首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying (T): Ψ = Q ? aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water (W) and the Ψ value, Polyanyi potential curves (W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.  相似文献   

2.
A conceptually new instrumental method has been proposed for the determination of the sorption fragment of the soil water retention curve and the specific surface area of soils and sediments by drying samples at different temperatures, which is based on fundamental models for relative air humidity and thermodynamic water potential (Ψ) as functions of temperature (T). The basic equation for the calculation of water potential in the first (linear) approximation is as follows: Ψ = Q–аТ, where Q is the specific heat of evaporation, and a is the physically substantiated parameter related to the initial relative air humidity in the laboratory. The setting of model parameters necessary for quantitative calculations has been performed from tabulated data for the saturated water vapor pressure as a function of temperature and results of an independent experiment with gradual air heating and synchronous automated control of air humidity and temperature with DS 1923 hydrochrons. The potentialities of the method have been demonstrated using literature data on the dehydration of soil colloids and our own results on the drying of a silty sandy soil (Arenosol) from Dubai, a light loamy soddy-podzolic soil (Albic Retisol) and a low-moor peat soil (Histosol) from Moscow oblast, and a loamy ordinary chernozem (Haplic Chernozem) from Krasnodar region.  相似文献   

3.
To quantify the relationship between the soil organic matter and color parameters using the CIE-Lab system, 62 soil samples (0–10 cm, Ferralic Acrisols) from tea plantations were collected from southern China. After air-drying and sieving, numerical color information and reflectance spectra of soil samples were measured under laboratory conditions using an UltraScan VIS (HunterLab) spectrophotometer equipped with CIE-Lab color models. We found that soil total organic carbon (TOC) and nitrogen (TN) contents were negatively correlated with the L* value (lightness) (r = –0.84 and –0.80, respectively), a* value (correlation coefficient r = –0.51 and –0.46, respectively) and b* value (r = –0.76 and –0.70, respectively). There were also linear regressions between TOC and TN contents with the L* value and b* value. Results showed that color parameters from a spectrophotometer equipped with CIE-Lab color models can predict TOC contents well for soils in tea plantations. The linear regression model between color values and soil organic carbon contents showed it can be used as a rapid, cost-effective method to evaluate content of soil organic matter in Chinese tea plantations.  相似文献   

4.
Color sensor technologies offer opportunities for affordable and rapid assessment of soil organic carbon (SOC) and total nitrogen (TN) in the field, but the applicability of these technologies may vary by soil type. The objective of this study was to use an inexpensive color sensor to develop SOC and TN prediction models for the Russian Chernozem (Haplic Chernozem) in the Kursk region of Russia. Twenty-one dried soil samples were analyzed using a Nix Pro? color sensor that is controlled through a mobile application and Bluetooth to collect CIEL*a*b* (darkness to lightness, green to red, and blue to yellow) color data. Eleven samples were randomly selected to be used to construct prediction models and the remaining ten samples were set aside for cross validation. The root mean squared error (RMSE) was calculated to determine each model’s prediction error. The data from the eleven soil samples were used to develop the natural log of SOC (lnSOC) and TN (lnTN) prediction models using depth, L*, a*, and b* for each sample as predictor variables in regression analyses. Resulting residual plots, root mean square errors (RMSE), mean squared prediction error (MSPE) and coefficients of determination (R2, adjusted R2) were used to assess model fit for each of the SOC and total N prediction models. Final models were fit using all soil samples, which included depth and color variables, for lnSOC (R2 = 0.987, Adj. R2 = 0.981, RMSE = 0.003, p-value < 0.001, MSPE = 0.182) and lnTN (R2 = 0.980 Adj. R2 = 0.972, RMSE = 0.004, p-value < 0.001, MSPE = 0.001). Additionally, final models were fit for all soil samples, which included only color variables, for lnSOC (R2 = 0.959 Adj. R2 = 0.949, RMSE = 0.007, p-value < 0.001, MSPE = 0.536) and lnTN (R2 = 0.912 Adj. R2 = 0.890, RMSE = 0.015, p-value < 0.001, MSPE = 0.001). The results suggest that soil color may be used for rapid assessment of SOC and TN in these agriculturally important soils.  相似文献   

5.

