首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent time, phytoliths (silicon deposition between plant cells) have been recognized as an important nutrient source for crops. The work presented here aims at highlighting the potential of phytolith‐occluded K pool in ferns. Dicranopteris linearis (D. linearis ) is a common fern in the humid subtropical and tropical regions. Burning of the fern D. linearis is, in slash‐and‐burn regions, a common practice to prepare the soil before planting. We characterised the phytolith‐rich ash derived from the fern D. linearis and phytolith‐associated potassium (K) (phytK), using X‐ray tomographic microscopy in combination with kinetic batch experiments. D. linearis contains up to 3.9 g K/kg d.wt, including K subcompartmented in phytoliths. X‐ray tomographic microscopy visualized an interembedding structure between organic matter and silica, particularly in leaves. Corelease of K and Si observed in the batch experiments confirmed that the dissolution of ash phytoliths is one of major factors controlling K release. Under heat treatment, a part of the K is made available, while the remainder entrapped into phytoliths (ca. 2.0–3.3%) is unavailable until the phytoliths are dissolved. By enhanced removal of organic phases, or forming more stable silica phases, heat treatment changes dissolution properties of the phytoliths, affecting K release for crops and soils. The maximum releases of soluble K and Si were observed for the phytoliths treated at 500–800 °C. For quantitative approaches for the K provision of plants from the soil phytK pool in soils, factors regulating phytolith dissolution rate have to be considered.  相似文献   

2.
The primary source of dissolved silicon (Si: DSi) is the weathering of silicate minerals. In recent years, it has been shown that Si cycling through vegetation creates a more soluble Si pool in the soil, as amorphous Si (ASi) deposits in plants (phytoliths) are returned to the soil through litter. Amorphous Si accumulation in soils depends on a number of factors, including land use. In addition to the biogenic ASi fraction, soils contain other non‐biogenic amorphous and sorbed Si fractions that could contribute significantly to DSi export to rivers, but hitherto these Si fractions have been difficult to separate from each other with traditionally applied extraction methods. The objective of this paper is to understand better how land use affects the distribution of the different extractable Si fractions. We re‐analysed samples from the land‐use gradient studied previously by Clymans et al. ( 2011 ) with a continuous Si and aluminium (Al) extraction technique. Different extractable Si fractions of biogenic or pedogenic origin were successfully separated on the basis of their dissolution in alkaline solutions (Na2CO3 and NaOH) and Si:Al ratios. We show that forests store almost all alkaline extractable Si (AlkExSi) in the pedogenic fraction while the importance of phytoliths increases with human disturbance to become the dominant fraction in the AlkExSi pool at the arable site. The pedogenic AlkExSi pool is also more reactive than the phytolith‐bound Si. Conversely, pastures and croplands tend to preserve phytoliths in the soil, which are less reactive, decreasing the potential of DSi export relative to forested ecosystems.  相似文献   

3.
Microorganisms are capable of reducing the structural Fe(III) of some phyllosilicates, i.e., montmorillonite, nontronite, and illite. Two reduction results are possible. For the low-ferruginous minerals, the solid-phase partial reduction of the structural Fe(III) does not cause any decay of particles. In this case, reduction leads to a partial dehydroxylation of the lattice and magnetic disordering of the mineral, as well as to changes in the layer packaging, the crystallization degree, the texture, the color, the surface charge, and the cation-exchange capacity. Except for dehydroxylation and the changing Fe oxidation status, the transformations of minerals’ properties are irreversible for the most part. In highly ferruginous phyllosilicates, the structural Fe(III) reduction leads to the particle dissolution. As a result of microbial reductive dissolution of crystallized nontronite, new amorphous minerals are formed, i.e., aluminosilicates with an elevated Al/Si ratio, Si globules, and Fe hydroxides. Another biogenically crystallized Si mineral (tridymite βSiO2) is formed in light-textured soils and sediments after smectite decomposition. The bacterial reduction of highly ferruginous illite leads to transformation of the shape of some particles: initially acicular illite crystals were transformed into plates. The amorphous structure is formed in illite particles contacting with bacterial cells. The solid-phase reduction of structural Fe(III) does not lead to particle dissolution in the case of low-ferruginous illite.  相似文献   

