首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Impacts of land management on fluxes of trace greenhouse gases   总被引:8,自引:0,他引:8  
Abstract. Land use change and land management practices affect the net emissions of the trace gases methane (CH4) and nitrous oxide (N2O), as well as carbon sources and sinks. Changes in CH4 and N2O emissions can substantially alter the overall greenhouse gas balance of a system. Drainage of peatlands for agriculture or forestry generally increases N2O emission as well as that of CO2, but also decreases CH4 emission. Intermittent drainage or late flooding of rice paddies can greatly diminish the seasonal emission of CH4 compared with continuous flooding. Changes in N2O emissions following land use change from forest or grassland to agriculture vary between climatic zones, and the net impact varies with time. In many soils, the increase in carbon sequestration by adopting no-till systems may be largely negated by associated increases in N2O emission. The promotion of carbon credits for the no-till system before we have better quantification of its net greenhouse gas balance is naïve. Applying nitrogen fertilizers to forests could increase the forest carbon sink, but may be accompanied by a net increase in N2O; conversely, adding lime to acid forest soils can decrease the N2O emission.  相似文献   

2.
In this paper we describe the accumulation of soil organic matter (SOM) during pedogenesis and the processes that can lead to the emission of greenhouse gases (CO2, CH4, N2O) to the atmosphere via SOM decomposition and denitrification. We discuss the role of management on SOM accumulation and loss, and the potential for controlling emission or comsumption of greenhouse gases by soils. We conclude that under current climate conditions there are global scale opportunities to reduce greenhouse gas emissions from soils and increase the indirect sequestration of greenhouse gases in soils through improved soil management.  相似文献   

3.
Purpose

The purpose of this research was to study the generation, sink, and emission of greenhouse gases by soils on technogenic parent materials, created at different stages of the Moskva River floodplain development (1—construction and 2—landscaping of residential areas).

Materials and methods

Field surveys revealed the spatial trends of concentration and emission of the greenhouse gases in following groups of soils: Retisols (RT-ab-ct) and Fluvisols (FL-hu, FL-hi.gl) before land engineering preparation for the construction, Urbic Technosols Transportic (TC-ub-ar.tn and TC-ub-hu.tn) at stage 1 and Urbic Technosols Folic (TC-ub-fo) at stage 2. CO2 and CH4 concentration in soils and their emission were determined using subsurface soil air equilibration tubes and the closed chamber method, respectively. Bacterial methane generation rate (MGR) and methane oxidation rate (MOR) were measured by kinetic methods.

Results and discussion

In natural soils MOR is caused only by intra-aggregate methanogenesis. The imbalance of methane generation and oxidation was observed in FL-hi.gl. It caused CH4 accumulation in the profile (7.5 ppm) and its emission to the atmosphere (0.11 mg CH4 m?2 h?1). RT-ab-ct acted as the sink of atmospheric methane. CO2 emission was 265.1?±?24.0 and 151.9?±?37.2 mg CO2 m?2 h?1 from RT-ab-ct and FL-hi.gl, respectively. In Technosols CH4 concentration was predominantly low (median was 2.7, 2.9, and 3.0 ppm, in TC-ub-ar.tn, TC-ub-hu.tn, and TC-ub-fo, respectively), but due to the occurrence of peat sediments under technogenic material, it increased to 1–2%. Methane emission was not observed due to functioning of biogeochemical barriers with high MOR. In TC-ub-ar.tn and TC-ub-hu.tn, the barriers were formed at 60-cm depth. In TC-ub-fo, the system of barriers was formed in Folic and Technic horizons (at 10- and 60-cm depth). CO2 emission was 2 times lower from TC-ub-ar.tn and TC-ub-hu.tn and 1.5 times higher from TC-ub-fo than from natural soils.

Conclusions

Greenhouse gas generation, sink, and emission by natural soils and Technosols in floodplain were estimated. CO2 and CH4 content in Technosols varied depending on the properties of parent materials. Technosols at stage 1 did not emit CH4 due to formation of biogeochemical barriers—soil layers of high CH4 utilization rates. Urbic Technosols (Folic) at stage 2 performed as a source of significant CO2 emission.

