他引:2
荒漠草原是草原中最旱生的类型,属于草原的极限生态状态,也是气候变化和生态系统演变的预警区。利用无人机高光谱遥感技术快速、准确地提取荒漠草原草地植被类型,对动态监测草原生态安全和合理开发草地畜牧业具有重要意义。以无人机搭载高光谱成像系统采集内蒙古荒漠草原遥感图像,获得具有高空间分辨率和高光谱分辨率的图像;通过光谱连续统去除变换,增强草地植被之间的光谱差异,并构建植被指数;采用分步波段选择法选择荒漠草原植被的特征波段,实现高光谱数据降维;构建融合光谱特征、植被特征、地形特征和纹理特征等24个变量的随机森林分类模型,并与支持向量机(SVM)、K-最近邻(KNN)和最大似然分类(MLC)法进行比较。结果表明,在4种分类方法中随机森林分类算法分类效果最好,总体分类精度达到91.06%,比SVM、KNN和MLC等机器学习算法分别高7.9、15.61、18.33个百分点,Kappa系数达到0.90,比SVM、KNN和MLC算法分别高0.13、0.23和0.26。无人机高光谱低空遥感和随机森林算法的结合为荒漠草原草地植被分类提供了新途径。 相似文献