首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The molar ratio of base nutrient cations to total dissolved aluminum (BC : Altot) in the soil solution was measured at six forest sites in Switzerland in acid mineral soils to determine whether the ratio measured in the field was lower than the critical value of 1, as predicted by the mapping of exceedances of critical loads of acidity. The soil chemistry was then related to the soil solution composition to characterize the typical effective base saturation (BS) and BC : Al ratio in soil leading to critical BC : Altot in the soil solution. The median BC : Altot ratio in the soil solution never reached the critical value in the root zone at any sites for the whole observation period (1999–2002), suggesting that the BC : Altot ratios measured in the field might be higher than those modeled for the determination of critical loads of acidity. The gibbsite model usually applied for the calculation of critical loads was a poor predictor of the Al3+ activity at the study sites. A curvilinear pH‐pAl3+ relationship was found over the whole range of pH (3.8–6.5). Above a pH of 5.5, the slope of the pH‐pAl3+ relation was close to 3, suggesting equilibrium with Al(OH)3. It decreased to values smaller than 1.3 below a pH of 5.5, indicating complexation reactions with soil organic matter. The BS and the BC : Al ratios in the soils were significantly correlated to the BC : Altot ratios in the soil solution. The soil solutions with the lowest BC : Altot ratios (≤ 2) were typically found in mineral soils with a BS below 10 % and a BC : Al ratio in the soil lower than 0.2. In acid pseudogleyed horizons overlying a calcareous substrate, the soil solution chemistry was strongly influenced by the composition of the underlying soil layers. The soil solutions at 80 cm had pH values and BC : Altot ratios much higher than expected. This situation should be taken into account for the calculations of critical loads of acidity.  相似文献   

2.
The controls of soluble Al concentration were examined in three situations of acid sulfate conditions:1) experimental acid sulfate conditions by addition of varying amounts of Al(OH)3(gibbsite) into a sequence of H2SO4 solutions;2)experimental acid sulfate conditions by addition of the same sequence of H2SO4 solutions into two non-cid sulfacte soil samples with known amounts of acid oxalate extractable Al; and 3) actual acid sulfate soil conditions.The experiment using gibbsite as an Al-bearing mineral showed that increase in the concentration of H2SO4 solution increased the soluble Al concentration,accompanied by a decrease i the solution pH, Increasing amount of gibbsite added to the H2SO4 solutions also increased soluble Al concentration,but resulted in an increase in solution pH.Within the H2SO4 concentration range of 0.0005-0.5mol L^-1 and the Al(OH)3 range of 0.01-0.5g(in 25 mL of H2SO4 solutions),the input of H2SO4 had the major control on soluble Al Concentration and pH .The availability of Al(OH)3,however,was responsible for the spread fo the various sample points,with a tendency that the samples containing more gibbsite had a higher soluble Al concentration than those containing less gibbsite at equivalent pH levels.The experimental results from treatment of soil samples with H2SO4 solutions and the analytical results of acid sulfate soils also showed the similar trend.  相似文献   

3.
Precision‐farming applications are mainly based on site‐specific information of soil properties at the field scale. For this purpose, a number of novel sensor techniques have been developed but not intensively tested under different field conditions. This study presents a combined application of a self‐developed dual‐sensor vertical penetrometer (DVP) for measuring volumetric soil water content (VSWC) and cone index (CI), and an EM38 for soil apparent electrical conductivity (ECa) in a pasture (1.4 ha). To verify the feasibility of the DVP for interpreting the depth‐specific information in the field, not only the soil physical properties and their geographical coordinates were measured, but also geo‐referenced yield data were collected. We found that the yield pattern was quite similar to the soil water‐content pattern of each layer (layer‐1: 5–15 cm; layer‐2: 15–25 cm, layer‐3: 25–35 cm) and ECa pattern. Using the map‐based comparisons in conjunction with the statistical analyses, the effect of each measured soil physical property (VSWC, CI, and ECa) on the yield was investigated. The regression between the yield and VSWC at each layer fitted a quadratic equation (R2 = 0.515 at 5–15 cm; R2 = 0.623, at 15–25 cm; R2 = 0.406 at 25–35 cm). The negative correlation between yield and CI at each layer fitted a linear model with R2 ≥ 0.510.  相似文献   