4.
The participation of anionic aluminum hydroxo complexes in the binding of phosphate anions on the surface of gibbsite has been shown. The succession of changes in the anionic aluminum phosphate complexes under increasing concentration of phosphate solution has been studied. It has been found that aluminum polyphosphate complexes responsible for the intensive dissolution of gibbsite are formed, along with aluminum orthophosphate complexes, at phosphate solution concentrations of 1 and 2 mol P/L. The decisive role of polyphosphate (P–O–P) groups in the ligand structure of anionic complexes in the transformation of gibbsite to a phosphate mineral (ammonium taranakite) has been revealed. The role of hydrogen bonds with the participation of ligand P(O)OH groups in the formation of ammonium taranakite crystals has been discussed.  相似文献   

5.
The acid–base buffering of gleyic gray-humus soils developed in brook floodplains and undisturbed southern-taiga landscapes has been characterized by the continuous potentiometric titration of soil water suspensions. During the interaction with an acid, the major amount of protons (>80%) is consumed for the displacement of exchangeable bases and the dissolution of Ca oxalates. In the O and AY horizons, Mn compounds make the major contribution (2–15%) to the acid buffering. The buffer reactions with the participation of Al compounds make up from 0.5 to 1–2% of the total buffering capacity, and the protonation of the surface OH groups of kaolinite consumes 2–3% of the total buffering capacity. The deprotonation of OH groups on the surface of Fe hydroxides (9–43%), the deprotonation of OH groups on the surface of illite crystals (3–19%), and the dissolution of unidentified aluminosilicates (9–14%) are the most significant buffer reactions whose contributions have been quantified during the interaction with a base. The contribution of the deprotonation of OH groups on the surface of kaolinite particles is lower (1–5%) because of the small specific surface area of this mineral, and that of the dissolution of Fe compounds is insignificant. In the AY horizon, the acid and base buffering of soil in the rhizosphere is higher than beyond the rhizosphere because of the higher contents of organic matter and nonsilicate Fe and Al compounds.  相似文献   

6.
Interlayer materials of partially interlayered vermiculites (PIV) in 15 Dystrochrepts derived from Tertiary sediments were analysed by dissolution with hot 1/3M sodium citrate or 0.15 M oxalate-oxalic acid in combination with XRD and IR spectroscopy. Both the citrate and oxalate treatments dissolved Al from all soil clays. The dissolution of Al by the citrate treatment paralleled the dissolution of Si and the interlayer collapse of PIV, whereas that by the oxalate treatment did not, indicating that the interlayer materials contain not only Al but Si. The materials dissolved by the citrate treatment had a molar Si/Al ratio ranging from 0.72 to 0.24 that decreased with the increasing interlayering of PIV. Differential IR spectroscopy indicated the dissolution of aluminosilicates possibly having Si-O, Al-OH and Si-O-Al bonds, but not Si-O-Si bonds. The extent of interlayering of PIV showed a good correlation with the amount of Al dissolved by the citrate treatment and increased with increasing soil pH (H2O) from 4.5 to 5.2 and with decreasing exchangeable Al in soil.
Formation of a hydroxy-Al sheet partially bonded with Si-tetrahedra was suggested as a possible model of the interlayer structure of PIV. The differences between PIV in the studied Inceptisols and other soils are discussed.  相似文献   

7.
Rice straw contains up to 2.3% K in dry matter, including potassium (K) subcompartmented in phytoliths, complex siliceous structures formed in plant tissue via precipitation of Si. Rice straw is usually returned to the soil as a conventional practice to sustain soil nutrients, and therefore, the K pool accompanied with rice straw phytoliths is also cycled. Based on phytoliths obtained by ashing of rice straw at 400 °C and dissolution experiments using batch extraction in combination with physical separation of phytoliths by heavy liquid, this study evaluated the phytolith K(phytK) pool in rice straw and aged phytoliths in paddy soils. Entrapped organic matter containing K within phytolith silica cells was visualized by X-ray tomographic microscopy, and releases of this phytK pool accompanying phytolith dissolution were quantified. A 1% Na2CO3 solution, which has been commonly used to extract amorphous Si and to quantify soil phytoliths, showed obvious responses for K derived from phytolith dissolution, indicating that the Na2CO3 method can be developed for measurement of phytK. In 13 soil samples, Na2CO3-dissolvable K content assignable to phytK was 0.55 ± 0.39 g kg?1 in the puddled horizon, suggesting the phytK pool is of high significance for the management of K in paddy soils.  相似文献   

