首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Resistance toMeliodogyne chitwoodi races 1 (MC1) and 2 (MC2) andM. hapla (MH) derived fromSolanum bulbocastanum was introduced into the cultivated potato gene pool through somatic fusion. The initial F1 hybrids showed resistance to the three nematodes. Resistance to reproduction on roots by MC1 was accompanied by resistance to tuber damage in F1 clones. Tuber damage sometimes occurred, however, in hybrids of BC1 progeny resistant to reproduction on roots when MC2 and MH were the challenging nematodes. Resistance to reproduction was transferred into BC1 individuals, but a greater proportion of BC1 progeny was resistant to MC1 than to MC2 or MH. Resistance to MC1 appears to be dominant and discretely inherited. F1 and BC1 progeny were pollen sterile, but seed were produced from crosses using cultivated tetraploid pollen sources. Approximately 11 and 33 per cent of pollinations produced berries on F1 and BC1 pistillate parents, respectively. Seed yield increased fourfold overall in crosses with F1 compared to BC1 individuals.Abbreviations MC1 Meloidogyne chitwoodi race 1 - MC2 Meloidogyne chitwoodi race 2 - MH Meloidogyne hapla - Rf Reproductive factor  相似文献   

2.
Triticum tauschii provides breeders with a valuable source of resistance and tolerance genes. Elucidation of the inheritance of traits in this species that hinder its use in breeding programmes is therefore of interest to wheat breeders. Inheritance of threshability was investigated in the crosses of four non-free-threshing (NFT) synthetic hexaploids (Triticum turgidum×T. tauschii) and two free-threshing (FT) T. aestivum cultivars during four crop seasons over 3 years at E1 Batan and Ciudad Obregon, Mexico. The parents, their F1 Hybrids and individual F2 plant-derived F3 progenies of the crosses revealed that ‘Altar 84’/T. tauschii (219), ‘Chen’/T. tauschii (205), ‘Chen’/T. tauschii (224), and ‘Duergand’/T. tauschii (214) have independently segregating loci with two dominant alleles controlling threshability. Intercrosses among the synthetics, except ‘Altar 84’/T. tauschii (219), showed the genes to be allelic to each other. The cross between the FT cultivars showed no segregation in the F3 generation, indicating common recessive genes. Based on these findings, population sizes of the synthetic-derived breeding materials should be increased to improve the chances of selecting FT desirable plants in the programme.  相似文献   

3.
Despite being one of the important characteristics in determining pasta quality in durum wheat (Triticum turgidum ssp. durum), there is no direct report on inheritance of β-carotene concentration. The objectives of this study were to determine the inheritance of β-carotene concentration and the number of genes involved in six crosses of durum. For the cross PDW-233 (P1) × Bhalegaon-4 (P2), F1, F2, BCP1 and BCP2 populations were developed. For all other crosses, only the F1 and F2 populations were developed. β-carotene concentration was determined for all populations and parents of each cross grown at Hol, Maharastra, India. The cross PDW-233 × Bhalegaon-4 was also evaluated at Dharwad, Karnataka, India. Low β-carotene concentration was partially dominant in most of the crosses. Broad sense heritability was 67 and 91% at Dharwad and Hol, respectively, for the cross PDW-233 × Bhalegaon-4 and varied from 74 to 93% for the other five crosses indicating the presence of additive gene effects. The frequency distributions of the trait in the F2 populations were not normal and were skewed towards the lower parent. Segregation of β-carotene concentration in the six F2 populations indicated that at least two major genes and two or three minor genes with modifying effects govern the trait. Analysis of variance indicated that environment had comparatively little influence on the trait and this should allow for easy selection. The joint scaling test revealed additive × additive, additive × dominance and dominance × dominance epistatic interactions in the cross PDW-233 × Bhalegaon-4. These authors contributed equally.  相似文献   

4.
Summary Variation in pigment content of the flour of bread wheats (Triticum aestivum L.) was studied in the progenies of F1 and F2 of three crosses and their reciprocals. Reciprocal differences in pigment content were observed in the F1 and F2 means. Low pigment content was found to be partially dominant or over dominant in the crosses studied. There was evidence of substantial mid-parent F1 heterosis in all crosses and betterparent F1 heterosis in three crosses. In the F2, heritability estimates were moderate to high. The F2 frequency distributions were not normal. Estimation of effective factor pairs indicated the presence of one or two major gene pairs involved in the expression of pigment content in the flour. Action of modifiers was also assumed in one cross and its reciprocal. A factorial approach to metrical character suggested that the F2 segregation ratios of low pigment content to high pigment content were 3:1, 15:1, 13:3 and 9:7 for the different crosses. Utilization of the findings in a wheat breeding program is briefly discussed.  相似文献   