4.
The influence of noncomposted ground newsprint (GNP) and nitrogen (N) source on corn (Zea Mays L.) dry matter production, grain yield, and soil chemical properties has been previously reported (Lu et al. 1995). The effects of GNP and N source on soil solution ionic activities at 40 days after planting in a field study; seed germination and extractable aluminum (Al) in GNP in laboratory studies were evaluated to determine their effects on corn seedling stunting and nutrient imbalances during early growth stages. Ammonium nitrate (NH4NO3), urea, anhydrous ammonia (NH3), or poultry litter (PL) were the N sources used in the field study to adjust the C:N ratio of the GNP to ≤ 30:1. In laboratory experiments, cotton, soybean, and corn germination at seven days was not affected by N source or GNP applied at a rate of 2.44 kg C/m2 soil; but N source did influence the dry weight of corn root/shoot ratio at 21 days. The Al extracted from GNP increased as the NH4OH concentration in the extracting solution increased and followed a quadratic relationship with an r2 of 0.90. The σαca/σαcation ratio in soil solution for all N sources was greater than the 0.15 reported by Bennett and Adams (1970a), where incipient NH3 phytotoxicity can occur. At 40 days after planting, a two-fold increase in soil monomeric Al (σAlαmon.) ionic activity and a five-fold increase in soil P (σPα) ionic activity were measured in GNP treatments as compared to no N GNP treatments. When NH3 was the N source used to adjust the C:N ratio of GNP, the σAlαmon. ionic activities were increased by a factor of five as compared to NH3 applied alone. When PL was the N source, the AlT (σAlαspecies) ionic activity was 119 mmol L?1 compared to the σAlαmon. ionic activity of 0.53 mmol L?1. It appears that σAlαmon. ionic activity induced nutrient disorder and caused severe stunting of corn seedlings during early season growth. The relatively high water-soluble organic carbon in PL (18 percent) may have acted as a chelating agent to reduce the σAlαmon. ionic activities in the GNP, or as a soluble carbon source for increasing microbial utilization of all the N, thus slowing the formation and accumulation of phytotoxic levels of by-products.  相似文献   

5.
A computer simulation was done to illustrate how the equilibrium solubility and speciation of Al in well-aerated soil solutions may be affected by pH (from 2.0 to 10.0), organic acids (citric, oxalic, phthalic, and salicylic acid), metal ions (K, Mg, Ca, Al, Fe), inorganic ligands (F, OH, SO4, PO4, CO3, and SiO3), and type of Al-containing solid [kaolinite, gibbsite, or amorphous Al(OH)3] thought to be present. The simulation indicated that the type of Al-oxide/hydroxide considered has a substantial influence on the inorganic and organic equilibrium composition of the soil solution, and on the occurrence (or non-occurrence) of other Al-minerals such as KA13(SO4)2(OH)6 (alunite) and Al(SO4)(OH)-5H2O (jurbanite).  相似文献   

6.
Abstract

Plant root exposure to soil aluminum (Al) depends on the soil solution Al concentration and transport to the root by diffusion. Changes in Al diffusive flux for two Oxisols was measured under laboratory conditions as a function of pH, water matric potential, and applications of gypsum, potassium chloride, and calcium phosphate. Double‐faced cation exchange resin sheets served as sinks for Al transported during 10‐day incubations through chambers containing 314 cm3 of soil. Across a range of soil pH values from 4.5 to 5.5, maximum diffusive flux of Al occurred at pH values of 4.7–4.8 in both soils and corresponded to increases of 2.2–3.0% relative to the unlimed treatment. Between pH values of 4.7–4.8 and 5.4, diffusive flux of Al decreased by 38 and 46% in the two Oxisols. Diffusive flux of Al decreased by 16–20% for the two Oxisols as soil water potentials decreased from ‐10 to ‐200 kPa. Magnitude of the reductions in diffusive flux of Al with decreasing soil water potential were less than those reported for diffusive flux of phosphorus (P) in prior investigations. Diffusive flux of Al increased by as much as 4‐fold with additions of CaSO4 and KCl, which increased the soil solution Al concentration. Additions of 400 mg P dm‐3 of soil had no effect on Al diffusion in either Oxisol.  相似文献   