  相似文献   

4.
This review examines the interactions between soil physical factors and the biological processes responsible for the production and consumption in soils of greenhouse gases. The release of CO2 by aerobic respiration is a non‐linear function of temperature over a wide range of soil water contents, but becomes a function of water content as a soil dries out. Some of the reported variation in the temperature response may be attributable simply to measurement procedures. Lowering the water table in organic soils by drainage increases the release of soil carbon as CO2 in some but not all environments, and reduces the quantity of CH4 emitted to the atmosphere. Ebullition and diffusion through the aerenchyma of rice and plants in natural wetlands both contribute substantially to the emission of CH4; the proportion of the emissions taking place by each pathway varies seasonally. Aerated soils are a sink for atmospheric CH4, through microbial oxidation. The main control on oxidation rate is gas diffusivity, and the temperature response is small. Nitrous oxide is the third greenhouse gas produced in soils, together with NO, a precursor of tropospheric ozone (a short‐lived greenhouse gas). Emission of N2O increases markedly with increasing temperature, and this is attributed to increases in the anaerobic volume fraction, brought about by an increased respiratory sink for O2. Increases in water‐filled pore space also result in increased anaerobic volume; again, the outcome is an exponential increase in N2O emission. The review draws substantially on sources from beyond the normal range of soil science literature, and is intended to promote integration of ideas, not only between soil biology and soil physics, but also over a wider range of interacting disciplines.  相似文献   

5.
旱地土壤温室气体排放影响因子及减排增汇措施分析   总被引:10,自引:0,他引:10  
农田既是主要的温室气体排放源之一,也是潜在的碳汇。本文分析了影响农田土壤特别是旱地农田土壤中二氧化碳和氧化亚氮排放的主要影响因子,包括土壤温度、土壤水分、土壤特性以及施肥与耕作等人为因素;提出了施用有机肥、合理施用氮肥、保护性耕作、秸秆还田、使用抑制剂等农业土壤减排增汇的主要措施,并对其操作和实施的可行性进行了剖析。  相似文献   

6.
El-Fadel  M.  Jamali  D.  Khorbotly  D. 《Water, air, and soil pollution》2002,137(1-4):287-303
Global climate change has been one of the most challengingenvironmental concerns facing policy makers in the past decade.The characterization of the wide range of greenhouse gas (GHG)sources and sinks as well as the behavior of GHGs in theatmosphere remains an on-going activity in many countries.Lebanon, being a signatory to the Framework Convention onClimate Change, is required to submit and regularly update anational inventory of GHG emission sources and removals.Accordingly, an inventory of greenhouse gases from varioussectors was conducted following the guidelines set by theUnited Nations Intergovernmental Panel on Climate Change. Theinventory indicated that the land use, land use change, andforestry sector contributed about 1% to the totalgreenhouse gas emissions instead of acting as a sink. Thisarticle proposes mitigation scenarios to reduce these emissionsand increase carbon sequestration in the Lebanese land use.Limitations in emission estimation, economic valuation, andpolicy options are also addressed.  相似文献   

7.
A model has been developed to estimate the regional emission of greenhouse gases from land-use related sources. Driving forces for this model are the changing regional demand for food and wood products driven by demographic and economic developments (Zuidema et al., 1994). To include the environmental conditions, which are essential factors determining the flux for certain sources, emissions are grid-based where possible. Grid-based explicit calculations are given for CH4 emission from rice, wetlands, emissions from deforestation, savanna burning and agricultural waste burning and N2O from natural soils, arable lands and deforestation. For a number of sources (landfills, domestic sewage treatment, termites, methane hydrates and aquatic sources) geographically explicit calculations are not yet possible because of data limitations. For most of the sources the global results of the calculations are in agreement with other scenario studies, although there are differences for a number of individual sources.  相似文献   

8.
规模奶牛养殖室外运动场春季温室气体与氨气排放特性   总被引:2,自引:2,他引:0  
舍外运动场是中国传统奶牛养殖场的组成部分,同时也是温室气体和氨气(NH_3)的重要排放源。由于开放式生产设施污染气体排放的监测难度大,目前中国还普遍缺少奶牛运动场温室气体和NH_3排放通量的直接监测数据。该试验采用梯度法对北京地区春季典型开放式奶牛运动场的甲烷(CH_4)、氧化亚氮(N_2O)、二氧化碳(CO_2)等温室气体和NH_3浓度及其排放通量进行了监测分析,讨论了排放特征和关键影响因素,为获取中国北方地区奶牛运动场温室气体和NH_3的排放通量提供了基础数据支撑。测试运动场饲养了52头荷斯坦奶牛,年均单产约8 t,头均占地面积为20.77 m~2。结果表明,该奶牛运动场春季CH_4、N_2O和CO_2的排放通量为155.59、3.60和4 869.37 mg/(m~2·h),分别占温室气体排放总量的42.79%、9.37%和47.83%;NH_3的排放通量为66.27 mg/(m~2·h);排放峰值一般出现在运动场清粪之后。环境温度与CH_4、N_2O和NH_3排放量呈显著的正相关关系(P0.05),同时风速在一定范围内会促进CH_4、N_2O和NH_3的排放。奶牛场清粪活动不仅会加快污染气体的排放通量,还会影响温度和风速对气体排放通量的作用效果。  相似文献   

