首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nmim content in the soil, N-fertilization and N uptake of winter wheat in the international organic nitrogen long-term fertilization experiment (IOSDV) Berlin-Dahlem During the 9th and 10th year of the long-term IOSDV field experiment micro plots were put in three treatments. Labelled15 N (160 resp. 110 kg/ha N as ammonium sulfate) was fertilized to winter wheat subdivided into three portions. Nmin in soil was determined five times during the season, plant biomass was harvested at different growth stages and N uptake was calculated. Using the15 N-technique permitted a discrimination between fertilizer-N and soil-N. Preferential uptake of fertilizer-N by the wheat crop but also immobilisation in soil were observed until June. Subsequently the immobilized N was remineralized and assimilated by wheat. But the native Nmin of soil was minimaly utilized during the initial growth of wheat. Therefore the absolute amount of soluble N temporarily increased caused by a mineralisation of the organic matter.  相似文献   

2.
淹水种稻条件下化肥氮的硝化-反硝化损失的初步研究   总被引:3,自引:1,他引:3  
在中性和微酸性水稻土中施用硫铵时,硝化-反硝化作用是化肥氮损失的主要途径,除了淹水后在土表形成的氧化层及其下的还原层中可以分别进行硝化和反硝化作用外,水田中的硝化微生物与具反硝化作用的极毛杆菌相伴生,无论是在土表的氧化层或其下的还原层中,或是在稻根附近的氧化层或根外的还原层中都可进行硝化一反硝化作用[4]。本工作的主要目的是:用特制盆钵进行盆栽试验,研究在淹水种稻条件下不同机制的硝化一反硝化作用气此外也涉及到水稻的生长、氮肥的施用方法对氮素损失的影响。  相似文献   

3.
Mineral N accumulates in autumn under pastures in southeastern Australia and is at risk of leaching as nitrate during winter. Nitrate leaching loss and soil mineral N concentrations were measured under pastures grazed by sheep on a duplex (texture contrast) soil in southern New South Wales from 1994 to 1996. Legume (Trifolium subterraneum)‐based pastures contained either annual grass (Lolium rigidum) or perennial grasses (Phalaris aquatica and Dactylis glomerata), and had a control (soil pH 4.1 in 0.01 m CaCl2) or lime treatment (pH 5.5). One of the four replicates was monitored for surface runoff and subsurface flow (the top of the B horizon), and solution NO3 concentrations. The soil contained more mineral N in autumn (64–133 kg N ha?1 to 120 cm) than in spring (51–96 kg N ha?1), with NO3 comprising 70–77%. No NO3 leached in 1994 (475 mm rainfall). In 1995 (697 mm rainfall) and 1996 (666 mm rainfall), the solution at 20 cm depth and subsurface flow contained 20–50 mg N l?1 as NO3 initially but < 1 mg N l?1 by spring. Nitrate‐N concentrations at 120 cm ranged between 2 and 22 mg N l?1 during winter. Losses of NO3 were small in surface runoff (0–2 kg N ha?1 year?1). In 1995, 9–19 kg N ha?1 was lost in subsurface flow. Deep drainage losses were 3–12 kg N ha?1 in 1995 and 4–10 kg N ha?1 in 1996, with the most loss occurring under limed annual pasture. Averaged over 3 years, N losses were 9 and 15 kg N ha?1 year?1 under control and limed annual pastures, respectively, and 6 and 8 kg N ha?1 year?1 under control and limed perennial pastures. Nitrate losses in the wet year of 1995 were 22, 33, 13 and 19 kg N ha?1 under the four respective pastures. The increased loss of N caused by liming was of a similar amount to the decreased N loss by maintaining perennial pasture as distinct from an annual pasture.  相似文献   