Purpose

The purpose of this study was to determine the first-order rate constants and half-lives of aerobic and anaerobic biomineralization of atrazine in soil samples from an agricultural farm site that had been previously used for mixing pesticide formulations and washing application equipment. Atrazine catabolic genes and atrazine-degrading bacteria in the soil samples were analyzed by molecular methods.

Materials and methods

Biomineralization of atrazine was measured in soil samples with a [U-ring-14C]-atrazine biometer technique in soil samples. Enrichment cultures growing with atrazine were derived from soil samples and they were analyzed for bacterial diversity by constructing 16S rDNA clone libraries and sequencing. Bacterial isolates were also obtained and they were screened for atrazine catabolic genes.

Results and discussion

The soils contained active atrazine-metabolizing microbial communities and both aerobic and anaerobic biomineralization of [U-ring-14C]-atrazine to 14CO2 was demonstrated. In contrast to aerobic incubations, anaerobic biometers displayed considerable differences in the kinetics of atrazine mineralization between duplicates. Sequence analysis of 16S rDNA clone libraries constructed from the enrichment cultures revealed a preponderance of Variovorax spp. (51 %) and Schlesneria (16 %). Analysis of 16S rRNA gene sequences from pure cultures (n?=?12) isolated from enrichment cultures yielded almost exclusively Arthrobacter spp. (83 %; 10/12 isolates). PCR screening of pure culture isolates for atrazine catabolic genes detected atzB, atzC, trzD, trzN, and possibly atzA. The presence of a complete metabolic pathway was not demonstrated by the amplification of catabolic genes among these isolates.

Conclusions

The soils contained active atrazine-metabolizing microbial communities. The anaerobic biometer data showed variable response of atrazine biomineralization to external electron acceptor conditions. Partial pathways are inevitable in soil microbial communities, with metabolites linking into other catabolic and assimilative pathways of carbon and nitrogen. There was no evidence for the complete set of functional genes of the known pathways of atrazine biomineralization among the isolates.
  相似文献   

6.
Bio-fertilizer application has been proposed as a strategy for enhancing soil fertility, regulating soil microflora composition, and improving crop yields, and it has been widely applied in the agricultural yields. However, the application of bio-fertilizer in grassland has been poorly studied. We conducted in situ and pot experiments to investigate the practical effects of different fertilization regimes on Leymus chinensis growth, with a focus on the potential microecological mechanisms underlying the responses of soil microbial composition. L. chinensis biomass was significantly (P?<?0.05) increased by treatment with 6000 kg ha?1 of Trichoderma bio-fertilizer compared with other treatments. We found a positive (R2 =?0.6274, P <?0.001) correlation between bacterial alpha diversity and L. chinensis biomass. Hierarchical cluster analysis and nonmetric multidimensional scaling (NMDS) revealed that soil bacterial and fungal community compositions were all separated according to the fertilization regime used. The relative abundance of the most beneficial genera in bio-fertilizer (BOF) (6000 kg ha?1Trichoderma bio-fertilizer) was significantly higher than in organic fertilizer (OF) (6000 kg ha?1 organic fertilizer) or in CK (non-amend fertilizer), there the potential pathogenic genera were reduced. There were significant negative (P?<?0.05) correlations between L. chinensis biomass and the relative abundance of several potential pathogenic genera. However, the relative abundance of most beneficial genera were significantly (P?<?0.05) positively correlated with L. chinensis biomass. Soil properties had different effects on these beneficial and on these pathogenic genera, further influencing L. chinensis biomass.  相似文献   

7.

Purpose

The aim of this work was to assess the concentrations of potentially toxic elements and to evaluate the soil quality of a typical Prosecco Denomination of Controlled and Guaranteed Origin vineyard of the Veneto region, NE Italy.

Materials and methods

Soil samples and leaves of Taraxacum officinale and Vitis vinifera were collected during spring–summer 2014. Element determination (Al, Cd, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb, V, and Zn) were performed with ICP-OES after microwave digestion of samples. Soil quality was assessed via the biological soil quality (BSQ-ar) index. Lipid peroxidation test was performed to evaluate the vegetation oxidative stress, based on malondialdehyde (MDA) content via spectrophotometer.

