首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid LC-MS/MS method, using a triple-quadrupole/linear ion trap mass spectrometer, was developed for the quantitative determination of oleandrin in serum, urine, and tissue samples. Oleandrin, the major cardiac glycoside of oleander (Nerium oleander L.), was extracted from serum and urine samples with methylene chloride and from tissues with acetonitrile. The tissue extracts were cleaned up using Florisil solid-phase extraction columns. Six replicate fortifications of serum and urine at 0.001 microg/g (1 ppb) oleandrin gave average recoveries of 97% with 5% CV (relative standard deviation) and 107% with 7% CV, respectively. Six replicate fortifications of liver at 0.005 microg/g (5 ppb) oleandrin gave average recoveries of 98% with 6% CV. This is the first report of a positive mass spectrometric identification and quantitation of oleandrin in tissue samples from oleander intoxication cases. The sensitivity and specificity of the LC-MS/MS analysis enables it to be the method of choice for toxicological investigations of oleander poisoning.  相似文献   

2.
A multiresidue method using liquid chromatography-time-of-flight mass spectrometry (LC-TOFMS) has been developed for the quantitative analysis of five widely used postharvest fungicides (carbendazim, thiabendazole, imazalil, prochloraz, and iprodione) and two of their transformation products (imazalil and prochloraz metabolites) in fruit juices. LC-TOFMS in positive electrospray ionization mode was used to quantify and confirm trace levels of these fungicides in fruit juices. The proposed method consists of a sample treatment step based on solid-phase extraction using hydrophilic-lipophilic-balanced polymer-based reverse-phase SPE cartridges (Oasis HLB) and methanol as an eluting solvent. Fruit-juice extracts spiked at different fortification levels (10 and 20 microg L(-1)) yielded average recoveries in the range of 71-109% with RSD (%) below 15%. Subsequent identification, confirmation, and quantitation were carried out by LC-TOFMS analysis. The confirmation of the target species was based on accurate mass measurements of protonated molecules ([M+H]+) and fragment ions, obtaining routine accuracy errors lower than 2 ppm in most cases. The obtained limits of detection (LODs) of the proposed method were in the range of 0.08-0.45 microg L(-1). Finally, the proposed method was successfully applied to the analysis of 23 fruit juice samples collected from different European countries and the United States, showing the potential applicability of the method in routine analysis. Over 50% of the samples tested contained pesticide residues, but relatively low concentration levels were found.  相似文献   

3.
A detailed analytical study on trichlorfon residues in selected vegetables samples has been carried out, focused on the reliable quantification and confirmation of this compound, and on stability of residues under storage. As a consequence, a rapid and sensitive LC-ESI-MS/MS method has been developed for the determination of residues of this insecticide in kaki fruit (flesh and peel) and cauliflower samples. Extraction was performed with acetonitrile using a high-speed blender. After 4-fold dilution of the extract with water, 20 microL was directly injected in the LC-ESI-MS/MS system (triple quadrupole), using matrix-matched standards calibration for quantification. Under optimized MS/MS conditions, limit of detections between 0.006 and 0.013 mg/kg were reached, and a limit of quantification of 0.05 mg/kg was established, with a runtime of only 15 min. Recoveries from spiked blank samples at 0.05 and 0.5 mg/kg were in the range 83-101% with relative standard deviations lower than 10%. The method was applied to treated and untreated samples collected from field residues trials, using quality control samples analysis for the evaluation of the method. Despite the acquisition of two MS/MS transitions in selected reaction monitoring mode, the analysis of treated samples revealed the presence of a chromatographic peak close to the analyte that corresponded to a trichlorfon isobaric compound that shared the same MS/MS transitions. This unusual situation in LC-MS/MS-based procedures required the application of an efficient chromatographic separation to avoid this interference. All experiments have been made in compliance with the principles of Good Laboratory Practices (GLP) and following the European SANCO guidelines for pesticides residue analysis (PRA).  相似文献   