4.
Outwintering beef cattle on woodchip corrals offers stock management, economic and welfare benefits when compared with overwintering in open fields or indoors. A trial was set up on a loamy sand over sand soil to evaluate the pollution risks from corrals and the effect of design features (size and depth of woodchips, stocking density, and feeding on or off the corral). Plastic‐lined drainage trenches at 9–10 m spacing under the woodchips allowed sampling of the leachate. Sampling of the soil to 3.6 m below the corral allowed evaluation of pollutant mitigation during vadose zone transport. Mean corral leachate pollutant concentrations were 443–1056 mg NH4‐N L?1, 372–1078 mg dissolved organic carbon (DOC) L?1, 3–13 mg NO3‐N L?1, 8 × 104–1.0 × 106Escherichia coli 100 mL?1 and 2.8 × 102–1.4 × 103 faecal enterococci 100 mL?1. Little influence of design features could be observed. DOC, NH4 and (in most cases) E. coli and faecal enterococci concentrations decreased 102–103 fold when compared with corral leachate during transport to 3.6 m but there were some cores where faecal enterococci concentrations remained high throughout the profile. Travel times of pollutants (39–113 days) were estimated assuming vertical percolation, piston displacement at field moisture content and no adsorption. This allowed decay/die‐off kinetics in the soil to be estimated (0.009–0.044 day?1 for DOC, 0.014–0.045 day?1 for E. coli and 0–0.022 day?1 for faecal enterococci). The mean [NO3‐N] in pore water from the soil cores (n = 3 per corral) ranged from 114 ± 52 to 404 ± 54 mg NO3‐N L?1, when compared with 59 ± 15 mg NO3‐N L?1 from a field overwintering area and 47 ± 40 mg NO3‐N L?1 under a permanent feeding area. However, modelling suggested that denitrification losses in the soil profile increased with stocking density so nitrate leaching losses per animal may be smaller under corrals than for other overwintering methods. Nitrous oxide, carbon dioxide and methane fluxes (measured on one occasion from one corral) were 5–110 g N ha?1 day?1, 3–23 kg C ha?1 day?1, and 5–340 g C ha?1 day?1 respectively. Ammonia content of air extracted from above the woodchips was 0.7–3.5 mg NH4‐N m?3.  相似文献   

5.
The mineralization of nitrogen from soil organic matter is important when one tries to optimize nitrogen fertilization and assess risks of N losses to the environment, but its measurement is laborious and expensive. We have explored the possibilities for monitoring N mineralization directly using time domain reflectometry (TDR). Net N and S mineralization were monitored over a 101‐day period in two layers (0–30 and 30–60 cm) of a loamy sand soil during aerobic incubation in a laboratory experiment. At the same time electrical conductivity of the bulk soil, σa, was measured by TDR. A series of calibration measurements with different amounts of KNO3 at different soil moisture contents was made with the topsoil to calculate the electrical conductivity, σw, of the soil solution from σa and θ. The actual σw was determined from the conductivity of 1:2 soil:water extracts (σ1:2) with a mass balance approach using measured NO3 concentrations, after correction for ions present prior to the addition of KNO3. The average N mineralization rate in the topsoil was small (0.12 mg N kg?1 day?1), and, as expected, very small in the subsoil (0.023 mg N kg?1 day?1). In the top layer NO3 concentrations calculated from σa determined by TDR slightly underestimated measured concentrations in the first 4 weeks, and in the second half of the incubation there was a significant overestimation of measured NO3. Using the sum of both measured NO3 and SO42– reduced the overestimation. In the subsoil calculated NO3 concentrations strongly and consistently overestimated measured concentrations, although both followed the same trend. As S mineralization in the subsoil was very small, and initial SO42– concentrations were largely taken into account in the calibration relations, SO42– concentrations could not explain the overestimation. The very small NO3 and SO42– concentrations in the B layer, at the lower limit of the concentrations used in the calibrations, are a possible explanation for the discrepancies. A separate calibration for the subsoil could also be required to improve estimates of NO3 concentrations.  相似文献   

6.
Abstract. Nitrogen (N) loss by leaching poses great challenges for N availability to crops as well as nitrate pollution of groundwater. Few studies address this issue with respect to the role of the subsoil in the deep and highly weathered savanna soils of the tropics, which exhibit different adsorption and drainage patterns to soils in temperate environments. In an Anionic Acrustox of the Brazilian savanna, the Cerrado, dynamics and budgets of applied N were studied in organic and inorganic soil pools of two maize (Zea mays L.) – soybean (Glycine max (L.) Merr.) rotations using 15N tracing. Labelled ammonium sulphate was applied at 10 kg N ha?1 (with 10 atom%15N excess) to both maize and soybean at the beginning of the cropping season. Amounts and isotopic composition of N were determined in above‐ground biomass, soil, adsorbed mineral N, and in soil solution at 0.15, 0.3, 0.8, 1.2 and 2 m depths using suction lysimeters throughout one cropping season. The applied ammonium was rapidly nitrified or immobilized in soil organic matter, and recovery of applied ammonium in soil 2 weeks after application was negligible. Large amounts of nitrate were adsorbed in the subsoil (150–300 kg NO3?‐N ha?1 per 2 m) matching total N uptake by the crops (130–400 kg N ha?1). Throughout one cropping season, more applied N (49–77%; determined by 15N tracers) was immobilized in soil organic matter than was present as adsorbed nitrate (2–3%). Most of the applied N (71–96% of 15N recovery) was found in the subsoil at 0.15–2 m depth. This coincided with an increase with depth of dissolved organic N as a proportion of total dissolved N (39–63%). Hydrophilic organic N was the dominant fraction of dissolved organic N and was, together with nitrate, the most important carrier for applied N. Most of this N (>80%) was leached from the topsoil (0–0.15 m) during the first 30 days after application. Subsoil N retention as both adsorbed inorganic N, and especially soil organic N, was found to be of great importance in determining N losses, soil N depletion and the potential of nitrate contamination of groundwater.  相似文献   