5.
Nine common wheat strains derived from crosses involving Triticum timopheevi were studied for cytological stability and resistance to individual physiologic races of leaf rust of wheat. One strain 53R-201-4 was resistant to all the eleven races used. Another five stable strains had resistance to some of the races and were susceptible to others. Three highly unstable strains had resistance to a few of the leaf rust races used. The six stable strains had normal meiosis, varying between the most stable Cheyenne and the less stable Minturki-the two checks. In general, the inheritance of resistance to leaf rust race 9 in crosses of three unstable and one stable strain was monogenic and regular. Metaphase I chromosome pairing and meiotic irregularities at anaphase-I, dyad and quartet stages in stable strain 55–2687 and in F1 and F2 plants from the cross strain 55–2687 × Cheyenne indicated only slight reduction in chromosome pairing or chiasma formation in the F1 plants. The F2 was meiotically less stable than the F1. The possible reasons for the increased meiotic instability of the F2 are discussed.  相似文献   

6.
Two diploid accessions of wild oat, CIav6956 and CIav7233, were identified as carrying seedling resistance to oat crown rust (caused by Puccinia coronata f. sp. avenae; Pca). Two vigorous interploidy F1 hybrids were generated from crosses involving the hexaploid oat cultivar Wintaroo and the diploid oat Avena strigosa Schreb. accession CIav6956. An additional interploidy F1 hybrid, designated “F1-Aa1”, was produced from a cross of Wintaroo and the diploid oat accession CIav7233. All three hybrids were more vigorous and taller than the cultivated parent Wintaroo. The three F1 hybrids contained full chromosome complements from both parents (2n = 4x = 28), but no seeds were obtained when the three F1 hybrids were selfed. Meiotic analyses of the hybrids indicated that they exhibited a high degree of inter-genome and intra-genome pairing. Trivalent configurations were detected in 95–96% of meiotic cells and a minimum of three bivalents was present in all cells. An average chiasma frequency of 7.2–7.9 per cell was observed for the three F1 hybrids. A fourth F1 hybrid was subsequently generated from a cross between the diploid oat accession CIav7233 and Wintaroo. One octaploid (2n = 8x = 56) was generated from this hybrid and progeny were resistant to two Pca races. The chromosome number of the octaploid progeny varied between 51 and 54 chromosomes. Development of a chromosome addition line(s) with the crown rust resistance should be possible from these partial-octaploids.  相似文献   

7.
W. Tadesse    S. L. K. Hsam    F. J. Zeller 《Plant Breeding》2006,125(4):318-322
A total of 50 wheat (Triticum aestivum L.) cultivars were evaluated for resistance to tan spot, using Pyrenophora tritici‐repentis race 1 and race 5 isolates. The cultivars ‘Salamouni’, ‘Red Chief’, ‘Dashen’, ‘Empire’ and ‘Armada’ were resistant to isolate ASC1a (race 1), whereas 76% of the cultivars were susceptible. Chi‐squared analysis of the F2 segregation data of hybrids between 20 monosomic lines of the wheat cultivar ‘Chinese Spring’ and the resistant cultivar ‘Salamouni’ revealed that tan spot resistance in ‘Salamouni’ was controlled by a single recessive gene located on chromosome 3A. This gene is designated tsn4. The resistant cultivars identified in this study are recommended for use in breeding programmes to improve tan spot resistance in common wheat.  相似文献   