8.
A new extraction method for the evaluation of Si availability in slag fertilizers was developed based on findings on the dissolution process of the slags in paddy fields. In the method, the slags were dissolved in water with the addition of a weakly acidic cation exchange resin (H form). The effects of the slag/water ratio, the amount of resin, and temperature on the Si dissolution from the slags were examined in order to determine adequate extraction conditions. The Si dissolution from the slags was enhanced by the addition of the resin. The pH of the extractant was well controlled between 6 and 7 during the extraction. The percentage of the amount of Si extracted by traditional evaluation methods using 0.5 м HCl or an acetate buffer solution to the total amount of Si in the slags was much higher than the Si recovery rate by rice plant (Oryza sativa L. var. Nihonbare) which was measured in our previous study. Moreover, there was no correlation between these values. On the other hand, the percentage of Si extracted by the new method was in the same range as that of the Si recovery rate and a positive correlation was obtained. As a result, Si availability in the slags could be evaluated more precisely by using the method proposed here than by using the traditional methods.  相似文献   

9.
Foliar silicon (Si) concentrations vary significantly among plants, resulting in the classification of different species as either high or low-Si accumulators. While the uptake pathways have been identified in some high accumulators, those that operate in low accumulators have largely been overlooked. Using a bioinformatics approach, a putative NIP2-like Si transporter gene was discovered within the genome of the low-Si accumulator, Nicotiana tabacum. The predicted protein, termed NtNIP2;1, possesses all the molecular signatures expected of an NIP2 Si transporter. Furthermore, when NtNIP2;1 was expressed in Xenopus oocytes, Si transport across the plasma membrane was observed. Nicotiana tabacum NIP2;1 RNA levels in the roots of seedlings were down-regulated in response to Si, similar to the Si transporter, OsLsi1, in rice. Taken together, these data suggest that a functional NIP2 Si uptake mechanism is also present in plants that acquire low foliar Si levels.  相似文献   

10.
Non‐essential silicon (Si) is beneficial to plants. It increases the biomass of Si‐accumulator plants by improving photosynthetic activity and alleviating stresses. Desilication, however, takes place because of natural soil weathering and removal of harvested biomass. Pyrolysis transforms Si‐rich biomass into biochar that can be used to supply bioavailable Si. Here, we applied two biochar materials differing in Si content on soils differing in weathering stage: a young Cambisol and a highly weathered Nitisol. We studied the impact of biochar supply on the bioavailability of Si, cotton biomass, and Si mineralomass. The biochar materials derived from, respectively: Miscanthus × giganteus (Mi; 34.6 g Si kg?1 in biochar) and soft woody material (SW; 0.9 g Si kg?1 in biochar). They were compared to conventional Si fertilizer wollastonite (Wo; CaSiO3). Amendments were incorporated in soils at the rate of 3% (w/w). The content of bioavailable Si in soil was determined through 0.01 M CaCl2 extraction. In the Cambisol, the proportion (CaCl2 extractable Si: total Si content) was significantly smaller for Mi (0.9%) than for Wo (5.2%). In the Nitisol, this proportion was much larger for Mi (1.4%) than for Wo (0.7%). Mi‐biochar significantly increased Si‐mineralomass relatively to SW‐biochar in both soils. This increase was, however, much larger in the Nitisol (5.9‐fold) than in the Cambisol (2.2‐fold). Mi biochar is thus an alternative Si fertilizer to Wo to supply bioavailable Si, increase plant biomass, and promote the biological cycle of Si in the soil‐plant system in the Nitisol. Besides, it increased soil fertility and soil organic carbon content.  相似文献   

11.
Original Papers

(pp. 805–810)

K2Ca2Si2O7, the major component of fused potassium silicate fertilizer, released potassium (K), calcium (Ca) and silicon (Si) in a slow manner. The 10% of K in K2Ca2Si2O7 was quickly solubilized in water. Further K dissolution was very slow. The amounts of dissolved Ca and Si in water were much smaller than that of K. The decrease of the Ca and Si concentration in water indicated the occurrence of a re-deposit of Ca and Si at a later stage.