7.
Abstract

A field study with maize (Zea mays L.) was conducted in the 1988/89 cropping season to investigate the fate of 15NO3-N-labelled NH4 15NO3 applied at 40, 80 and 120 kg N ha?1 (unlabelled N applied at 0, 80, 160 and 240 N ha?1) with and without lime. The investigations were conducted in northern Zambia at Misamfu Regional Research Centre, Kasama on a Misamfu red sandy loam soil. The experimental design was a split plot arrangement with four replications with main plots receiving 0 and 2 Mg ha?1 dolomitic limestone, while subplots received fertilizer N at various rates. Significant (p < 0.001) grain and DM yield responses to applied N up to 160 kg ha?1 were observed. At higher rates little or no crop responses were observed and fertilizer use efficiency declined. Partitioning of amounts of total N and 15N in plants was in the order of seed = tassel > leaf> cob = earleaf> stem. Fertilizer N rates showed a highly significant (p < 0.001) effect on plant uptake of labelled N. Lime and its interaction with N rates had no effect on all measured parameters. Leaching of NO3-N fertilizer to lower soil depths was in proportion to the rate of N applied, with highly significant (p < 0.001) differences among soil depths. Although higher concentrations of fertilizer-15N were recovered in the 0–20 cm depth the recovered portion at lower soil depths was still significant. Total recovery of labelled N by plant and by soil after crop harvest averaged 75, 55 and 54% of originally applied fertilizer-15N at 40, 80 and 120 kg N ha?1, respectively. Corresponding unaccounted for 15N was 25, 45 and 46%. The most probable loss mechanism could have been by leaching to depths greater than 60 cm, gaseous losses to the atmosphere and root assimilation.  相似文献   

8.
Nitrogen (N) surpluses from fertilizer application can cause major environmental harm including pollution of surface water, groundwater, and air. To assess such negative externalities, N balances are a complex but useful tool to predict surpluses and to measure effects of nutrient optimization strategies in agriculture. The Yaqui Valley in north‐western Mexico is representative for thousands of square kilometres of intensive, irrigated wheat production under arid conditions worldwide and has been targeted for conservation agriculture in recent years. For these cropping systems, detailed N balances are scarce and often incomplete. To help fill this knowledge gap, data from a long‐term experiment were collected in 2013/14 on a Vertisol to examine the impact of three tillage‐straw management practices (CTB: conventionally tilled beds; PB‐straw: permanent raised beds with residue retention; PB‐burn: permanent raised beds with residue burning) on N dynamics. Tillage had significant effects on soil NO3‐N, NH4‐N, and total N contents across the cropping period. Soil total N content was at all sampling depths lowest in CTB. Soil NO3‐N in the 0–90 cm profile was highest in PB‐burn over the cropping period and ranged from 77 kg ha?1 in the bed before pre‐planting fertilizer application up to 269 kg ha?1 in the furrow after the second fertilizer application. Annual simple N balances were +59 kg N ha?1 in CTB, +39 kg N ha–1 in PB‐straw, and +46 kg N ha?1 in PB‐burn. Residual mineral soil N was significantly affected by tillage‐straw management and lowest for PB‐straw (+205 kg N ha?1) and highest for CTB, and for PB‐burn (+283 kg N ha?1 each) in the 0–90 cm soil profile. Soil NO3‐N moved out of the effective wheat root zone, as indicated by the high residual NO3‐N content at 30–90 cm depth, which is an important pathway of N leaching. Quantifiable N losses through leaching and volatilization averaged 100 kg N ha?1. Our findings suggest that there is potential for substantial reductions in N inputs in all tillage‐straw systems to decrease N losses and to reduce mineral residual soil N, but care should be taken to avoid reducing grain protein content, which in PB straw was already below the quality standard. A knowledge transfer of the European “Nmin” concept is advisable in this region to regulate N fertilizer over‐application.  相似文献   