Results and discussion

High concentrations of Al, Mg, and P were identified in soil, while high contents of Al, Cu, Fe, and Zn were found in V. vinifera leaves. The high concentrations in soil are probably due to agricultural activities, whereas those in leaves are probably due to atmospheric deposition and repeated use of foliar sprays in viticulture. The bioconcentration factor showed an effective transport of Cu, P, and Zn, from soil to leaf. The BSQ-ar values registered were similar to those obtained in preserved soils; hence, the biological class (VI) of these soils is high. The MDA content in T. officinale and V. vinifera leaves was below the reference value for T. officinale (2.9?±?0.2 μM), suggesting that the metal content did not stress the vegetation in the investigated site.

Conclusions

The MDA value for V. vinifera (1.1?±?0.7 μM) could be adopted as another control value for soil quality, which in our case is of “good quality.” Moreover, our results suggest that high concentrations of elements detected in the analyzed samples do not influence negatively the quality of soil, but a better agronomic management could improve soil quality in the studied area.
  相似文献   

8.
The effect of humic acids (HAs) on physiological processes (photosynthesis, respiration, and abundance) of green microalga Chlorella vulgaris has been studied, and the relationships between the physiological activity of HAs and their structural parameters have been investigated. It has been found that the optimum range of HA concentrations for the growth of C. vulgaris is 0.01–0.03%. In this range, the highest positive effect on total photosynthesis increment is due to hydrophilic HA preparations from fallow soddypodzolic soil (Albic Retisol) and virgin gray soil (Luvic Greyzemic Phaeozem). The minimum stimulation of respiration is noted for all HA preparations in the region of the maximum photosynthesis stimulation. At concentrations above 0.003%, all HA preparations have a negative effect: the rate of photosynthesis in C. vulgaris cells decreases, and their respiration is strongly enhanced. The abundance of C. vulgaris under the effect of all of the studied preparations under illumination increases more rapidly than in the dark. A high positive coefficient of correlation is found between the hydrophilicity of HAs calculated from 13C NMR data and the photosynthesis rate in C. vulgaris.  相似文献   

9.
The population density of actinomycetes in the samples of light sierozem from the Kopet Dag piedmont plain (75 km from Ashkhabad, Turkmenistan) reaches hundreds of thousand CFU/g soil. The actinomycetal complex is represented by two genera: Streptomyces and Micromonospora. Representatives of the Streptomyces genus predominate and comprise 73 to 87% of the actinomycetal complex. In one sample, representatives of the Micromonospora genus predominated in the complex (75%). The Streptomyces genus in the studied soil samples is represented by the species from several sections and series: the species of section Helvolo-Flavus series Helvolus represent the dominant component of the streptomycetal complex; their portion is up to 77% of all isolated actinomycetes. The species of other sections and series are much less abundant. Thus, the percentage of the Cinereus Achromogenes section in the actinomycetal complex does not exceed 28%; representatives of the Albus section Albus series, Roseus section Lavendulae-Roseus series, and Imperfectus section belong to rare species; they have been isolated not from all the studied samples of light sierozem, and their portion does not exceed 10% of the actinomycetal complex.  相似文献   

10.

Purpose

This work investigated changes in priming effects and the taxonomy of soil microbial communities after being amended with plant feedstock and its corresponding biochar.

Materials and methods

A soil incubation was conducted for 180 days to monitor the mineralization and evolution of soil-primed C after addition of maize and its biochar pyrolysed at 450 °C. Responses of individual microbial taxa were identified and compared using the next-generation sequencing method.

Results and discussion

Cumulative CO2 showed similar trends but different magnitudes in soil supplied with feedstock and its biochar. Feedstock addition resulted in a positive priming effect of 1999 mg C kg?1 soil (+253.7 %) while biochar gave negative primed C of ?872.1 mg C kg?1 soil (?254.3 %). Linear relationships between mineralized material and mineralized soil C were detected. Most priming occurred in the first 15 days, indicating co-metabolism. Differences in priming may be explained by differences in properties of plant material, especially the water-extractable organic C. Predominant phyla were affiliated to Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, Firmicutes, Planctomycetes, Proteobacteria, Verrucomicrobia, Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Zygomycota, Euryarchaeota, and Thaumarchaeota during decomposition. Cluster analysis resulted in separate phylogenetic grouping of feedstock and biochar. Bacteria (Acidobacteria, Firmicutes, Gemmatimonadetes, Planctomycetes), fungi (Ascomycota), and archaea (Euryarchaeota) were closely correlated to primed soil C (R 2?=??0.98, ?0.99, 0.84, 0.81, 0.91, and 0.91, respectively).