The surface imaging method was used in order to study the slow-release process of K2Ca2Si2O7 in water. The surface analysis of K2Ca2Si2O7 particles after dissolution in water for 30 min showed that there were Ca- and Si-rich particles stuck on the fertilizer surface. The results of the analysis of the cross section of K2Ca2Si2O7 particles showed that the K content was lower than those of Ca and Si in the surface boundary layer. On the other hand, the mole ratio of K, Ca and Si was same inside the fertilizer particle. In the portion between the inside and the surface of the fertilizer particle, the content of K and Ca was lower than that of Si. These results indicated that the order of dissolution of fertilizer components from K2Ca2Si2O7 particle was first K, then Ca, and Si last.

From the results mentioned above, the process of slow-release K was speculated to be as follows: 1) K on the particle surface was released quickly by an ion exchange reaction with hydrogen ions in water. 2) K inside the particle was released slowly because of dissolution through Si-O-Si bonds.  相似文献   

12.
Our current understanding of silicon (Si) availability in agricultural soils is reviewed and knowledge gaps are highlighted. Silicon is a beneficial rather than essential plant nutrient and yield responses to its application have been frequently demonstrated in Si‐accumulator crops such as rice and sugarcane. These crops are typically grown on highly weathered (desilicated) soils where soil solution Si concentrations are low. Increased yields are the result of simultaneous increases in plant tolerance to a wide range of biotic (plant pathogens, insect pests) and abiotic (water shortage, excess salts, metal toxicities) stresses. Traditionally, soil solution Si is viewed as being supplied by dissolution of primary and secondary minerals and buffered by adsorption/desorption of silicate onto Al and Fe hydrous oxide surfaces. In recent years it has become recognized that phytogenic cycling of Si [uptake of Si by plants, formation of phytogenic silica (SiO2 · nH2O) mainly in leaves and subsequent return of this silica to soils in plant litter] is the main determinant of soil solution Si concentrations in natural forests and grasslands. Considerable diminution of the phytogenic Si pool in agricultural soils is likely due to regular removal of Si in harvested products. A range of extractants (unbuffered salts, acetate‐based solutions, and acids) can provide valuable information on the Si status of soils and the likelihood of a yield response in rice and sugarcane. The most common Si fertilizers used are industrial byproducts (e.g., blast furnace slag, steel slag, ferromanganous slag, Ca slag). Since agriculture promotes soil desilication and Si is presently being promoted as a broad spectrum plant prophylactic, the future use of Si in agriculture is likely to increase. Aspects that require future research include the role of specific adsorption of silicate onto hydrous oxides, the significance of phytogenic Si in agricultural soils, the extent of loss of phytogenic Si due to crop harvest, the role of hydroxyaluminosilicate formation in fertilized soils, and the effect of soil pH on Si availability.  相似文献   

13.
Silicon (Si), although not considered essential, has beneficial effects on plant growth which are mostly associated with the ability to accumulate amorphous (phytogenic) Si, e.g., as phytoliths. Phytogenic Si is the most active Si pool in the soil–plant system because of its great surface‐to‐volume ratio, amorphous structure, and high water solubility. Despite the high abundance of Si in terrestrial biogeosystems and its importance, e.g., for the global C cycle, little is known about Si fluxes between soil and plants and Si pools used by plants. This study aims at elucidating the contribution of various soil Si pools to Si uptake by wheat. As pH affects dissolution of Si pools and Si uptake by plants, the effect of pH (4.5 and 7) was evaluated. Wheat was grown on Si‐free pellets mixed with one of the following Si pools: quartz sand (crystalline), anorthite powder (crystalline), or silica gel (amorphous). Silicon content was measured in aboveground biomass, roots, and soil solution 4 times in intervals of 7 d. At pH 4.5, plants grew best on anorthite, but pH did not significantly affect Si‐uptake rates. Total Si contents in plant biomass were significantly higher in the silica‐gel treatment compared to all other treatments, with up to 26 mg g–1 in aboveground biomass and up to 17 mg g–1 in roots. Thus, Si uptake depends on the conversion of Si into plant‐available silicic acid. This conversion occurs too slowly for crystalline Si phases, therefore Si uptake from treatments with quartz sand and anorthite did not differ from the control. For plants grown on silica gel, real Si‐uptake rates were higher than the theoretical value calculated based on water transpiration. This implies that Si uptake by wheat is driven not only by passive water flux but also by active transporters, depending on Si concentration in the aqueous phase, thus on type of Si pool. These results show that Si uptake by plants as well as plant growth are significantly affected by the type of Si pool and factors controlling its solubility.  相似文献   