9.
The significance of wheat straw decomposition with regard to the C- and N-cycle of a cultivated loess soil In 1984/85, a microplot experiment with 15N-enriched fertilizer was carried out on a field of the Calenberg loess area near Hannover (surface area of the plots: 1 ± 2 m; experimental soil: stagnigleyic cambisol from loess). On the one hand, the extent of immobilization as well as remobilization of native soil- and fertilizer-N associated with straw incorporation (± 8 t/ha) was quantified. On the other hand, the turnover as well as the alteration of C- and N-masses in the decomposing straw material was studied. About 70% of the initial dry organic matter of straw was mineralized within one year. An enrichment of fertilizer-N as well as native soil-N in the residues of up to 20 kg/ha was observed as compared to the initial N-mass. On a microplot cropped with winter-wheat, microbial N-immobilization of about 30–40 kg/ha (native soil-N and fertilizer-N) occured in the soil after straw incorporation. The immobilization extended to march 1985. Subsequent, associated with a C/N-ratio in the straw of 43, N-remineralization as well as -extramineralization was observed with 40 kg/ha at maximum in december 1985.  相似文献   

10.
The inherent features of Acrisols with their increasing clay content with depth are conducive to reducing nutrient losses by nutrient adsorption on the matrix soil surfaces. Ammonium (NH4+) and nitrate (NO3?) adsorption by a Plinthic Acrisol from Lampung, Indonesia was studied in column experiments. The peak of the H218O breakthrough occurred at 1 pore volume, whereas the median pore volumes for NH4+ and NO3? ranged from 6.4 to 6.9 and 1.1 to 1.6, respectively. The adsorption coefficients (Ka in cm3 g–1) measured were 1.81, 1.51, 1.64 and 1.47 for NH4+ and 0.03, 0.09, 0.10 and 0.17 for NO3?, respectively, in the 0–0.2, 0.2–0.4, 0.4–0.6 and 0.6–0.8 m soil depth layers. The NH4+ and NO3? adsorption coefficients derived from this study were put in to the Water, Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS) model to evaluate their effect on leaching in the context of several cropping systems in the humid tropics. The resulting simulations indicate that the inherent ‘safety‐net’ (retardation mechanism) of a shallow (0.8–1 m) Plinthic Acrisol can reduce the leaching of mineral N by between 5 and 33% (or up to 2.1 g m?2), mainly due to the NH4+ retardation factor, and that the effectiveness in reducing N leaching increases with increasing depth. However, the inherent ‘safety‐net’ is useful only if deep‐rooted plants can recover the N subsequently.  相似文献   

11.
N mineralization in sandy soils of the ‘Fuhrberg well field’ (Hannover) during winter Net N mineralization was measured under field conditions during winter and spring 1991/92 in sandy arable soils (Gleyic Podzols, Mollic Gleysols, Gleyic Arenosols) of the ‘Fuhrberg well field’, a drinking water catchment north-east of Hannover. The aim was to assess leaching losses of nitrate from mineralization processes during the winter on soils formerly used as grassland. Two field procedures were used: the incubation of soil material in polyethylene bags at its original location and rain sheltered fallow plots. Between 6 and 40 (100) kg N ha?1 were mineralized during 73 days from Dec., 17th to March, 2nd. Mineralisation rates were closely correlated to the organic N and C contents of the soils (r2 ± 0.9). In the uncovered soils, the NO3 was completely leached out. On five out of seven fields the process ‘N-mineralization during winter’ alone was sufficient to exceed the official limit for drinking water (50 mg 1?1 NO3? ) in the uppermost groundwater. It is concluded that even 15 years after converting grassland into arable land the Norg and Corg levels in the soils had not reached a new equilibrium.  相似文献   