Conclusions

Quality of plant materials (especially labile C) shifted microbial community (specific microbial taxa) responses, resulting in a distinctive priming intensity, giving a better understanding of the functional role of soil microbial community as an important driver of priming effect.
  相似文献   

11.
Penguins can bioaccumulate metals, a portion of which can be deposited in the environment through organic remains such as excrement, carcasses, and eggshells. In order to determine Cu and Pb concentrations and their relationship to soil, organic matter and grain size were determined in 27 samples collected in zones without penguins, penguin transit zones, and Adelie (Pygoscelis adeliae), Chinstrap (P. antarctica), and Gentoo penguin (P. papua) colonies on the Ardley Peninsula, Maritime Antarctica. An atomic absorption spectrophotometry analysis was carried out, organic matter was determined by loss on ignition, and grain size was measured with a laser diffraction particle size analyzer. The principal component analysis shows a relationship between the variables Cu, Pb, and grain size and areas with penguin presence. Cu concentrations in soils varied among areas (χ2, 15.707; p =?0.0004), with higher concentrations in transit zones and penguin colonies (142.63 and 140.79 mg/kg, respectively) than in zones without penguins (83.33 mg/kg). Pb concentrations in soils also varied among areas (χ2, 6.5029; p =?0.0387), and were higher in transit zones (5.92 mg/kg) than in the penguin colonies (4.45 mg/kg). Grain size differed significantly among areas (χ2, 13.506; p =?0.0012), with higher values in transit zones (avg. 37.38 μm) than in penguin colonies (avg. 26.93 μm) and zones without penguins (avg. 20.72 μm). Organic matter did not differ significantly among the studied zones (χ2, 2.0882; p =?0.3520). There is a positive correlation between Cu-Pb (Rho, 0.5532; p =?0.0028), Cu-grain size (Rho, 0.4756; p =?0.0130) and Pb-grain size (Rho, 0.4879; p =?0.0098). The presence of penguins increases Cu concentrations in Antarctic soils due to its bioaccumulation and elimination through excrement; however, the presence of penguins has a minor influence on Pb concentration in soil, probably because this metal is stored efficiently in bones, feathers, and eggshells.  相似文献   

12.
An investigation of the effect of aquic conditions on Fe-oxides distribution and magnetic susceptibility (χlf) was conducted on selected soils from Southern Iran. Seven pairs of adjacent soil pedons with different soil moisture regimes (aquic and non-aquic), were selected. The average concentrations of poorly crystalline Fe (Feo) and total free Fe (Fed) in aquic soils were 0.2 and 0.07% respectively, and 0.45 and 0.9% in non-aquic soils, respectively. The ratio of Feo/Fed varied from 0.03 to 0.64. χlf ranged from 1.8 to 113 × 10?8 m3 kg?1 in the soil studied. The variation of χfd ranged from 0.0 to 9.65%. The χfd values observed in non-aquic soils were larger than in aquic soils (4.00% vs. 1.37%). Positive correlations were observed between χ and clay contents in both aquic and non-aquic soils; however, non-aquic soil samples showed a larger coefficient of determination. A positive correlation existed between χfd and χ in aquic and non-aquic soils. Higher values of χfd were observed at the soil surface of non-aquic soil samples than at deeper levels, suggesting a greater proportion of ultrafine grains. Of the soil properties that were assessed, clay, cation exchangeable capacity (CEC), Fed, Feo/Fed ratio, χlf and χfd contents, changed significantly in response to the aquic condition.  相似文献   

13.

Purpose

Soil aggregate mechanical characteristics can significantly affect soil strength and are important soil properties to predict soil erodibility. However, in most research, the aggregate mechanical strength is always measured under air-dried condition, and limited information is available about the mechanical strength of aggregates and soil blocks with different water contents. This study evaluated the effects of water content, bulk density, and aggregate size on mechanical properties of soil blocks and aggregates.