4.
A rapid multiresidue method was developed for the determination of nine organophosphorus pesticides in fruit juices. The analytical procedure is based on the matrix solid-phase dispersion (MSPD) of juice samples on Florisil in small glass columns and subsequent extraction with ethyl acetate assisted by sonication. Residue levels were determined by gas chromatography with nitrogen-phosphorus detection. Spiked blank samples were used as standards to counteract the matrix effect observed in the chromatographic determination. The NPD response for all pesticides was linear in the concentration range studied with determination coefficients >0.999. Average recoveries obtained for all of the pesticides in the different juices and fortification levels were >70% with relative standard deviations of <11%. The detection limits ranged from 0.1 to 0.6 microg/kg. The identity of the pesticides was confirmed by gas chromatography with mass spectrometric detection using selected ion monitoring. The proposed MSPD method was applied to determine pesticide residue levels in fruit juices sold in Spanish supermarkets. At least one pesticide was found in most of the samples, although the levels detected were very low, far from the maximum residue levels established for raw fruit.  相似文献   

5.
The carcinogenic compound ptaquiloside is produced by bracken fern (Pteridium aquilinum L.). Ptaquiloside can enter the soil matrix and potentially leach to the aquatic environment, and methods for characterizing ptaquiloside content and fate in soil and groundwater are needed. A sensitive detection method has been developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for analyzing ptaquiloside and its transformation product pterosin B. Detection limits are 0.19 microg/L (ptaquiloside) and 0.15 microg/L (pterosin B), which are 300-650 times better than previously published LC-UV methods. Sequential soil extractions are made using 5 mM ammonium acetate for extraction of ptaquiloside, followed by 80% methanol extraction for pterosin B. Groundwater samples are cleaned-up and preconcentrated by a factor of 20 using solid-phase extraction. The LC-MS/MS method enables quantification of ptaquiloside and pterosin B in soil and groundwater samples at environmentally relevant concentrations and delivers a reliable identification because of the structure-specific detection method.  相似文献   

6.
The chemical composition of 30 samples of juices obtained from bergamot (Citrus bergamia Risso and Poit.) fruits is reported and compared to the genuineness parameters adopted by Association of the Industry of Juice and Nectars (AIJN) for lemon juice. It was found that the compositional differences between the two juices are distinguishable, although with difficulty. However, these differences are not strong enough to detect the fraudulent addition of bergamot juice to lemon juice. Instead, we found the high-performance liquid chromatography (HPLC) analysis of the flavanones naringin, neohesperidin, and neoeriocitrin, which are present in bergamot juice and practically absent in the lemon juice, is a convenient way to detect and quantify the fraudulent addition of bergamot juice. The method has been validated by calculating the detection and quantification limits according to Eurachem procedures. Employing neoeriocitrin (detection limit = 0.7 mg/L) and naringin (detection limit = 1 mg/L) as markers, it is possible to detect the addition of bergamot juice to lemon juice at the 1% level. When using neohesperidin as a marker (detection limit = 1 mg/L), the minimal percentage of detectable addition of bergamot juice was about 2%. Finally, it is reported that the pattern of flavonoid content of the bergamot juice is similar to those of chinotto (Citrus myrtifolia Raf) and bitter orange (Citrus aurantium L.) juices and that it is possible to distinguish the three kinds of juices by HPLC analysis.  相似文献   

7.
Organic acid analysis plays a fundamental role in the testing of authenticity of fruit juices. Analytical methods used routinely for organic acids suffer from poor reproducibility, often give false positives/negatives for tartaric acid, and do not offer the possibility of analyte confirmation. There are conflicting reports in the literature on the presence/absence of tartaric acid in pomegranate juice, a potential indicator of adulteration with grape juice. In this work, a method based on stable isotope dilution liquid chromatography-tandem mass spectrometry is described for citric, malic, quinic, and tartaric acid in fruit juices. Validation data including precision and recovery in six types of juice are presented. Tartaric and quinic acids were confirmed in pomegranate juice at concentrations of 1-5 and ~1 mg/L, respectively. These concentrations are much lower than those resulting from adulteration with grape juice and apple juice, respectively, at the 5% level. A separate method for isocitric acid in orange juice based on the single standard addition method is also described.  相似文献   