12.
The fate of added 15N-labelled nitrite (15NO2?-N) was investigated in a laboratory experiment with two acidic pasture soils collected from northeast Victoria (Maindample and Ruffy) and an alkaline soil collected from Waurn Ponds, Victoria, Australia. Two and a half hours after mixing and extraction, the 15NO2?-N recovered in 2 M KCl extracts was 22% and 33% of the applied NO2? in Maindample and Ruffy soils, respectively, and 100% in the Waurn Ponds soil. There was no difference in NO3? recovered with and without NaClO3 addition during this procedure, suggesting that biological oxidation of the applied NO2? was not the cause of the low recovery. Of the applied 15NO2?-N, 21% and 20% in the acidic Maindample and Ruffy soils, respectively, were recovered from the organic pool where it is believed to have been chemically fixed, leaving the total loss of 15NO2? as 57% and 47% from these two soils, most likely due to chemical self-decomposition to NO and NO2. When extracted with 0.005 M KCl, the salt concentration used in the short-term nitrification assay (SNA) 51% and 42% of applied 15NO2? were recovered in the extract from Maindample and Ruffy soils, respectively, but the total losses were only 9% and 10% of the applied 15NO2?-N, respectively. The chemical fixation and self-decomposition of NO2? in acidic soils are likely to cause an underestimate of nitrification rates by SNA.  相似文献   

13.
Soil NH+4-N and NO?3-N at five soil depths (0–10, 10–20, 20–40, 40–60, 60–80 cm) and some environmental variables were measured in a field trial under fallow and wheat for 9 months.Significant linear and quadratic relationships were obtained relating soil NH+4-N, NO?3-N, NH+4-N + NO?3-N, and NH+4-N + NO?3 + total-N uptake by wheat to soil heat accumulation (temperature), moisture, and rainfall. R2 values generally decreased with soil depth and the maximum value (37%) was obtained for NO?3-N changes in the topsoil (0–10 cm).Although a considerable amount of variation in the inorganic values recorded is not included in the equations, our results suggest that the development of the above relationships particularly of the quadratic type are useful to predict crop requirements for N by measurement of environmental variables in the field.  相似文献   

14.
Denitrification losses from puddled rice soils in the tropics   总被引:4,自引:0,他引:4  
Summary Although denitrification has long been considered a major loss mechanism for N fertilizer applied to lowland rice (Oryza sativa L.) soils, direct field measurements of denitrification losses from puddled rice soils in the tropics have only been made recently. This paper summarizes the results of direct measurement and indirect estimation of denitrification losses from puddled rice fields and reviews the status of research methodology for measurement of denitrification in rice fields. The direct recovery of (N2+N2O)-15N from 15N-enriched urea has recently been measured at sites in the Philippines, Thailand, and Indonesia. In all 12 studies, recoveries of (N2+N2O)-15N ranged from less than 0.1 to 2.2% of the applied N. Total gaseous N losses, estimated by the 15N-balance technique, were much greater, ranging from 10 to 56% of the applied urea-N. Denitrification was limited by the nitrate supply rather than by available C, as indicated by the values for water-soluble soil organic C, floodwater (nitrate+nitrite)-N, and evolved (N2+N2O)-15N from added nitrate. In the absence of runoff and leaching losses, the amount of (N2+N2O)-15N evolved from 15N-labeled nitrate was consistently less than the unrecovered 15N in 15N balances with labeled nitrate, which presumably represented total denitrification losses. This finding indicates that the measured recoveries of (N2+N2O)-15N had underestimated the denitrification losses from urea. Even with a probable two-or threefold underestimation, direct measurements of (N2+N2O)-15N failed to confirm the appreciable denitrification losses often estimated by the indirect difference method. This method, which determines denitrification losses by the difference between total 15N loss and determined ammonia loss, is prone to high variability. Measurements of nitrate disappearance and 15N-balance studies suggest that nitrification-denitrification occurs under alternate soil drying and wetting conditions both during the rice cropping period and between rice crops. Research is needed to determine the magnitude of denitrification losses when soils are flooded and puddled for production of rice.  相似文献   