Materials and methods

Shear strength (τ) parameters (φ and c) of soil blocks in different states (undisturbed and remoulded) and tensile strength (TS) of aggregates were determined in the laboratory on two soils derived from Quaternary red clay (Q) and shale (S) with variations in water content, bulk density, and aggregate size.

Results and discussion

The results indicated that the φ values were higher in drier and denser soil and showed no obvious variation with varying aggregate size. The c values increased first and then decreased with increasing water content and decreasing aggregate size and increased with increasing bulk density. The water content corresponding to the rapid decrease of the c value appeared to be related to soil properties. Tensile strength increased with decreasing water content in all sizes of aggregates. It decreased with increasing aggregate size at a relative low water content (3.2–7.3 %), but increased with increasing aggregate size at a relative high water content (10.6–14.8 %). The effect of soil moisture on soil strength varied with soil states. Thus, water content, bulk density, and aggregate size have significant effects on the mechanical properties of the soil blocks and aggregates.

Conclusions

The result from this research may contribute to a better understanding of the soil erosion resistance of Aquults from the perspective of soil mechanics.
  相似文献   

14.

Purpose

The dynamics and uncertainties in wetland methane budgets affected by the introduction of Alnus trabeculosa H. necessitate research on production of methane by methanogenic archaea and consumption by methane-oxidizing microorganisms simultaneously.

Materials and methods

This study investigated methane emission in situ by the closed chamber method, and methanogenic and methanotrophic communities using denatured gradient gel electrophoresis (DGGE) and quantitative PCR based on mcrA (methyl coenzyme M reductase), pmoA (particulate methane monooxygenase) genes in the rhizosphere and non-rhizosphere soils in the indigenous pure Phragmites australis T., and A. trabeculosaP. australis mixed communities in Chongxi wetland.

Results and discussion

Methane flux rate from the pure P. australis community was 2.4 times larger than that of A. trabeculosaP. australis mixed community in the rhizosphere and 1.7 times larger in the non-rhizosphere, respectively. The abundance of methanogens was lower in the mixed community soils (3.56?×?103–6.90?×?103 copies g?1 dry soil) compared with the P. australis community (1.47?×?104–1.89?×?104 copies g?1 dry soil), whereas the methanotrophs showed an opposite trend (2.08?×?106–1.39?×?106 copies g?1 dry soil for P. australis and 6.20?×?106–1.99?×?106 copies g?1 dry soil for mixed community soil). A liner relationship between methane emission rates against pmoA/mcrA ratios (R 2?=?0.5818, p?<?0.05, n?=?15) was observed. The community structures of the methane-cycling microorganism based on mcrA and pmoA suggested that acetoclastic methanogens belonging to Methanosarcinaceae and a particular type II methanotroph, Methylocystis, were dominant in these two plant communities.

Conclusions

The introduction of A. trabeculosa would promote the proliferation of methanotrophs, especially the dominant Methylocystis, but not methanogens, ultimately diminishing methane emission in the wetland.
  相似文献   

15.

Purpose

The USLE-MM estimates event normalized plot soil loss, Ae,N, by an erosivity term given by the runoff coefficient, QR, times the single-storm erosion index, EI30, raised to an exponent b1?>?1. This modeling scheme is based on an expected power relationship, with an exponent greater than one, between event sediment concentration, Ce, and the EI30/Pe (Pe = rainfall depth) term. In this investigation, carried out at the three experimental sites of Bagnara, Masse, and Sparacia, in Italy; the soundness of the USLE-MM scheme was tested.

Materials and methods

A total of 1192 (Ae,N, QREI30) data pairs were used to parameterize the model both locally and considering all sites simultaneously. The performances of the fitted models were established by considering all erosive events and also by distinguishing between events of different severity.

Results and discussion

The b1 exponent varied widely among the three sites (1.05–1.44) but using a common exponent (1.18) for these sites was possible. The Ae,N prediction accuracy increased in the passage from the smallest erosion events (Ae,N?≤?1 Mg ha?1, median error =?3.35) to the largest ones (Ae,N?>?10 Mg ha?1, median error =?1.72). The QREI30 term was found to be usable to predict both Ae,N and the expected maximum uncertainty of this prediction. Soil erodibility was found to be mainly controlled by the largest erosion events.

