共查询到19条相似文献,搜索用时 218 毫秒
1.
采用RBF网络与BP网络的方法,利用MATLAB工具箱并结合气象资料中的相对湿度、平均气温和太阳日辐射量,建立了预测核桃作物需水量的神经网络预测模型.两种预测模型通过实例证实了预测的准确性,并且将这两种网络模型进行了比较分析.RBF神经网络预测作物需水量的绝对误差平均值为0.254 7 mm/d、相对误差平均值为5.47%,BP神经网络预测作物需水量的绝对误差平均值为0.320 6mm/d、相对误差平均值为6.97%,由此可见,RBF网络预测的精度比BP网络高.并且,通过程序记时显示RBF网络训练用时0.063 0 s,比BP网络训练所需的时间要短的多,因此RBF神经网络具有较好的实用价值,实现了精度与实用性的统一. 相似文献
2.
基于BP神经网络的农机总动力组合预测方法 总被引:4,自引:1,他引:4
鉴于单一预测模型和线性组合预测模型的局限性,在确定黑龙江省农机总动力单一预测模型的基础上,建立了基于BP神经网络的非线性农机总动力组合预测模型。误差分析表明,该非线性组合预测模型的拟合平均绝对百分误差为3.03%,低于一元线性回归模型、指数函数模型、灰色GM(1,1)模型和三次指数平滑模型的6.26%、4.65%、4.88%和3.72%;稍高于以误差平方和最小为原则构建的线性组合预测模型的2.86%。用2006~2008年黑龙江省农机总动力进行检验预测,结果表明该模型可以有效地提高农机总动力的预测精度,用该模型预测了黑龙江省2009~2015年农机总动力。预测结果表明,在未来几年黑龙江省农机总动力将保持快速增长趋势,到 相似文献
3.
4.
基于灰色理论与BP神经网络组合模型的中长期负荷预测 总被引:3,自引:0,他引:3
灰色系统预测模型是中长期负荷预测的一种有效方法,但是,此模型存在未考虑经济因素对负荷发展的影响及难以满足高精度要求的缺陷,构建了考虑经济因素影响的灰色BP神经网络组合预测模型,通过灰色关联分析方法确定影响负荷的主要经济因子.主要经济因子的引入,使预测模型更符合实际、更合理.应用此组合模型对某省全社会用电量进行了中长期预测,结果表明,该模型具有更高的精度和更好的实用性. 相似文献
5.
6.
为了探究适合全射流喷头多因素下射程的预测模型,通过改变喷头工作压力、安装高度、喷嘴直径、喷头仰角共4个参数,对射程进行测量.基于BP神经网络和广义径向基(RBF)神经网络的基本原理和算法,建立了全射流喷头射程预测的BP和RBF神经网络模型,并分析BP和RBF神经网络的预测性能.结果表明射程与工作压力、喷嘴直径呈非线性关系;当喷头在1.2 m安装高度、27°仰角、4~10 mm喷嘴直径时,压力增大到0.4 MPa,射程趋于极限,并且安装高度与射程呈正相关关系.BP与RBF神经网络均能较好地表达全射流喷头射程与主控因素之间的非线性关系.在训练时间方面,RBF网络比BP网络慢8.05 s;预测过程中,BP网络在每次运行程序时的预测结果不一定相同,而RBF网络则不会出现此问题,且RBF网络预测值与实测值之间的平均绝对误差比BP网络的小3.55%.从网络预测总体效果观察,RBF神经网络预测喷头射程具有更好的推广能力. 相似文献
7.
课题组进行实际道路跟驰实验,利用GPS采集跟车驾驶行为数据。以GPS采集到的车辆行驶轨迹数据为基础,提取前车车速、相对距离、前车对后车的相对速度以及后车车速作为输入,后车下一时刻的车速作为输出,建立BP神经网络跟驰模型,并使用遗传算法(GA)对BP神经网络跟驰模型进行优化。结果表明,GA-BP神经网络模型与BP神经网络模型对比,GA-BP神经网络跟驰模型预测性能的各个评价指标都优于BP神经网络跟驰模型。 相似文献
8.