9.
稻田甲烷排放影响因素及其研究进展   总被引:19,自引:1,他引:19  
CH4是大气中仅次于CO2的最重要的温室气体之一,其温室效应贡献已达15~20%。中国稻田是CH4的重要排放源,对全球大气的CH4排放起着重要的作用。本文较为详细地介绍了近几十年来国内外关于稻田CH4排放的研究进展。对稻田CH4的排放机理、CH4的排放规律及影响稻田CH4排放的各种因素作了详细分析,并相应地提出了控制稻田CH4排放的各种措施,最后提出了今后我国稻田CH4排放研究应加强的几个方面内容。  相似文献   

10.
该文采用Meta分析方法定量分析生物质炭输入对中国主粮作物痕量温室气体的影响,研究可为农田痕量温室气体减排提供有效的途径.结果表明相对于不施加生物质炭,生物质炭输入对甲烷吸收/排放并无显著影响,而甲烷排放在不同耕作和施氮情况下发生显著变化.旋耕和不施氮情况下施加生物质炭分别显著提高稻田甲烷排放达30%和46%,而在翻耕和施氮的情况下施加生物质炭可减少稻田甲烷排放达9%和10%.生物质炭输入分别可显著减少主粮作物氧化亚氮、全球增温潜势(global warming potential,GWP)及温室气体排放强度(greenhouse gas intensity,GHGI)达41%、18%及25%.不同土地利用类型、耕作类型、生物质炭施用量及生物质炭类型均可显著影响农田氧化亚氮、GWP和GWPI.合理的管理主粮作物生物质输入可为减少温室气体排放做出贡献,建议生物质炭与施氮和翻耕2种农作措施相结合,施加小于10 t/hm2及碳氮比(C/N)低于80的生物质炭,以利于主粮作物综合温室效应的减排.  相似文献   

11.
Abstract

Global climate change is one of the most important issues of contemporary environmental safety. A scientific consensus is forming that the emissions of greenhouse gases, including carbon dioxide, nitrous oxide and methane, from anthropogenic activities may play a key role in elevating the global temperatures. Quantifying soil greenhouse gas emissions is an essential task for understanding the atmospheric impacts of anthropogenic activities in terrestrial ecosystems. In most soils, production or consumption of the three major greenhouse gases is regulated by interactions among soil redox potential, carbon source and electron acceptors. Two classical formulas, the Nernst equation and the Michaelis–Menten equation, describe the microorganism-mediated redox reactions from aspects of thermodynamics and reaction kinetics, respectively. The two equations are functions of a series of environmental factors (e.g. temperature, moisture, pH, Eh) that are regulated by a few ecological drivers, such as climate, soil properties, vegetation and anthropogenic activity. Given the complexity of greenhouse gas production in soils, process-based models are required to interpret, integrate and predict the intricate relationships among the gas emissions, the environmental factors and the ecological drivers. This paper reviews the scientific basis underlying the modeling of greenhouse gas emissions from terrestrial soils. A case study is reported to demonstrate how a biogeochemical model can be used to predict the impacts of alternative management practices on greenhouse gas emissions from rice paddies.  相似文献   