8.
H. Ma  G. R. Hughes 《Euphytica》1993,70(1-2):151-157
Summary Resistance to septoria nodorum blotch in Triticum monococcum, T. tauschii, T. timopheevii, T. dicoccum and T. durum was evaluated on plants at the three-leaf stage in greenhouse tests. A high frequency of resistant genotypes was found in T. monococcum, T. tauschii and T. timopheevii, but not in T. dicoccum and T. durum. The resistance of F1 plants of crosses of resistant T. monococcum (PI 289599) and T. timopheevii (PI 290518) accessions with susceptible common wheat cv. Park and durum wheat cv. Wakooma, respectively, was evaluated on the basis of percentage leaf necrosis, lesion number, lesion size and incubation period. No dominance was found for long incubation period, but various dominance relationships occurred for low percentage leaf necrosis, low lesion number and small lesion size, depending on the cross. Multiple regression analysis showed that lesion number contributed more to percentage leaf necrosis than lesion size or incubation period. Resistance to septoria nodorum blotch was transferred successfully from T. timopheevii to cultivated durum wheat. Resistant BC1F7 lines, recovered from the T. timopheevii (PI 290518) × Wakooma cross, showed normal chromosome behaviour at meiosis (14 bivalents) and were self-fertile. However, an effective level of resistance was not recovered in lines derived from the other interspecific crosses.  相似文献   

9.
S. Kumar 《Plant Breeding》1998,117(2):139-142
The inheritance of resistance to Fusarium wilt (race 2) of chickpea was studied in a set of three crosses, i.e. ‘WR315’בC104’ (resistant × susceptible), ‘WR315’בK850’ (resistant × tolerant) and ‘K850’בGW5/7’ (tolerant × tolerant) in order to investigate the number of genes involved, their complementation and to find out whether resistant segregants are possible in a cross between two tolerant cultivars. Tests of F1, F2 and F3 generations of these crosses under controlled conditions at ICRISAT, Patancheru, India, indicated involvement of three loci (two recessive and one dominant alleles). The homozygous recessive form at the first two loci conferred resistance whereas susceptibility occurred when the first two loci were in the dominant form. A dominant allele at the third locus can complement the dominant alleles at the other two loci to confer tolerance. Occurrence of resistant segregants in a cross between two tolerant cultivars was observed.  相似文献   

10.
Sunflower downy mildew caused by Plasmopara halstedii is an important disease of sunflower capable of causing losses of more than 80% of production. Races 100, 300, 310, 330, 710, 703, 730 and770 of the fungus have been identified in Spain. Race 703, of high virulence, has been identified frequently in the northeast, while race 310 seems to occur over the south, the main sunflower growing region of the country. Oil sunflower lines RHA-274 and DM4 were studied for their resistance to races 310(RHA-274 and DM4) and 703 (DM4). In each cross, only one plant of the resistant parent was crossed to the inbred susceptible line HA-89 (or cmsHA-89).Plants from F2 and backcross(BC1F1 to susceptible parent)generations were evaluated for fungal sporulation on true leaves and/or cotyledons. The resistant-to-susceptible ratios obtained in the F2 and BC1F1 progenies from the crosses cmsHA-89 × RHA-274 and HA-89 × DM4suggested that one major gene in each line is responsible for resistance to race 703.The segregations of the progenies of the cross HA-89 × DM4 inoculated with race 703also fitted the ratios 1:1 and 3:1 (for BC1F1 and F2, respectively)corresponding to control of resistance by a single dominant gene. In RHA-274, the gene for resistance to race 310 was designated Pl 9, whereas Pl v is tentatively proposed to designate the gene in DM4 responsible for resistance to races310 and 703. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The Triticum dicoccoides-derived wheat line Zecoi-1 provides effective protection against powdery mildew. F3 segregation analysis of Chinese Spring × Zecoi-1 hybrids showed that resistance in line Zecoi-1 is controlled by a single dominant gene. Amplified fragment length polymorphism (AFLP) analysis of bulked segregants from F3s showing the homozygous resistant and susceptible phenotypes identified eight markers, of which four were associated with the resistance allele in repulsion phase. Following the assignment of these four repulsion phase AFLP markers to wheat chromosome 2B with the aid of Chinese Spring nulli-tetrasomic lines, they were physically mapped in the terminal breakpoint interval 0.89 (2BL-6)–1.00 (telomere) of chromosome 2BL. Genetic and physical mapping of simple sequence repeat markers from the distal half of chromosome 2BL located the wild emmer-derived powdery mildew resistance gene distal of breakpoint 0.89 in deletion line 2BL-6. Based on disease response patterns, genomic origin and chromosomal location the resistance gene in Zecoi-1 is temporarily designated MlZec1.  相似文献   