7.
This paper presents aluminium (Al)-solubility data for two acid forest soils (Inceptisol and Spodosol), obtained in connection with lysimeter measurements (tension-cup and zero-tension lysimeters) and batch equilibrium experiments. The solubility of Al obtained in the batch experiments was used as a reference to test whether Al3+in soil solutions collected by the lysimeters was in equilibrium with secondary forms of solid-phase Al (Al(OH)3or organically bound Al). The relation between pH and Al3+activity found for the zero-tension lysimeter solutions collected from the Inceptisol agreed well with that obtained in the batch experiment. This suggests that Al3+in the lysimeter solutions were in, or close to, equilibrium with the solid phase, whether this was organically bound Al (A horizon) or an Al(OH)3phase (B horizon). For the tension-cup lysimeters, solutions obtained from the Inceptisol B and Spodosol Bs1 horizons were generally close to equilibrium with respect to secondary solid-phase Al (apparently Al(OH)3; average ion activity product was 109.3and 108.8, respectively), whereas the Inceptisol A and Spodosol Bh solutions were not. The Al solubility in Inceptisol A and Spodosol Bh horizons was consistently higher than that obtained in the batch equilibrium experiment, indicating that the sampled solution partly originated from the underlying horizons. Thus, tension-cup lysimeters should be used with care in soils (or in parts of soil profiles) having steep solute concentration gradients because the soil volume from which the sample is drawn with this lysimeter type seems to be poorly defined.  相似文献   

8.
In rainfed semi‐arid agroecosystems, soil organic carbon (SOC) may increase with the adoption of alternative tillage systems (e.g. no‐tillage, NT). This study evaluated the effect of two tillage systems (conventional tillage, CT vs. NT) on total SOC content, SOC concentration, water stable aggregate‐size distribution and aggregate carbon concentration from 0 to 40 cm soil depth. Three tillage experiments were chosen, all located in northeast Spain and using contrasting tillage types but with different lengths of time since their establishment (20, 17, and 1‐yr). In the two fields with mouldboard ploughing as CT, NT sequestered more SOC in the 0–5 cm layer compared with CT. However, despite there being no significant differences, SOC tended to accumulate under CT compared with NT in the 20–30 and 30–40 cm depths in the AG‐17 field with 25–50% higher SOC content in CT compared with NT. Greater amounts of large and small macroaggregates under NT compared with CT were measured at 0–5 cm depth in AG‐17 and at 5–10 cm in both AG‐1 and AG‐17. Differences in macroaggregate C concentration between tillage treatments were only found in the AG‐17 field at the soil surface with 19.5 and 11.6 g C/kg macroaggregates in NT and CT, respectively. After 17 yr of experiment, CT with mouldboard ploughing resulted in a greater total SOC concentration and macroaggregate C concentration below 20 cm depth, but similar macroaggregate content compared with NT. This study emphasizes the need for adopting whole‐soil profile approaches when studying the suitability of NT versus CT for SOC sequestration and CO2 offsetting.  相似文献   

9.
The spatial variability in the organic carbon content (Corg) in the gray forest soils was studied in relation to topography, soil density (D); and concentrations of Al, Fe, K, Ca, Mg, Mn, Cu, and Zn measured at 47 points in the upper (0–10 cm) and lower (10–20 cm) layers by the X-ray fluorescent method. The study area (48 by 104 m) under meadow vegetation included the break of slope of a river valley with strongly eroded gray forest soils and active development of erosional processes. Methods of geomorphometry were used for the quantitative characterization of topographic conditions. Statistical relationships between the studied characteristics were investigated by multiple regression methods with verification of the models according to specially developed criteria. The obtained statistical relationships were used to develop 3D cartographic models of the Corg and D distribution in the two soil layers. It was shown that the content of Corg in the upper layer increased on south-facing slopes, whereas the content of Corg in the lower layer gained its maximum of southwestern slopes, and the reasons for this distribution were determined. The major characteristics of topography affecting the distribution of Corg in the different soil layers were identified. The Corg content in any soil layer was most tightly correlated with the D values; a less tight correlation was observed between the Corg and Mg contents. The Zn and Cu contents correlated with the Corg in the lower (10–20 cm) layer, whereas the Ca and Fe contents correlated with the Corg in the upper (0–10 cm) layer. The interpretation of the observed regularities involved data on the stability of metal complexes with humic acids under different conditions of the soil acidity; the effect of the erosional processes was also taken into account.  相似文献   