12.
Background, aim, and scope  Exploited gas fields and underground gasholders are specific sources of increasing methane concentration. Methane migrates into the soils by diffusion and convection through natural and technogenic cracks in geological structures and influences the function of the soils. Soil cover of gas-bearing area functions as a specific, bilateral, periodically penetrating, geomembrane. Soils shield, transform, and differentiate migrating fluxes of technogenic-allochthonous methane, preventing its emission to the atmosphere. Problems of methane’s emission are rather current at the present, as methane is the second in importance after CO2 greenhouse gas, since its concentration in the atmosphere annually grows by approximately 1%. By global estimations, methane emissions in the gas industry make about 8% of annual receipt to the atmosphere, equal on the average to 500 Тg per a year (Cicerone and Oremland, Global Biogeochem Cy 2:299–327, 1988). But these calculations are based on the account of the technological losses making 3–12% from the mining of natural gas. The contribution of migratory methane fluxes to the atmosphere, as a rule, is not considered. The need for research of soil cover functioning on gas-bearing areas is explained by the fact that processes of methane oxidation, its transformation in soils, and emission to the atmosphere at these objects are now practically not being studied. The aim of our study was to reveal specific processes of soil function and formation on gas-bearing areas by an example of underground gasholder. Materials and methods  The material was sampled in 1998–2003 at the territory of underground gasholder located in Albeluvisol’s zone in Russia. According to the comparative-geographical method, 51 soil profiles have been studied in similar litologically geomorphological conditions in various geochemical zones: in the industrial zone, in the zone of gas dissipation, and at the regional background. The total square of investigated territory is about 60 km2. Six soil profiles were investigated in seasonal dynamics. Samples of soils for physical, chemical, and microbiological analyses were taken from each horizon of soil profiles (202 samples). Samples of soil air for a definition of methane concentration were taken from depths of 20, 40, and 60 cm. Methane emission to the atmosphere was measured near soil’s cuts and, in addition, on all area of the investigated territory at knots of squares network through 700–1,000 m, in total at 32–42 points in May, July, and November. Years of investigation have been split by technological and hydrothermal conditions. The periods with the normal and lowered compression of gas in gasholder, dry and warm, and damp and cool years have been allocated. It has influenced the soil function processes and considered an interpretation of the data received. Results  The changes of functional parameters of soils at a gas-bearing area influenced by methane fluxes migrating from gas deposits, in comparison with background soils, are revealed. Such functional parameters are methane concentration in the soils, activity of its bacterial oxidation, methane emission to the atmosphere, and oxidation–reduction potential. Spatial and temporary dynamics of these parameters at gas-bearing and background territory are investigated. Discussion  Methane interaction with soil’s air is in its ascending (descending) and lateral diffusion and convection in soils. Methane fluxes dissipate in porous space of soils forming gas anomalies. The technogenic-allochthonous methane concentration strongly varies in soil’s air on gas-bearing area (1–10,500 ppm) and, on average, exceeds the autochthonous, microbiologically produced methane at background territories. Migratory methane is deposited on diffusion and sorption barriers. The capacity of diffusion barrier depends on effective coefficient of diffusion, the attitude of air and general porosity, and granulometric composition and sharply differs in auto-, semi-hydro-, and hydromorphic soils reaching maximum in hydromorphicity and among the soils with identical water content—in heavy soils. The capacity of the sorption barrier is defined by abiotic methane absorption and a specific surface of soils and grows with their increasing intensity in soils to a heavier granulometric composition or into soils with peat and gleyic horizons. The low sorption capacity leads to an increase of methane concentration in the soil’s air and decreases its utilization by microorganisms, in which its quantity depends on sorption properties. The central component of functioning that promotes a number of essential transformations in soils on gas-bearing areas is methane interaction with the biotic phase. The periods of methane deposition by diffusion and sorption barriers are used for biological methane oxidation and formation of biogeochemical barriers in soils. The activity of bacterial methane oxidation is characterized by spatial variability and depends on the entrance of methane, defined by granulometric composition, soil moisture, the attitude of air and general porosity, Eh, organic matter content, and salinization. During interaction between technogenic-allochthonous methane and soil on diffusion, sorption, and biogeochemical barriers, its transformation occurs, accompanied by a strengthening of variability of oxidation–reduction potential and formation of pedogenic, bacteriomorphic, and nanodispersic magnetic oxides of iron. Conclusions and perspectives  Specificity of soil functioning on a gas-bearing area is in interaction of technogenic-allochtonous methane with solid, liquid, gaseous, and living substance of the soil system. Spatial laws of soils functioning on gas-bearing area in the Albeluvisol’s zone are revealed. Distinctions of soil functions depending on litologically geomorphological conditions are shown. The greatest changes of parameters of functioning under the influence of technogenic-allochthonous methane occur in automorphic soils, and it is less in semi-hydromorphic soils. Activity of bacterial methane oxidation in soils, emission, and consumption from the atmosphere and their spatial laws are characterized by the time dynamics depending on hydrothermal and technological conditions of seasons and years. During oxidation in soils of gas-bearing areas, carbon of methane is concentrated on a biogeochemical barrier that is shown in the increase of methylotrophic microorganisms’ biomass and leads to a high variability and decrease of Eh and to the formation of magnetic oxides of iron. Recommendations  Results of research can be used for carrying out ecological monitoring and an estimation of tightness of objects of the gas industry. Activity of bacterial methane oxidation, Eh, and magnetic oxides of iron can be used as diagnostic parameters of soils on gas-bearing areas. This paper has been developed from a presentation at the conference SUITMA-4 (Soils in Urban, Industrial, Traffic, Mining and Military Areas) Nanjing, China, 2007  相似文献   