15.
Background : Rice production in low‐input systems of West Africa relies largely on nitrogen supply from the soil. Especially in the dry savanna agro‐ecological zone, soil organic N is mineralized during the transition period between the dry and the wet seasons. In addition, in the inland valley landscape, soil N that is mineralized on slopes may be translocated as nitrate into the lowlands. There, both in‐situ mineralized as well as the laterally translocated nitrate‐N will be exposed to anaerobic conditions and is thus prone to losses. Aim : We determined the dynamics of soil NO3‐N along a valley toposequence during the dry‐to‐wet season transition period and the effects of soil N‐conserving production strategies on the grain yield of rainfed lowland rice grown during the subsequent wet season. Methods : Field experiments in Dano (Burkina Faso) assessed during two consecutive years the temporal dynamics and spatial fluxes of soil nitrate along a toposequence. We applied sequential and depth‐stratified soil nitrate analysis and nitrate absorption in ion exchange resin capsules in lowlands that were open to subsurface interflow and in those where the interflow from the was intercepted. During one year only we also assessed the effect of pre‐rice vegetation on conserving this NO3‐N as well as on N addition by biological N2 fixation in legumes using δ15N isotope dilution. Finally, we determined the impact of soil N fluxes and their differential management during the transition season on growth, yield and N use of rainfed lowland rice. Results : Following the first rainfall event of the season, soil NO3‐N initially accumulated and subsequently decreased gradually in the soil of the valley slope. Much of this nitrate N was translocated by lateral sub‐surface flow into the valley bottom wetland. There, pre‐rice vegetation was able to absorb much of the in‐situ mineralized and the laterally‐translocated soil NO3‐N, reducing its accumulation in the soil from 40–43 kg N ha?1 under a bare fallow to 1–23 kg N ha?1 in soils covered by vegetation. Nitrogen accumulation in the biomass of the transition season crops ranged from 44 to 79 kg N ha?1 with a 36–39% contribution from biological N2 fixation in the case of legumes. Rice agronomic performance improved following the incorporation as green manure of this “nitrate catching” vegetation, with yields increasing up to 3.5 t ha?1 with N2‐fixing transition seasons crops. Conclusion : Thus, integrating transition season legumes during the pre‐rice cropping niche in the prevailing low‐input systems in inland valleys of the dry savanna zone of West Africa can temporarily conserve substantial amounts of soil NO3‐N. It can also add biologically‐fixed N, thus contributing to increase rice yields in the short‐term and, in the long‐term, possibly maintaining or improving soil fertility in the lowland.  相似文献   

16.
Nitrate-N, enriched with 15N, was added to small cores of the 0–10 cm layer of a clay soil. The base of each core was sealed, then water, equivalent to 0, 10, 20 or 30mm of rain, was added to the soil surface. The cores were incubated for 1 week at 10, 20, or 30°C in the presence or absence of wheat straw. The recovery of 15N in the soil mineral-N and organic-N fractions was then measured.No significant losses of 15N were detected in the cores which received 0–10 mm of added water, and in which the soil water content was close to 0.56 g g?1 (?10 kPa). However, 15N losses, assumed due to denitrification, were rapid from cores receiving 20 or 30 mm of water and incubated at 20–30°C. The onset of denitrification was quite sudden as the amount of added water increased from 10 to 20 mm. In this range, a small increment of added water apparently sealed a relatively large volume of soil from atmospheric O2 diffusion. This phenomenon was strongly temperature-dependent since no losses were detected from any cores at 10°C even though the 30mm addition of water produced a thin layer of free water across the soil surface.The addition of straw did not promote denitrification in soil at water contents close to 0.56 g g?1. At high soil water contents, adcling straw increased immobilization of labelled NO3? and so reduced denitrification losses. The response of immobilization to changing soil water and temperature conditions was very different from that of denitrification.  相似文献   

17.
Reducing ammonia (NH3) volatilization is a practical way to increase nitrogen (N) fertilizer use efficiency (NUE). In this field study, soil was amended once with either cotton (Gossypium hirsutum L.) straw (6 t ha?1) or its biochar (3.7 t ha?1) unfertilized (0 kg N ha?1) or fertilized (450 kg N ha?1), and then soil inorganic N concentration and distribution, NH3 volatilization, cotton yield and NUE were measured during the next two growing seasons. In unfertilized plots, NH3 volatilization losses in the straw-amended and biochar-amended treatments were 38–40% and 42–46%, respectively, less than that in control (i.e., unamended soil) during the two growing seasons. In the fertilized plots, NH3 volatilization losses in the straw-amended and biochar-amended treatments were 30–39% and 43–54%, respectively, less than that in the control. Straw amendment increased inorganic N concentrations, cotton yield, cotton N uptake and NUE during the first cropping season after application, but not during the second. In contrast, biochar increased cotton N uptake and NUE during both the first and the second cropping seasons after application. Furthermore, the effects of biochar on cotton N uptake and NUE were greater in the second year than in the first year. These results indicate that cotton straw and cotton straw biochar can both reduce NH3 volatilization and also increase cotton yield, N uptake and NUE. In addition, the positive effects of one application of cotton straw biochar were more long-lasting than those of cotton straw.  相似文献   