12.
Summary With the objective of creating new combinations of disease resistance and quality, hybrids between wheat and spelt (spelt is well adapted to cool and wet conditions) were produced and the expression of heterosis was analysed. Three winter wheat varieties were crossed reciprocally with two spelt cultivars and the F1 hybrids were tested under artificial inoculation with stripe rust, powdery mildew and leaf rust. Disease susceptibility and quality characters (protein content, Zeleny value, grain hardness) were assessed in two year field trials. For stripe rust the F1 hybrids were resistant if one of the wheat parents was resistant. Combinations with the susceptible wheat cultivar Arina were all susceptible irrespective of using a resistant spelt partner. Although the infection with powdery mildew was rather low, a similar reaction was obtained with the susceptible wheat variety Bernina. Leaf rust revealed very specific varietal influences. The two susceptible wheat varieties Bernina and Arina resulted in susceptible F1 hybrids when combined with a moderately resistant spelt. Only when they were crossed with a resistant spelt cultivar the F1 hybrids were resistant. Forno, a leaf rust resistant wheat, gave resistant F1 hybrids in all combinations. Without exception the quality characters tested showed a negative heterosis effect resulting in protein levels and Zeleny values close to or below the values of the lower parent. It appears to be possible to produce resistant F1 hybrids, mostly dominated by the resistance level of the wheat partner. The quality of the hybrids is mainly suitable for biscuit and spelt specific products; it needs specific screening for combinations with acceptable breadmaking quality.Abbreviations LSD Least Significant Difference - RH Relative Heterosis  相似文献   

13.
The inheritance of resistance to powdery mildew was investigated in 20 accessions of Hordeum spontaneum and in 20 F4 lines derived from crosses between the variety ‘Aramir’ and 13 accessions of H. spontaneum. Two resistance genes were detected in 17 accessions, and three resistance genes in one accession. In two accessions, only one resistance gene was present. The 20 breeding lines showed a large variation in infection type and infection level. The genetic relationship between the resistance genes detected was investigated in the seven most resistant F4 lines. These F4 lines were divided into three groups which carried different resistance genes. In two lines, the detected resistance gene was shown to be race-specific.  相似文献   

14.
Genetic resistance to broomrape (Orobanche cumana Wallr.) race F in sunflower line J1, derived from the wild perennial species Helianthusgrosseserratus Martens and Helianthus divaricatus L., has been reported to be controlled by dominant alleles at a single locus, Or6. However, deviations from this monogenic inheritance have been observed. The objective of the present study was to gain insight into the inheritance of resistance to broomrape race F in the sunflower line J1. F1, F2, F3 and BC generations from crosses between J1 and three susceptible lines, P21, NR5 and HA821 were evaluated. F1 hybrids showed both resistant (R) and moderately resistant (MR) plants, the latter having a maximum of five broomrape stalks per plant compared with >10 in the susceptible parents. This indicated incomplete dominance of the Or6 alleles. F2 plants were classified as R, MR or susceptible (more than five broomrape stalks per plant). Three different segregation ratios were observed: 3 : 1, 13 : 3 and 15 : 1 (R + MR : S), suggesting the presence of a second gene, Or7, whose expression was influenced by the environment. A digenic model was confirmed, based on the evaluation of F2:3 families.  相似文献   

15.
The inheritance of resistance to dry root rot of chickpea caused by Rhizoctonia bataticola was studied. Parental F1 and F2 populations of two resistant and two susceptible parents, along with 49 F1 progenies of one of the resistant × susceptible crosses were rested for their reaction to dry root rot using the blotting-paper technique. All F, plants of the resistant × susceptible crosses were resistant; the F2 generation fitted a 3 resistant: 1 susceptible ratio indicating monogenic inheritance, with resistance dominant over susceptibility. F3 family segregation data confirmed the results. No segregation occurred among the progeny of resistant × resistant and susceptible × susceptible crosses.  相似文献   

16.
Summary Two blue-mold resistant cultivars of Nicotiana tabacum L. were crossed with each other and with the susceptible Israeli local cultivar Mikhal. F1, F2 and F3 progenies of these crosses, F1 and F2 of backcrosses and the parental varieties were grown in a series of experiments, in which the seedlings were exposed to heavy natural infection with Peronospora tabacina Adam. The genetic basis of resistance was found to be identical in the two resistant strains Bel-61-10 and Chemical mutant. A single dominant major gene determined the segregation of resistance versus susceptibility in the crosses of these strains with Mikhal. The level of resistance of resistant segregates was shifted by environment and by quantitatively modifying genes. The index of resistance, which was calculated as a weighted mean of the degree of blue-mold expression of the resistant segregates, differed in the generations of cross progeny. This could be explained by the different expected levels of the modifying genes in these generations. Heritability of the index of resistance was calculated by parent-offspring regression and it was found to be 0.542 in the F3 and 0.227 in F2 backcross progenies.  相似文献   