Conclusions

Development of a single USLE-MM model appears possible. Sampling other sites is advisable to develop a single USLE-MM model for a general use.
  相似文献   

16.
A modification of a rainfall simulation procedure at runoff plots for the study of erosion is suggested. It is based on the (1) physically substantiated erosion parameter of simulated rainfall A, (2) the new erosion index for natural rains AI derived from the erosion parameter A, and (3) USLE and RUSLE equations. To simplify the testing procedure and interpretation of the measured data, we use rainfall of permanent intensity I, drop size, and rainfall velocity V. To study the influence of any factor (or their combination) on the soil loss, the experiment was performed at several runoff plots, one of which was a control (fallow soil, and soil tillage performed along the slope). According to the measurement results, a graph of the dependence between the cumulative soil loss and the AI index was compiled that fits the linear regression equation. Thus, the derived equations are also valid for natural rains. The critical values of AI cr upon which the runoff and soil loss start are determined from these equations. The soil erodibility factor is calculated from the equation obtained for the control plot using the relief factor of the RUSLE equation. The influence of the studied factors on soil erosion is assessed from the comparison of equations obtained for the appropriate sites and the control. Upon the infiltration study, the water discharge is measured until its stabilization, when the steady infiltration velocity is reached. The following investigation results are cited as examples: (1) the influence of the initial soil moisture, the soil mulching with straw, and the plant cover on the soil loss; (2) application of the obtained experimental data for assessing the average annual soil loss from natural rains; and (3) the relationship between the infiltration and the rainfall erosivity index AI.  相似文献   

17.

Purpose

Fruiting vegetables are generally considered to be safer than other vegetables for planting on cadmium (Cd)-contaminated farms. However, the risk of transferring Cd that has accumulated in the stems and leaves of fruiting vegetables is a major issue encountered with the usage of such non-edible parts. The objective of this study was to resolve the contribution of arbuscular mycorrhizal (AM) fungi to the production of low-Cd fruiting vegetables (focusing on the non-edible parts) on Cd-contaminated fields.

Materials and methods

An 8-week pot experiment was conducted to investigate the acquisition and translocation of Cd by cucumber (Cucumis sativus L.) plants on an unsterilized Cd-contaminated (1.6 mg kg?1) soil in response to inoculation with the AM fungus, Funneliformis caledonium (Fc) or Glomus versiforme (Gv). Mycorrhizal colonization rates of cucumber roots were assessed. Dry biomass and Cd and phosphorus (P) concentrations in the cucumber shoots and roots were all measured. Soil pH, EC, total Cd, phytoavailable (DTPA-extractable) Cd, available P, and acid phosphatase activity were also tested.

Results and discussion

Both Fc and Gv significantly increased (P?<?0.05) root mycorrhizal colonization rates and P acquisition efficiencies, and thus the total P acquisition and biomass of cucumber plants, whereas only Fc significantly increased (P?<?0.05) soil acid phosphatase activity and the available P concentration. Both Fc and Gv significantly increased (P?<?0.05) root to shoot P translocation factors, inducing significantly higher (P?<?0.05) shoot P concentrations and shoot/root biomass ratios. In contrast, both Fc and Gv significantly decreased (P?<?0.05) root and shoot Cd concentrations, resulting in significantly increased (P?<?0.05) P/Cd concentration ratios, whereas only Gv significantly decreased (P?<?0.05) the root Cd acquisition efficiency and increased (P?<?0.05) the root to shoot Cd translocation factor. Additionally, AM fungi also tended to decrease soil total and phytoavailable Cd concentrations by elevating plant total Cd acquisition and soil pH, respectively.

Conclusions

Inoculation with AM fungi increased the P acquisition and biomass of cucumber plants, but decreased plant Cd concentrations by reducing the root Cd acquisition efficiency, and resulted in a tendency toward decreases in soil phytoavailable and total Cd concentrations via increases in soil pH and total Cd acquisition by cucumber plants, respectively. These results demonstrate the potential application of AM fungi for the production of fruiting vegetables with non-edible parts that contain low Cd levels on Cd-contaminated soils.
  相似文献   