8.
A procedure combining diphasic dialysis extraction with in situ acylation and gas chromatography/mass spectrometry (GC/MS) determination was developed for detection and quantification of the mycotoxin patulin in apple juice. Apple juice samples spiked with 4-N,N-dimethylaminopyridine were dialyzed using methane chloride and acetic anhydride inside dialysis tubing. Patulin was derivatized into its acetate and collected in the tubing after diphasic dialysis and was directly determined using GC/MS with the selective ion monitoring mode without further concentration and cleanup steps. Quantification was carried out by a calibration curve with an internal standard of correlation. The appropriate parameters of both dialysis and derivatization were examined. The linear range of the calibration curve was found to be 10-250 microg/L for patulin, and the limit of quantification was 10 microg/L. Levels of patulin ranging from 0 to 107.2 microg/L with 77-109% recovery were found in 10 apple samples. The technique combining diphasic dialysis extraction and acylation was demonstrated and showed potential for other applications.  相似文献   

9.
A rapid LC-MS/MS method was developed for the quantitative determination of grayanotoxins I, II, and III in rumen contents, feces, and urine. The grayanotoxins were extracted from solid samples with methanol. The methanol extract was diluted with water and cleaned up using a reversed phase solid phase extraction column. HPLC separation was performed by reversed phase HPLC using a gradient of water and methanol containing 1% acetic acid. Determination was by positive ion electrospray ionization and ion trap tandem mass spectrometry. Grayanotoxin I quantitation was based on fragmentation of the sodium adduct ion at m/z 435 to a product ion at m/z 375. Grayanotoxins II and III were quantitated on the basis of fragmentation of the ion at m/z 335 to the product ion at m/z 299. The method detection limits were 0.2 microg/g in rumen contents and feces and 0.05 microg/g in urine. Fortifications at the detection limits and 10 times the detection limits of bovine rumen contents, caprine feces, and ovine urine were recovered in the range 80-114%. The diagnostic utility of the method was tested by analyzing samples submitted to the veterinary toxicology laboratory.  相似文献   

10.
Phenyl urea herbicides were determined in water by electrospray quadrupole ion trap liquid chromatography-mass spectrometry (ES-QIT-LC-MS). Over a wide concentration range [M - H](-) and MH(+) ions were prominent in ES spectra. At high concentrations dimer and trimer ions appeared, and sodium, potassium, and ammonium adducts also were observed. In the case of isopturon, source collision-induced dissociation (CID) fragmentation with low offset voltages increased the ion current associated with MH(+) and diminished dimer and trimer ion abundance. In the mass analyzer CID involved common pathways, for example, daughter ions of [M - H](-) resulted from loss of R(2)NH in N',N'-dialkyl ureas or loss of C(3)H(5)NO(2) (87 amu) in N'-methoxy ureas. A 2 mm (i.d.) x 15 cm C(18) reversed phase column was used for LC-MS with a linear methanol/water gradient and 0.5 mL/min flow rate. Between 1 and 100 pg/microg/L the response was highly linear with instrument detection limits ranging from <10 to 50 pg injected. Whereas the positive ES signal intensity was greater for each of the compounds except fluometuron, negative ion monitoring gave the highest signal-to-noise ratio. Analysis of spiked Colorado River water, a source high in total dissolved solids and total organic carbon, demonstrated that ES-QIT-LC-MS was routinely capable of quantitative analysis at low nanogram per liter concentrations in conjunction with a published C(18) SPE method. Under these conditions experimental method detection limits were between 8.0 and 36 ng/L, and accuracy for measurements in the 20-50 parts per trillion range was from 77 to 96%. Recoveries were slightly lower in surface water (e.g., 39-76%), possibly due to suppression of ionization.  相似文献   