14.
The profile distributions of oxalate- and pyrophosphate-soluble Al compounds and oxalate-soluble Si compounds in the main horizons of pale-podzolic soils of the Central Forest Reserve and the fractions <1. 1–5, and >5 μm have been considered. In the clay-eluvial part of soil profile, the content of these compounds is differentiated by the eluvial–illuvial type with a clear accumulation in the EL horizon compared to the AEL horizon. This distribution is largely ensured by their differentiation in the clay and fine silt fractions, while an accumulative distribution of mobile Al compounds is observed in fractions >5 μm. The high correlation between the Al and Si contents in the Tamm extracts from the clay and fine silt fractions with the (Alox–Alpy)/Siox molar ratios, which are in the range of 1–3 in the EL horizon, confirms that mobile compounds are accumulated in these fractions in the form of amorphous aluminosilicates. In the AEL and EL horizons, an additional amount of Al can pass into the oxalate solution from the fine fractions due to the dissolution of Al hydroxide interlayers of soil chlorites. The eluvial–illuvial distribution of mobile Al and Si compounds typical for Al–Fe–humus podzols within the clay-illuvial part of profiles of the soils under study can be considered as an example of superimposed evolution.  相似文献   

15.
M. Nakai  N. Yoshinaga 《Geoderma》1980,24(2):143-158
Fibrous particles 20—50Å wide and several μm long have been found in the clay fractions from a number of Japanese and Scottish soils. The particles dissolved in buffered dithionite and hot acid oxalate (0.15 M) but were resistant to hot alkali (2% Na2CO3, 0.5 M NaOH) and acid (0.1 M HCl) treatments, suggesting a ferruginous and crystalline nature. The ferruginous nature was further indicated by energy-dispersive X-ray spectroscopy, which, at the same time, showed the presence of large quantities of Al and some Si. Electron diffraction analysis indicated goethite of low crystallinity as the most likely mineral. Incorporation of numbers of Al ions in the crystal lattice was inferred from the results of elemental analysis after chemical dissolution treatments.  相似文献   

16.
硅酸盐细菌NBT菌株解钾机理初探   总被引:35,自引:2,他引:35  
盛下放  黄为一 《土壤学报》2002,39(6):863-871
摇瓶条件下 ,对硅酸盐细菌NBT菌株发酵液及其代谢产物分解钾长石的作用进行了研究。结果表明 ,培养 48h的NBT菌株发酵液能活化钾长石中的钾、硅、铝。 2 8℃振荡 1 0天后的滤液中K ,SiO2 ,Al2 O3含量分别达 1 84.1、39.8和 1 2 .6mgL- 1 ,分别比灭菌发酵液中的K ,SiO2 ,Al2 O3含量增加 1 0 6 .1 %、63 .1 %和 1 33 .3%。NBT菌株发酵液中含有大量的有机酸、氨基酸、荚膜多糖。摇瓶试验表明 ,三者都有较强的分解钾长石的能力 ,2 8℃振荡 1 0天后的滤液中的K含量分别达 1 1 0 .8、84.9和 1 9.7mgL- 1 。另外 ,三者间有明显的协同作用 ,三者的混合液可使解钾能力提高 62 .2 %。三者分解钾长石的能力是通过酸溶和络合作用来实现的。  相似文献   