10.
【目的】针对西北干旱气候条件下表层土壤贫瘠多盐的特点,研究亚表层(10—30 cm)培肥结合地膜覆盖对盐碱地土壤化学性质及微生物区系的影响,为盐碱地合理耕层的构建提供参考。【方法】试验设在内蒙古五原县,以向日葵为供试作物进行田间小区和微区试验。设常规翻耕(CK)、翻耕 + 地膜覆盖(PM)、施有机肥(106.8 t/hm2)于亚表层(OM)、亚表层有机培肥 + 地膜覆盖(OMP)共4个处理。测定了春灌前、后以及向日葵收获后,不同耕作措施下土壤剖面的pH值、盐分、有机质和速效养分含量以及微生物区系。【结果】春灌前,亚表层培肥处理(OM、OMP)10—30 cm土层盐分含量比CK、PM处理分别增加了37.1%~52.9%、32.1%~47.2% (P < 0.05),但在春灌后盐分含量无显著差异。地膜覆盖具有很强的抑制返盐效果,OMP处理效果好于PM处理。作物收获后,OMP处理0—10 cm表层返盐率相对CK、PM和OM处理分别降低了131%、77.6%和106%,PM处理相对CK和OM处理分别降低了53.5%和28.7% (P < 0.05)。与CK相比,OM、OMP处理10—30 cm土层pH值分别降低了0.36、0.60个单位(P < 0.05),有机质、速效氮、速效磷、速效钾分别增加了100%和127%、88.7%和105%、564%和514%、453%和400% (P < 0.05);30—40 cm土层pH值分别降低了0.45、0.44个单位(P < 0.05),速效磷和速效钾含量显著增加了517%和604%、191%和157%,OMP处理有机质含量显著增加了33.6% (P < 0.05)。高通量测序结果表明,OM、OMP处理显著提升了芽孢杆菌属(Bacillus)、交替赤杆菌属(Altererythrobacter)、降解类固醇杆菌属(Steroidobacter)、链霉菌属(Streptomyces)与诺卡氏菌属(Nocardioides)等优势菌群丰度(P < 0.05),但微生物多样性(Shannon指数和Simpson指数)和丰富度(ACE指数和Chao1指数)与CK、PM处理差异不显著。相关性分析结果表明,芽孢杆菌属、交替赤杆菌属、降解类固醇杆菌属、链霉菌属与诺卡氏菌属相对含量均与收获后0—40 cm有机质与速效养分含量呈极显著正相关,与pH值呈极显著负相关(P < 0.01),但与全盐含量无显著相关性。【结论】亚表层培肥结合地表覆膜一方面可有效降低盐分表层集聚,快速增加土壤有机质和速效养分,另一方面可提高土壤优势菌群丰度,增强有机物的矿化分解,是改良西北干旱区盐碱土的有效耕作措施。  相似文献   

11.
The predicted activity of Al in the soil solutions of acid forest soils often differs from that observed in the field. We have investigated the influence of soil structure and flow rate of the soil solution on the aluminum release to explain this divergence. Disturbed and undisturbed samples of soil were collected from the A and B horizons of a dystric cambisol at Waldstein (Fichtelgebirge, Germany). The samples were irrigated with solutions mixed according to field data on throughfall or soil solution composition with pH 3.5 with flow rates of 4 mm d?1, 12 mm d?1 and 36 mm d?1. The percolates were analysed for major ions. Resulting relations between pH and pAl were compared with batch experiments. In neither the A horizon nor in the B horizon did soil structure influence the relation between pH and pAl. The apparent equilibrium between pH and pAl was described as the pKapp value with pKapp= pAl—a pH (where a is an empirical constant). It was found that the pKapp values for the column percolates were in the range of variation of those found in batch experiments. Flow rate had no influence on pKapp at 4 and 12 mm d?1. At 36 mm d?1 a significant increase of pKapp was observed. This relative undersaturation of Al was more pronounced in the A horizon than in the B horizon. When flow is fast Al release into the percolating soil solution might be limited by diffusion.  相似文献   