11.
A sensitive and specific method is described for the simultaneous determination of oxytetracycline, tetracycline (TC), and chlortetracycline residues in edible swine tissues, by combining liquid chromatography with spectrofluorometric and mass spectrometry detection. The procedure involved a preliminary extraction with EDTA-McIlvaine buffer acidified at pH 4.0, followed by solid-phase extraction cleanup using a polymeric sorbent. The liquid chromatography analysis was performed with spectrofluorometric detection after postcolumn derivatization with magnesium ions. The limits of quantification were 50 microg/kg for muscle and 100 microg/kg for kidney tissues. The recovery values were greater than 77.8% for muscle and 65.1% for kidney. The method has been successfully used for the quantification of tetracyclines in swine tissues samples. The selective liquid chromatography mass spectrometric analysis for confirmation of oxytetracycline in one positive swine muscle sample was made by atmospheric pressure chemical ionization (APCI). The APCI mass spectra of the TCs gave the protonated molecular ion and two typical fragment ions, required for their confirmation in single ion monitoring scan mode in animal tissues.  相似文献   

12.
The carcinogen acrylamide (AA) is formed during the processing of food. AA is metabolized to mercapturic acids, which are excreted with urine. A hydrophilic interaction liquid chromatography tandem mass spectrometry method (HILIC-MS/MS) using a zwitterionic stationary phase (Zic-HILIC) was developed and validated to quantitate the mercapturic acids of AA (AAMA) and glycidamide (GAMA), and AAMA-sulfoxide in human urine. In contrast to reversed phases, the application of Zic-HILIC resulted in efficient retention and separation of these highly polar compounds. Off-line sample workup was avoided by application of column switching with a Stability BS-C17 trap column prior to the analytical column, thus minimizing interferences with the urinary matrix. Limit of quantification values (LOQs) were 0.5 microg/L (AAMA), 2.0 microg/L (AAMA-sulfoxide), and 1.0 microg/L (GAMA) in human urine. Median concentrations in urine samples ( n = 54) of six nonsmoking human subjects were 24.0 microg/L (AAMA, 7.8-79.8 microg/L), 16.7 microg/L (AAMA-sulfoxide, 6.8-70.1 microg/L), and 3.82 microg/L (GAMA, 1.0-23.6 microg/L).  相似文献   

13.
A new methodology is described for rapidly determining the herbicide oryzalin in water, citrus fruits, and stone fruits by liquid chromatography with negative ion electrospray ionization tandem mass spectrometry (LC/MS/MS). Oryzalin is extracted from water using a polymeric sorbent solid phase extraction (SPE) column and from fruit using methanol. The water samples require no further purification, but an aliquot of the fruit sample extracts is diluted with water and purified using a polymeric 96 well SPE plate. Purified extracts are concentrated prior to determination by LC/MS/MS at m/z 345 (Q1) and m/z 281 (Q3) using an external standard for calibration. The validated limits of quantitation were 0.05 microg/L in water (drinking water, surface water, and groundwater) and 0.01 microg/g in citrus fruits (oranges and lemons) and stone fruits (peaches and cherries). Recoveries averaged 102% for water samples and 85-89% for the various types of fruit samples. For all fortification levels combined, the relative standard deviations ranged from 4 to 6% for water and from 2 to 4% for fruit.  相似文献   