17.
P.K. Singh    G.R. Hughes 《Plant Breeding》2006,125(3):206-210
Tan spot of wheat is caused by the fungus Pyrenophora tritici‐repentis. On susceptible hosts, P. tritici‐repentis induces two phenotypically distinct symptoms, tan necrosis and chlorosis. This fungus produces several toxins that induce tan necrosis and chlorosis symptoms in susceptible cultivars. The objectives of this study were to determine the inheritance of insensitivity to necrosis‐inducing culture filtrate of P. tritici‐repentis, race 2, and to establish the relationship between the host reaction to culture filtrate and spore inoculation with respect to the necrosis component. The F1, F2, and BC1F1 plants and F2:8 lines of five crosses involving resistant wheat genotypes ‘Erik’, ‘Red Chief’, and line 86ISMN 2137 with susceptible cultivars ‘Glenlea’ and ‘Kenyon’ were studied. Plants were spore‐inoculated at the two‐leaf stage. Four days later, the newly emerged uninoculated third leaf was infiltrated with a culture filtrate of isolate Ptr 92–164 (race 2). Reactions to the spore inoculation and the culture filtrate were recorded 8 days after spore inoculation. The segregation observed in the F2 and BC1F1 generations and the F2:8 lines of all crosses indicated that a single recessive gene controlled insensitivity to necrosis caused by culture filtrate. This gene also controlled resistance to necrosis induced by spore inoculation.  相似文献   

18.
Summary Black rot disease caused by Xanthomonas campestris pv. campestris is a limiting factor in the commercial production of the cauliflower crop. Crosses were attempted between SN 445, a mid season cultivar resistant to black rot and two highly susceptible commercial cultivars (Pusa Snowball-1 and K-1). Studies of the F1's, F2's and back crosses indicated that SN 445, carries a dominant gene imparting resistance to black rot.  相似文献   

19.
Six blast‐resistant pearl millet genotypes, ICMB 93333, ICMB 97222, ICMR 06444, ICMR 06222, ICMR 11003 and IP 21187‐P1, were crossed with two susceptible genotypes, ICMB 95444 and ICMB 89111 to generate F1s, F2s and backcrosses, BC1P1 (susceptible parent × F1) and BC1P2 (resistant parent × F1) for inheritance study. The resistant genotypes were crossed among themselves in half diallel to generate F1s and F2s for test of allelism. The F1, F2 and backcross generations, and their parents were screened in a glasshouse against Magnaporthe grisea isolates Pg 45 and Pg 53. The reaction of the F1s, segregation pattern of F2s and BC1P1 derived from crosses involving two susceptible parents and six resistant parents revealed the presence of single dominant gene governing resistance in the resistant genotypes. No segregation for blast reaction was observed in the F2s derived from the crosses of resistant × resistant parents. The resistance reaction of these F2s indicated that single dominant gene conferring resistance in the six genotypes is allelic, that is same gene imparts blast resistance in these genotypes to M. grisea isolates.  相似文献   

20.
Interspecific hybrids and backcross generations between the wild perennial species Helianthus resinosus, Helianthus paucifiorus, Helianthus laevigatus, Helianthus nuttallii ssp. nuttallii T. & G. and Helianthus giganteus, resistant to broomrape (Orobanche cernua) and susceptible inbred lines were obtained to study crossability to cultivated sunflower and the transmission and expression of resistance to this parasitic weed. Conventional crosses with all the species tested were successful except for the crosses with diploid H. giganteus, for which embryo rescue techniques were needed to overcome hybrid incompatibility. Pollen viability and seed set were highest for F1 hybrids with hexaploid species and lowest for those with the diploid H. giganteus. We evaluated F1, BC1F1, some BC2F1 plants and the wild and cultivated parents. The wild species and interspecific hybrids were resistant to broomrape infection except for H. nuttallii, which showed segregation, indicating that the resistance is dominant. The crossability and resistance of F1, and back-cross generations of species with different ploidy levels indicate that the transfer of broomrape resistance to cultivated sunflower is feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号