17.
The soils and sediments of the uplands in the Manaus region are described and analysed along a representative cross‐section. There are two broad types of features, lateritic and redoximorphic. Their formation is linked to two main processes acting under contrasted hydrological regimes. The first process, acting under well‐drained conditions, is lateritization. It has transformed strongly weathered sediment into soil and led to depletion of silica (mainly quartz) as well as to relative accumulation of both kaolinite and iron oxides (haematite and goethite). Crystallographic changes observed in the latter have resulted from alternating dissolution and crystallization cycles without significant transfer of iron and alumina. However, in the uppermost soil, dissolution of kaolinite has prevailed over crystallization, leading to depletion of clay and the formation of tiny crystals of gibbsite disseminated throughout the groundmass. The second process results from the development of reducing conditions in groundwater giving redoximorphic features in lateritic soils and sediments. In the sediments, iron has been depleted by regional aquifers to form a pallid zone. In the soil, large amounts of iron and minor amounts of alumina, mainly from aluminous goethite, have been mobilized at first in small patches, which with further mobilization and vertical transfer of these elements have increased in size and have led to the formation of bleached horizons over thin iron pans. Iron has crystallized predominantly as haematite in the iron pans and alumina as large crystals of gibbsite in soil voids. Formation of impervious iron pans holds up fluctuating perched groundwater in the overlying horizons depending on rainfall events. Neotectonic events (formation of uplifted blocks and small grabens) have markedly altered the hydrological regimes. In the uplifted blocks, the soil has been deeply truncated and iron loss has been checked in the uppermost sediment. By contrast, mobilization of iron has been initiated at various places in the soil of the small grabens. In this way tectonic events have checked mobilization of iron in sediments but activated it in soils, leaving spectacular fingerprints on the landscape.  相似文献   

18.
The dissolution of organic matter in soil is of fundamental relevance for the fate of organic contaminants associated with organic matter and for the microbial availability of organic matter. In this study, the kinetics of soil organic matter (SOM) dissolution from a sandy forest soil was investigated under different electrolyte conditions, using a continuous extraction method. The mathematical analysis of the concentration signal obtained from extractions with constant flow rates and after sudden flow rate changes showed that the dissolution of SOM is diffusion limited. The dissolution rate was lower during extraction with 0.01 M CaCl2. The reaction on sudden flow rate changes was slower when extracting with 0.01 M CaCl2 as compared to water, and the mechanism was different. These observations were explained by a gel phase developing in the swelling SOM. The lower dissolution rates found for extractions with 0.01 M CaCl2 could indicate a more stable gel structure in the presence Ca2+. The development of the gel phase may be influenced by mechanical strain due to increased flow rates.  相似文献   

19.
Different aspects of Si biogeochemistry in the soil have been reviewed. Interaction mechanisms of monosilicic acid with aluminum, phosphorus, and heavy metal compounds have been generalized. Polysilicic acids are chemically inert substances, but they participate in the formation of soil structure. Organosilicon compounds in the soil are very little investigated. From literature and our own data, the cycle of mobile Si forms in the soil–microorganism–plant system has been suggested, which shows the main fluxes of soluble Si migration and transformation. A new classification of the Si compounds based on their physicochemical and biological activities in the soil has been suggested as well as a method for the determination of mono- and polysilicic acids in the soil matrix.  相似文献   

20.
四种常规方法提取伊利石有效钾的机制比较   总被引:1,自引:0,他引:1  
采用化学分析、X射线衍射、中红外光声光谱以及原子力显微镜的方法,比较了0.2 mol L~(-1)四苯硼钠法、1 mol L~(-1)沸硝酸法、2 mol L~(-1)冷硝酸法和2 mol L~(-1)热盐酸法浸提伊利石中有效钾的机制。结果表明,四苯硼钠法浸提时,伊利石中钾素释放量达到全钾量的59.5%,且基本均通过层间交换反应予以释放,结构离子铁、铝和硅释放量极低;采用三种酸溶液浸提时,其钾素释放量仅占全钾量的1.53%~2.46%,通过层间交换反应释放的钾量占释放量的比例为88.4%~94.0%。四苯硼钠浸提时伊利石层间距扩大,产生次生过渡矿物,并形成富硅表层,但在伊利石表面无溶蚀特征;三种酸溶液浸提时伊利石结构无改变,但其结晶度降低,且表面有明显的溶蚀特征。因此,土壤矿物层间钾是作物可利用有效钾的主要来源,三种酸溶液浸提方法一方面低估了有效钾容量,另一方面提取了一部分不能为植物所利用的结构态钾,不适宜于用来评价伊利石及土壤有效钾库容量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号