12.
Abstract

The influence of nitrogen (N) fertilization on grass forage yield and quality as well as soil properties may vary with type of N fertilizer and time of application. The effects of 23 annual applications (from 1974 to 1996) of ammonium nitrate (AN) and urea (112 kg N ha‐1) applied in early fall, late fall, early spring and late spring on chemical soil properties and composition of bromegrass hay were evaluated in a field experiment on a thin Black Chernozemic soil located near Crossfield, Alberta, Canada. The influence of N addition, fertilizer type and application time on the soil properties was most pronounced in the 0–5 cm layer and declined in deeper soil layers. Application of N increased extractable ammonium (NH4)‐N, zinc (Zn), and iron (Fe) in the 0–5 cm layer; and sodium (Na), aluminum (Al), and manganese (Mn) in the 0–10 cm layer. But, N addition reduced extractable phosphoras (P) in the 0–30 cm; potassium (K) in the 0–60 cm; and pH, calcium (Ca), and magnesium (Mg) in the 0–5 cm soil layers. There was little effect of N fertilization on nitrate (NO3)‐N in soil. Soil pH, and extractable Ca and Mg in the 0–5 cm layer and Zn in the surface 15‐cm soil depth were lower with AN compared to urea, whereas the opposite was true for Fe, Mn, and Cu in the 0–5 cm layer and Na and Al in the top 15‐cm soil depth. Most of the changes in chemical soil properties due to N fertilization were reflected in elemental concentration of bromegrass hay, except for the increase of P concentration in bromegrass with N fertilization. In bromegrass hay for example, N addition increased total N and Cu with both N fertilizers and Mn and Zn with AN, but it lowered K and Ca with both fertilizers. There was more N and less Na with AN than urea in bromegrass hay. The effect of application time on chemical soil properties and composition of bromegrass hay was much less pronounced than N addition and fertilizer type. In conclusion, both N fertilizers changed chemical soil properties and composition of bromegrass hay, but the effects of 23 annual applications on soil properties were confined to shallow soil layers only. The greater lowering of soil pH with AN than urea may have implications of increased liming costs with AN.  相似文献   

13.
Abstract

Recently agricultural activity in the mountainous area of northern Thailand has increased and problems relating to soil fertility have arisen. In order to gain basic information about the soil properties associated with shifting cultivation, physicochemical properties of the surface soils (0–10 cm) and subsoils (30–40 cm) were investigated in selected villages in the area. The physicochemical properties of the soils studied are summarized as follows: 1) The soils were rich in organic matter, content of which ranged from 11.4 to 63.3 g C kg?1 in the surface soil. 2) The pH(H2O) of the soils mostly ranged from 5 to 7 and soil acidity was more pronounced in the deeper horizons. In the surface soils, exchangeable Ca and Mg were generally dominant, whereas exchangeable Al was often predominant in the subsoils. 3) Most of the soils showed a medium to fine texture with more than 30% clay. The clay mineral composition was characterized by various degrees of mixture of kaolin minerals and clay mica with, in some cases, a certain amount of 2:1-2:1:1 intergrades. 4) According to the ion adsorption curves, most of the B horizon soils were characterized by the predominance of permanent negative charges. On the other hand, organic matter contributed to the increase of variable negative charges in the surface soils. The content of organic matter and the percentage of the clay fraction were essential for determining the CEC of the soils of the surface 10 and 30–40 cm depths, respectively. Under the field conditions, the composition of exchangeable cations largely reflected the soil acidity. In addition, the content of organic matter also showed a significant correlation with that of available N in the surface soils. Thus, soil acidity both in the surface soils and subsoils, organic matter content in the surface soils, and clay content in the subsoils were considered to be the main factors that affected soil chemical fertility in the area.  相似文献   