14.
The release of smoke-derived volatile phenols during the fermentation of Merlot grapes, following grapevine exposure to smoke, has been investigated. The concentrations of guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-ethylphenol, and eugenol were determined by gas chromatography-mass spectrometry and found to increase throughout the winemaking process. Only trace levels (< or = 1 microg/L) of guaiacol and 4-methylguaiacol could be detected in free run juice derived from the fruit of smoked vines; the highest levels, 388 microg/L and 93 microg/L, respectively, were observed in the finished wine. Control wine (derived from fruit of unsmoked vines) contained 4 microg/L guaiacol, with the volatile phenols either not detected or detected at only trace levels (< or = 1 microg/L) throughout fermentation. The role of enzyme and acid catalyzed hydrolysis reactions in releasing smoke-derived volatile compounds was also investigated. The volatile phenols were released from smoked free run juice by strong acid hydrolysis (pH 1.0) and enzyme (beta-glucosidase) hydrolysis, but not mild acid hydrolysis (juice pH 3.2-3.7). Guaiacol was again the most abundant smoke-derived phenol, present at 431 microg/L and 325 microg/L in strong acid and enzyme hydrolysates, respectively. Only trace levels of each phenol could be detected in each control hydrolysate. This study demonstrates the potential for under-estimation of smoke taint in fruit and juice samples; the implications for the assessment of smoke taint and quantification of volatile phenols are discussed.  相似文献   

15.
A recently developed confirmatory LC-MS method has been applied to the quantification of five major beta-lactam antibiotics in suspect raw bovine milk samples that gave a positive response with receptor-based (BetaStar) and rapid microbial inhibitory screen tests (Delvotest SP). In total, 18 presumptive positive raw milk samples were reanalyzed; 16 samples showed traces of antibiotic residues that could be identified and quantified by the LC-MS method, ranging from the limits of confirmation up to 38 microg/kg. Of the positive samples, only five (approximately 30%) were found to be violative of EU maximum residue limits. The most frequently detected antibiotic residues were cloxacillin and penicillin G, the former often in combination with amoxicillin or ampicillin. This study compares the results obtained by the three methods on identical samples and addresses how these relate to certain criteria such as sensitivity and selectivity. Furthermore, the limitations of the LC-MS method and the potential impact of the presence of frequently more than one residue in the same milk sample on the response of the rapid test methods are discussed.  相似文献   

16.
A reverse phase HPLC and electrospray interface with ion trap mass spectrometer method was developed for the characterization of anthocyanins in Concord, Rubired, and Salvador grape juices. Rubired and Salvador grapes are hybrids from Vitis vinifera and Vitis rupestris. Concord grape is a grape from the native American cultivar Vitis labrusca. Individual anthocyanins in these three varieties were identified on the basis of UV-vis and MS spectra and further elucidated by MS/MS spectra. Anthocyanins in Salvador and Concord grapes were 3-O-glucosides, 3-O-(6' '-O-p-coumaroyl)glucosides, 3-O-(6' '-O-p-acetyl)glucosides, 3,5-O-diglucosides, and 3-O-(6' '-O-p-coumaroyl)-5-O-diglucosides of delphinidin, cyanidin, petunidin, peonidin, and malvidin. Vitisin B was detected in Salvador grape juice. Anthocyanins in Rubired grape juice were primarily anthocyanin diglucosides: peonidin 3,5-O-diglucoside, malvidin 3,5-O-diglucoside, peonidin 3-O-(6' '-O-p-coumaroyl)-5-O-diglucoside, and malvidin 3-O-(6' '-O-p-coumaroyl)-5-O-diglucoside are the four major anthocyanins. The presence of pelargonidin 3-O-glucoside, not previously reported, has been established for the first time in all three juices.  相似文献   