18.
Information on atmospheric inputs, water chemistry and hydrology were combined to evaluate elemental mass balances and assess temporal changes in elemental transport from 1983 through 1992 for the Arbutus Lake watershed. This watershed is located within a northern hardwood ecosystem at the Huntington Forest within the central Adirondack Mountains of New York (USA). Changes in water chemistry, including increasing NO3 ? concentrations (1.1 μmol c , L?1 yr-1), have been detected during this study period. Starting in 1991 hydrological flow has been measured from Arbutus Lake and these measurements were compared with predicted flow using the BROOK2 hydrological simulation model. The model adequately (r2=0.79) simulated flow from this catchment and was used to estimate drainage for earlier periods when direct hydrological measurements were not available. Modeled drainage water losses coupled with estimates of wet and dry atmospheric deposition were used to calculate solute budgets. Export of SO4 2? (831 mol c ha?1 yr?1) from the greater Arbutus Lake watershed exceeded estimates of atmospheric deposition in an adjacent hardwood stand suggesting an additional source of S. These large drainage losses of SO4 2? also contributed to the drainage fluxes of basic cations (Ca2+, Mg2+, K+ and Na+). Most of the atmospheric inputs of inorganic N were retained (average of 74% of wet precipitation and 85% total deposition) in the watershed. There were differences among years (56 to 228 mol ha?1 yr?1) in drainage water losses of N with greatest losses occurring during a warm, wet period (1989–1991).  相似文献   

19.
From 1964 through 1994, the pattern of nitrate (NO3 ?) export from Watershed 6 at Hubbard Brook Experimental Forest (HBEF) in New Hampshire, U.S.A., exhibited 10 years of high export (1968–1977) followed by 12 years of low export (1978–1989), with four ‘spikes’ in 1970, 1973, 1976, and 1990. Disruptions of N cycling by soil freezing, insect defoliation, or drought have been suggested to explain this pattern. We developed a model of nitrogen dynamics demonstrating that most of the long-term pattern can be reproduced without explicit consideration of these events. Comparisons of simulated N fluxes between high and low export years suggested that inorganic N input to the soil, from both atmospheric N deposition and N mineralization, was significantly higher during periods of high streamflow NO3 ? flux than in low periods. Simulated inorganic N pools (ammonium and nitrate) and fluxes (nitrification, plant uptake, denitrification, and ammonia volatilization) were also significantly higher in these periods. By swapping the time sequences of inorganic N input between high and low export years, it was shown that N mineralization, not atmospheric N deposition, drives the simulated long-term pattern. Although simulated nitrification showed a stronger relationship with measured streamflow NO3 ? flux than did N mineralization, nitrification rate depended upon availability of soil ammonium supplied from N mineralization. Because N mineralization in the model varies only with soil temperature and moisture, we conclude that shifts in the interaction of these two variables over time produced the shifts in NO3 ? stream exports.  相似文献   

20.
We studied the fate of 222 kg N ha?1 applied in spring as K15NO3 to winter wheat test crops which followed either continuous arable cropping (Arable) or a rotation in which a 3-year grass/clover ley preceded the wheat (Ley). Denitrification losses (measured by an acetylene-inhibition method) of over 1 kg N ha?1 d?1 were measured for short periods following heavy rain in mid-May. However the generally dry and cool weather resulted in accumulated losses by denitrification between fertilizer application and anthesis equivalent to only 5.3% and 3.6% (±2%) of the applied N for the arable and ley treatments respectively. The smaller loss from the ley was despite this treatment containing more inorganic N and available carbon. 15N balance indicated that, at anthesis, 1.5% and 11.5% (± 7%) of the labelled N was lost from the arable and ley treatments respectively. Given the precision of the 15N and the acetylene-inhibition methods, the results are not significantly different. However, the larger difference between methods for losses from the ley treatment may be an underestimate because 15N balance does not measure losses of unlabelled N. These were probably very small on the arable treatment but could have increased total N loss by 25% to c. 32 kg ha?1 on the ley treatment compared with the 8 kg ha-1 measured as denitrified. Such a large difference is unlikely to be an error but was probably due to ammonia volatilization from this crop which was severely infected by mildew. The results were thus a poor test of the acetylene-inhibition method, but revealed another loss process which could be significant in some situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号