14.
A variety of soil properties can directly or indirectly affect nematode community structure. The effects of subsurface clay content (at 20–40 cm depth) on nematodes in the surface layer (0–20 cm depth) of a sandy soil were examined in field experiments in Florida, USA. Plots were established in a site with a relatively uniform sandy upper soil layer (88–91% sand and 5–7% clay at 0–20 cm depth) but with varying levels of clay in the subsurface layer (3–35% clay at 20–40 cm depth). Nematode numbers in the surface soil layer were affected by the amount of clay in the subsurface layer. Population densities of a number of different nematode genera were greater in the surface layer of plots with 35% subsurface clay than in plots with 3% subsurface clay. Indices of nematode community structure were largely unaffected, since effects of subsurface clay were observed across all nematode groups. Most nematodes (70–80% of total numbers) occurred at 0–20 cm depth, although Teratocephalus was more common at 20–40 than at 0–20 cm. Subsurface clay content indirectly affected soil moisture and other environmental factors in the upper soil layer in which most nematodes reside.  相似文献   

15.
Abstract

Considerable uncertainty prevails concerning a suitable measure that can adequately describe Al phytotoxicity in nutrient and soil solutions. A study was conducted to evaluate the ability of a modified aluminon technique to discriminate between phytotoxic and non‐phytotoxic Al in solutions containing 80 μM Al with varying levels of CaSO4(625 to 10000 μM), at two pH levels (4.2 and 4.8). The concentration of Al measured by the modified aluminon technique ranged from 18.3 to 77.7 μM,thereby indicating substantial polymerization in some of the solutions. The greatest amount of polymerization occurred at pH 4.8 in the presence of 625 μM CaSO4. Increasing additions of CaSO4resulted in an increase in predicted activity of AlSO4 +at both pH levels. However, with increasing addition of CaSO4, the predicted activity of Al3+decreased at pH 4.2 or remained relatively constant at pH 4.8. The relationship between the sum of predicted activities of monomeric Al (SaAl mono.) in solution and tap root length of soybean [Glvcine max(L.) Merr.] cv. Lee was extremely poor, thereby indicating the inability of the modified aluminon technique to measure phytotoxic Al in solutions employed in the current study. This difficulty was due to failure of the modified aluminon technique to exclude lesser phytotoxic AlSO4 +species. The activity of Al3+was closely related to tap root length (R2= 0.865). The prediction of root length response to Al was further improved (R2= 0.899) by considering the solution Al index as: S[3aA13+ + 2aAl(OH)2+ + aA1(OH)+]. There was a poor relationship between tap root length and the concentration of polymeric Al, thus suggesting the lower phytotoxicity of this component under the prevailing solution conditions.  相似文献   

16.
 The effect of land use and different soil tillage systems on CH4 oxidation was tested in a laboratory incubation study. Intact soil cores were collected from the topsoil (0–12 cm) of a field site with ploughed, direct-drilled and set-aside treatments, and from an adjacent undisturbed forest site. CH4 oxidation rates were 4.5 to 11 times higher in the direct-drilled than in the continuously ploughed treatment, in the set-aside soil they were intermediate. The oxidation rates in the forest soil were 11 times the highest rate measured at the field site, pointing to a distinct land use effect. Vertical profiles of CH4 oxidation activity revealed a very clear zonation in all treatments. CH4 oxidation increased significantly below the plough layer (0–25 cm), and showed a subsurface maximum under direct-drilling (5–15 cm) and under forest (5–10 cm). The vertical zonation under set-aside was comparable to that under ploughing. Generally, the maximum CH4 oxidizing activity was in the zone nearest to the soil surface, unless various constraints prevented this. Received: 1 December 1997  相似文献   