基于RBF神经网络的地下水动态预测 总被引:1,自引:0,他引:1
以内蒙古自治区巴彦淖尔市金泉工业园区为例,基于园区B248号长观井2001-2008年的地下水埋深资料,首先建立了地下水埋深RBF神经网络预测模型,而后对该模型的模拟结果作误差分析,并将相应值与BP网络模型进行对比。RBF神经网络模型和BP网络模型的最大相对误差分别为9.88%和19.67%,最大绝对误差分别为0.81和1.56,均方误差分别为0.19和0.98。显然,RBF神经网络具有较高的预测精度和较强的非线性映射能力。用上述训练好的RBF神经网络模型对研究区2009-2013年平水年条件下的地下水埋深进行预测,结果表明,研究区已出现地下水位持续下降的趋势。最后,根据地下水资源保护规划方案,在逐时段压缩地下水开采量10%的情况下,研究区2025年即可恢复到2001年的地下水水位值。 相似文献
9.
10.
运用BP神经网络模型对水面蒸发进行研究,并与多元线性回归和主成分回归2种方法的拟合结果进行比较。结果显示,多元线性回归各参数均通过t检验,拟合较好;主成分回归中,参数b2未通过t检验,拟合效果不如多元线性回归好。BP神经网络模型、多元线性回归、主成分回归建立的水面蒸发量观测值与拟合值的回归方程中决定系数分别为0.8986、0.7993、0.7984。应用BP神经网络进行分析,相对误差小于10%的样本个数超过总样本个数的40%,相对误差不超过30%的样本个数接近80%;而其它2种方法相对误差大于10%的样本个数超过总样本数的80%,相对误差大于50%的接近总样本个数的30%。可见,应用BP神经网络模型进行水面蒸发量计算,远优于其它2种方法,应用此方法进行水面蒸发量的预测是非常理想的。 相似文献
11.
基于BP神经网络的雨雪混合径流预 总被引:1,自引:0,他引:1
通过分析暴雨融雪混合径流的物理成因,确定其主要影响因子,然后分析雨雪混合径流主要影响因子对径流的影响,建立一个基于BP神经网络雨雪混合径流预报模型。并利用新疆喀浪古尔河流域暴雨融雪径流资料对模型进行仿真训练实验和验证,通过结果比较分析,在一定程度上提高了模型预报精度,取得了一定成效。 相似文献
12.
13.
基于BP神经网络的土壤氮素运移模型 总被引:1,自引:0,他引:1
随着淡水资源的日益紧缺,再生水灌溉已成为人们日益瞩目的研究方向,而再生水灌溉条件下土壤氮素运移规律与模拟成为这个研究的关键环节之一.以往对土壤氮素运移的模拟主要聚焦在数值模拟上,鉴于数值模拟在应用上的复杂性,为了寻找一种简便实用的模拟方法,尝试引入人工神经网络技术对土壤氮素运移进行模拟,经模拟计算得出,拓扑结构为10:12:7的BP网络模型可以较精确地模拟再生水灌溉条件下的土壤氮素运移,此研究为土壤氮素运移的研究开辟了新方向. 相似文献
14.
15.
16.
17.
18.
基于神经网络的灌溉用水量预测 总被引:12,自引:1,他引:12
采用改进的BP网络对灌溉用水量进行了预测,针对BP网络的不足,采用遗传算法对网络初始权重进行了优化,并采用LM(Levenberg-Marquardt)算法进行了误差逆传播校正。通过引入遗传算法和LM算法,网络比传统的BP网络无论从精度和训练时间上都有了较大的改进。最后对湖北省宜昌市东风渠灌区进行实例分析,证明了该方法的有效性。 相似文献
19.
BP和RBF神经网络在水轮机非线性特性拟合中的应用比较 总被引:1,自引:0,他引:1
利用神经网络对水轮机综合特性曲线进行数据处理和延伸,不必建立具体的函数关系表达式,就可对已知的离散数据进行拟合。并且还可以结合边界约束条件对未知区域内的数据进行预测,从而提高了水轮机综合特性曲线数据处理的工作效率和数据精度。分别介绍了用BP神经网络和RBF神经网络对水轮机综合特性曲线数据处理和延伸的方法。并采用一机组的样本数据进行训练,比较2种方法的训练结果得出结论。 相似文献