17.
A new analytical method based on the use of pressurized liquid extraction (PLE) followed by solid-phase extraction with LiChrolut RP C18 cartridges was evaluated for the sample preparation, extraction, and cleanup of eight naturally occurring benzoxazinone derivatives, 2-beta-D-glucopyranosyloxy-4-hydroxy-1,4-benzoxazin-3-one, 2-beta-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one, 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, 2-hydroxy-1,4-benzoxazin-3-one, 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one, benzoxazolin-2-one, and 6-methoxybenzoxazolin-2-one in plant samples. Afterward, liquid chromatography-electrospray mass spectrometry, using the selected ion monitoring mode and internal standard (2-MeO-DIBOA, indoxyl-beta-D-glucoside, and quercetin-3-O-rutinoside) quantification method was performed. This paper demonstrates the effectiveness of the PLE method, in conjunction with sensitive and specific mass spectrometric detection, for the quantitative recovery of compounds of the benzoxazinone class from plants. The recoveries of the analytes ranged from 66 to 110% with coefficients of variation ranging from 1 to 14%. This method gave detection limits between 1 and 27 microg/g. The method was applied to foliage and roots of three different wheat cultivars, and the analytes were detected in the range of 11-3261 microg/g of dry weight.  相似文献   

18.
Linalool concentrations were determined in juice from three groups of 60 Valencia oranges using pentane:ether extraction and high-resolution capillary GC. The outer peel (flavedo) was removed from one group. The other two groups retained their peel intact. Juice was extricated from the halved fruits of the flavedo-less group and from one of the peel-intact groups using a hand reamer. A peel-cutting/macerating juice extractor was used for the other peel-intact group. Linalool concentrations were 0.004 mg/L in peeled fruit juice and 0.020 and 0.106 mg/L for hand-reamed and mechanically extracted peel-intact juice, respectively. Juice from peeled fruit contained significantly (P < 0.05) less linalool than peel-intact juice. Approximately 80% of the total juice linalool content was associated with peel using reamer design, and 96% was associated with peel-cutting/macerating design. Linalool increased with increasing peel oil levels; however, the increases were not proportionate. Since all commercial juices are mechanically extracted, the vast majority of linalool in commercial orange juice originates from the peel and not from the juice vesicle cytoplasm. Juice from peel-macerated, mechanically extracted fruit increased from 0.106 to 0.134 mg/kg after thermal processing, whereas juice from reamer extraction was essentially unchanged.  相似文献   

19.
A rapid and sensitive liquid chromatography/electrospray ionization/tandem mass spectrometry (LC-ESI-MS-MS) method has been developed for the determination of the plant growth regulator paclobutrazol in pear samples. Extraction was performed with methanol by using a high-speed blender Ultra-Turrax, and 10 microL of pear extract was directly injected in the LC-ESI-MS-MS system without any previous sample treatment. The highest sensitivity of the method was achieved under MS-MS conditions obtaining a limit of detection of 0.7 microg/kg and a quantification limit of 5 microg/kg, with a run time of only 5.5 min. Recoveries for paclobutrazol from spiked pear samples at 0.005, 0.05, and 0.5 mg/kg were around 82-102% with relative standard deviations between 2 and 7%. The method was applied to real treated and untreated samples of pears, using quality control samples as a evaluation of the method reliability. Two MS-MS transitions were selected, one for quantification (294 > 70) and the other for confirmation of the analyte (296 > 70). All the experiments were performed in compliance with good laboratory practices.  相似文献   

20.
A rapid, selective, and sensitive LC-MS/MS method was developed for the quantitative determination of domoic acid in serum and urine samples. Samples were prepared for analysis using an Oasis HLB SPE column. Determination was by a reversed phase HPLC using a mixture of methanol, acetonitrile, and water containing 1% acetic acid and an electrospray ionization (ESI) ion-trap mass spectrometer (Finnigan LCQ). The method was validated by analyzing five replicates each of negative control bovine serum or urine fortified with domoic acid at the 0.005 microg/g method detection limit (MDL) and at the 0.05 microg/g level. Recoveries ranged from 90 to 95% for fortifications at the MDL and from 92 to 98% for fortifications 10 times higher than the MDL. The diagnostic utility of the method was tested by analyzing samples from live animals showing clinical signs suggestive of domoic acid poisoning submitted to the veterinary toxicology laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号