13.
Greenhouse gas emissions from farmed organic soils: a review   总被引:14,自引:0,他引:14  
Abstract. The large boreal peatland ecosystems sequester carbon and nitrogen from the atmosphere due to a low oxygen pressure in waterlogged peat. Consequently they are sinks for CO2 and strong emitters of CH4. Drainage and cultivation of peatlands allows oxygen to enter the soil, which initiates decomposition of the stored organic material, and in turn CO2 and N2O emissions increase while CH4 emissions decrease. Compared to undrained peat, draining of organic soils for agricultural purposes increases the emissions of greenhouse gases (CO2, CH4, and N2O) by roughly 1t CO2 equivalents/ha per year. Although farmed organic soils in most European countries represent a minor part of the total agricultural area, these soils contribute significantly to national greenhouse gas budgets. Consequently, farmed organic soils are potential targets for policy makers in search of socially acceptable and economically cost-efficient measures to mitigate climate gas emissions from agriculture. Despite a scarcity of knowledge about greenhouse gas emissions from these soils, this paper addresses the emissions and possible control of the three greenhouse gases by different managements of organic soils. More precise information is needed regarding the present trace gas fluxes from these soils, as well as predictions of future emissions under alternative management regimes, before any definite policies can be devised.  相似文献   

14.
Abstract

As a means of economic disposal and to reduce need for chemical fertilizer, waste generated from swine production is often applied to agricultural land. However, there remain many environmental concerns about this practice. Two such concerns, contribution to the greenhouse effect and stratospheric ozone depletion by gases emitted from waste‐amended soils, have not been thoroughly investigated. An intact core study at Auburn University (32 36′N, 85 36′W) was conducted to determine the source‐sink relationship of three greenhouse gases in three Alabama soils (Black Belt, Coastal Plain, and Appalachian Plateau regions) amended with swine waste effluent. Soil cores were arranged in a completely random design, and treatments used for each soil type consisted of a control, a swine effluent amendment (112 kg N ha?1), and an ammonium nitrate (NH4NO3) fertilizer amendment (112 kg N ha?1). During a 2‐year period, a closed‐chamber technique was used to determine rates of emission of nitrous oxide (N2O)–nitrogen (N), carbon dioxide (CO2)–carbon (C), and methane (CH4)–C from the soil surface. Gas probes inserted into the soil cores were used to determine concentrations of N2O‐N and CO2‐C from depths of 5, 15, and 25 cm. Soil water was collected from each depth using microlysimeters at the time of gas collection to determine soil‐solution N status. Application of swine effluent had an immediate effect on emissions of N2O‐N, CO2‐C, and CH4‐C from all soil textures. However, greatest cumulative emissions and highest peak rates of emission of all three trace gases, directly following effluent applications, were most commonly observed from sandier textured Coastal Plain and Appalachian Plateau soils, as compared to heavier textured Black Belt soil. When considering greenhouse gas emission potential, soil type should be a determining factor for selection of swine effluent waste disposal sites in Alabama.  相似文献   