17.
The estimation of plant-available nitrate nitrogen (NO3-N) is essential for any nutrient-management plan but can be time-consuming and expensive. However, the efficacy of rapid methods to determine soil NO3-N levels designed for grower use has received mixed reviews in the literature. Therefore, the objectives of this study were to (1) evaluate the Cardy electrode-based meter for measuring soil solution NO3-N concentrations under a perennial peanut living mulch in two mixed orchard systems on O'ahu and (2) determine the influence of soil type on measurement accuracy and precision under laboratory conditions. To achieve the first objective, 24 lysimeters were installed 15–30 cm deep at each of two fruit tree orchards with different soils and climate on Oahu island. For the second objective, a replicated column study was conducted, in which NO3-N solutions of varied concentrations were leached through three representative agricultural soils (Wahiawa, Loleka'a, and Waialua series). Field soil solution and column leachate were analyzed using the portable electrode-based meter and a standard laboratory colorimetric method. In the field samples, soil solution NO3-N ranged from <1 to 110 mg/L, and there was a strong correlation (r2?=?0.92) between the portable meter and colorimetric values. Similarly, a strong correlation between the Cardy meter and the laboratory methods was observed in the column study, although r 2 values varied with soil type. The data suggest that the Cardy meter can be used to rapidly and accurately measure soil solution NO3-N, if its concentrations are relatively high and concentrations of interfering ions such as chloride (Cl?) are low. Overall, the primary value of this rapid method may be in estimating relative changes in soil nitrate in response to nutrient management at a single site.  相似文献   

18.
Gustafsson et al. in a recent paper in this Journal reported the effects of adding HCl, AlCl3 and Si(OH)4 on the pH and concentrations of Al and Si in 1:1 soil:solution systems at three different temperatures, using samples of soil from an allophanic Bs horizon. Contrary to their conclusions, their observations are compatible with Al in the soil solution being in equilibrium with a proto‐imogolite allophane; it is neither necessary nor even plausible to postulate a hypothetical Al hydroxide. Concentrations of 0.2–0.4 mm Si in the equilibrated solutions at pH 5 could arise from an amorphous silica, probably phytoliths. They cannot come from the allophane.  相似文献   

19.
Ion leaching in 3 sandy spruce forest soils of different origin and pH was investigated in the laboratory. Zero-tension lysimeters containing undisturbed soil columns of varying soil depth were subjected to H2SO4 loadings for a period of 9 weeks. The analysis of the resulting leachate supports the hypothesis that Al-sulphate minerals may form in acidic soils when exposed to acid (H2SO4) deposition. In the B horizon of a glaciofluvial sandy soil (pH 4.2), both H+ and sulphate ions were retained to maintain 2pH + PSO4 = 11.9 in the leachate solutions. This relation between H+ and sulphate activity may be due to an adsorption mechanism or a precipitation mechanism. The precipitation mechanism is favored by the good fit of leachate composition to the conditions for jurbanite [AlOHSO4] formation from gibbsite [Al(OH)3]. In the B horizon of a sandy till at pH 3.7, the Al in soil solution (0.5 mmol L?1) was leached with sulphate. As the sulphate load was increased, some sulphate was retained. This may also be due to the dissolution and precipitation of an Al-sulphate mineral. The ion activity products of leachate solutions from the B horizon of this soil were close to the pKs reported for jurbanite. The conditions for the possible existence and/or formation of Al-sulphate minerals in acidic soils are discussed.  相似文献   

20.
【目的】研究耕作模式对旱地雨养夏玉米–冬小麦(以下简称玉–麦)两熟体系生产力的影响,并对深松、翻耕在轮耕模式中的作用进行评价。【方法】定位试验于2015—2021年在中国农业科学院洛阳旱农试验基地进行。设置夏免耕秋免耕(SNAN)、夏深松秋免耕(SSAN)、夏免耕秋3年免耕1年翻耕(SNA3N1P)、夏深松秋3年免耕1年翻耕(SSA3N1P)和传统夏秋季均翻耕(CT) 5种耕作模式,调查了玉米、小麦的产量和水分利用效率,2020年测定了玉米收获期0—40 cm土层土壤容重、养分含量和酶活性,以及2019—2020年度小麦收获期0—380 cm土层的硝态氮累积量。【结果】1)与CT处理相比,SNAN、SSAN、SNA3N1P和SSA3N1P处理的玉米、小麦和周年产量分别显著提高了28.4%~33.5%、23.7%~25.0%和27.1%~30.3%,水分利用效率分别显著提高了19.6%~39.2%、20.2%~29.3%和29.5%~34.5%,0—5 cm和20—40 cm土层土壤容重显著降低,0—5 cm土层的有机质含量以及0—40 cm多数土层的全氮、有效磷、速效钾含量和脲酶、蔗糖...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号