18.
A field experiment investigating the phytoremediation potential of six plant species—Goosegrass (Eleusine indica), Bermuda grass (Cynodon dactylon), Sessile joyweed (Alternanthera sessilis), Benghal dayflower (Commelina benghalensis), Lovanga (Cleome ciliata), and Chinese violet (Asystasia gangetica)—on soil contaminated with fuel oil (82.5 ml/kg of soil) have been conducted from March to August 2016. The experiments consider three modalities—Tn: unpolluted planted soils, To: unplanted polluted soils, and Tp: polluted planted soil—randomized arranged. Only three (E. indica, C. dactylon, and A. sessilis) of the six species survived while the others died 1 month after the beginning of experimentations. The relative growth indexes showed a strong similarity between the growth parameters of E. indica and C. dactylon, each on polluted and control soils, unlike A. sessilis. Total petroleum hydrocarbons (TPHs) removal efficiency were 82.56, 80.69, and 77% on soil planted with E. indica, C. dactylon, and A. sessilis, respectively; and 57.25% on non-planted soil. According to the bioconcentration and translocation factors, E. indica and A. sessilis are involved on rhizodegradation and phytoextraction of hydrocarbons whereas C. dactylon is only involved into rhizodegradation. Overall, E. indica and C. dactylon out-yielded A. sessilis in the phytoremediation capacity of fuel oil-contaminated soils.  相似文献   

19.

Purpose

Biochar has been suggested as a soil conditioner to improve soil fertility and crop productivity while simultaneously mitigate global climate change by storing carbon in the soil. This study investigated the effect of pine (Pinus radiata) biochar application on soil water availability, nitrogen (N) and carbon (C) pools and growth of C3 and C4 plants.

Materials and methods

In a glasshouse pot trial, a pine biochar (untreated) and nutrient-enriched pine biochar were applied to a market garden soil with C3 (Spinacia oleracea L.) and C4 (Amaranthus paniculatus L.) plants at rates of 0, 1.0, 2.0, and 4.0 % (w/w). Plant biomass, soil pH, moisture content, water holding capacity (WHC), hot water extractable organic C (HWEOC), and total N (HWETN), total C and N, and their isotope compositions (δ 13C and δ 15N) of soils and plants were measured at the end of the experimentation.

Results and discussion

The soil moisture content increased while plant biomass decreased with increasing untreated biochar application rates. The addition of nutrient-enriched biochar significantly improved plant biomass in comparison to the untreated biochar addition at most application rates. Biochar application also increased the levels of labile organic C and N pools as indicated by HWEOC and HWETN.

Conclusions

The results suggested that the addition of pine biochar significantly improved soil water availability but not plant growth. The application of nutrient-enriched pine biochar demonstrated that the growth of C3 and C4 plants was governed by biochar nutrient availability rather than its water holding capacity under the pot trial condition.
  相似文献   

20.

Purpose

Forest soil respiration is an important component of global carbon budgets, but its spatial variation is inadequately understood. This research aimed to measure soil respiration (R s), soil water content (M s-5), soil temperature (T), and carbon dioxide (M co2) in a coastal protection forest (CPF), which is one kind of man-made forests designed for coastal protection primarily along the coast in China, to determine the relationships among them, and to analyze their spatial distributions in a small scale.

Materials and methods

We measured R s, M s-5, T, and M co2 of 100 plots in an approximately flat grid (totally 4 hm2) by LI-8100A in a Casuarina equisetifolia L. forest on a state-owned forest farm of 326 hm2 in SE China. Traditional statistics and geo-statistics including semivariance, Moran’s I index, and fractal dimension were used to analyze data.

Results and discussion

Key findings were that (1) the spatial mean of R s, M s-5, T, and M co2 were 1.194 μmol m?2 s?1, 11.387 mmol mol?1, 14.153 °C, and 407.716 ppm, respectively, in the forest; (2) the relationship between soil respiration and the other three factors was weak, while M s-5, T, and M co2 have strong relationships with each other; and (3) the four factors, especially soil respiration, had strong autocorrelation within given limits and showed great heterogeneity with 95 % confidence intervals around the means in the study area, all of which can provide important value for the study of carbon cycling and for the sustainable management of coastal protection forests.

Conclusions

According to geo-statistical analysis and field investigations, soil respiration in the coastal forest is less than in some broad-leaf forests but higher than in some conifers. Strong heterogeneity and autocorrelation are clear; however, its relation with other three factors is weak. CPF is a considerable potential forest for carbon conservation if it is well managed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号