15.
北京地区畜禽温室气体排放的时空变化分析   总被引:5,自引:0,他引:5  
运用IPCC估算农业温室气体排放指南, 对1978-2009年期间畜禽存栏统计数据进行分析, 研究北京地区畜禽养殖温室气体排放的时空分布。结果表明, 北京地区畜禽温室气体排放自20世纪90年代初逐步增长, 到2004年达到顶峰, 之后有所回落。在3类排放的温室气体中, 牲畜肠道发酵产生的甲烷比重最大, 年平均排放量为0.4 Tg CO2-eq, 排放贡献最大的是牛, 占肠道发酵甲烷排放总量的54%; 牲畜粪便排放的甲烷平均值为0.2 Tg CO2-eq, 牲畜粪便排放的氧化亚氮平均值为0.3 Tg CO2-eq, 畜禽粪便管理排放的甲烷和氧化亚氮主要来自猪的排放, 其贡献率分别为73%和46%。从1978-2009年北京畜禽温室气体排放CR4指数(产业集中度指数)逐步增高可以看出, 北京市畜禽产业集约化水平不断提高, 其中顺义、大兴、密云和通州是北京畜禽温室气体排放的主要区域。同时, 对历年畜禽温室气体排放进行了线形回归预测, 结果显示, 北京地区的畜禽温室气体排放仍呈递增走势。结合北京地区畜禽产业温室气体排放的特点与存在问题, 笔者认为应尽快提出适合畜牧业可持续发展的温室气体减排策略及减排目标, 开展温室气体减排技术研发, 从而推进畜禽产业的可持续发展。  相似文献   

16.
王强盛  刘欣  许国春  余坤龙  张慧 《土壤》2023,55(6):1279-1288
稻田是大气温室气体甲烷(CH4)和氧化亚氮(N2O)的重要排放源, 稻田温室气体减排一直是生态农业研究的热点。目前, 采用水稻品种选择利用、水分控制管理、肥料运筹管理、耕作制度调整以及种养结合模式等方法来减少稻田温室气体排放有较好实践效应, 但不同稻田栽培环境(露地、网室)基础上的稻鸭共作对麦秸全量还田的稻田温室气体排放特征及相关土壤理化特性关联性的影响尚为少见。本研究采用裂区设计, 在两种栽培环境条件下, 以无鸭子放养的常规稻作和麦秸不还田为对照, 在等养分条件下分析麦秸全量还田与稻鸭共作模式对稻田土壤氧化还原电位、CH4排放量、产CH4潜力及CH4氧化能力、N2O排放量及N2O排放高峰期土壤反硝化酶活性、全球增温潜势、水稻产量的影响, 为稻田可持续生产和温室气体减排提供参考。结果表明, 麦秆还田增加了稻田产CH4潜力、提高了CH4排放量, 降低了稻田土壤反硝化酶活性、土壤氧化还原电位和N2O排放量, 整体上导致全球增温潜势上升96.89%~123.02%; 稻鸭共作模式, 由于鸭子的不间断活动提高了稻田土壤氧化还原电位, 降低了稻田产CH4潜力, 增强了稻田CH4氧化能力, 从而降低稻田CH4排放量, N2O排放量虽有提高, 整体上稻鸭共作模式的全球增温潜势较无鸭常规稻田下降8.72%~14.18%; 网室栽培模式显著提高了稻田土壤氧化还原电位, 降低稻田产CH4潜力、CH4氧化能力和土壤反硝化酶活性, 减少了稻田CH4和N2O排放量, 全球增温潜势降低6.35%~13.14%。本试验条件下, 稻田土壤的CH4氧化能力是产CH4潜力的2.21~3.81倍; 相同环境条件下, 稻鸭共作和麦秸还田均能增加水稻实际产量, 网室栽培的所有处理较相应的露地栽培减少了水稻实际产量1.19%~5.48%。本试验表明, 稻鸭共作和网室栽培可减缓全球增温潜势, 稻鸭共作和麦秸还田能够增加水稻实际产量。  相似文献   

17.
利用静态暗箱-气相色谱法对华北地区4种农业管理措施下的小麦农田生态系统温室气体(CO_2、CH_4和N_2O)的排放通量进行了观测,并对其综合增温潜势进行了估算。结果表明,麦季农田土壤是N_2O和CO_2的排放源,CH_4的吸收汇。与秸秆不还田(SN)相比,秸秆还田(SR)显著提高了CO_2和N_2O的排放量,但增加了CH_4的吸收量。通过施用新型肥料(SRC)或采用氮肥条施(SRR)的施肥方式,可以降低22.4%~35.5%的N_2O排放量,并增加9.3%~44.2%的CH_4吸收量。尤其是SRR可以抵消由于秸秆还田引起的N_2O增排。4种管理措施下的麦田是大气总温室气体的吸收汇,在秸秆还田基础上施用新型氮肥品种或采用氮肥条施的施肥方式,能够达到温室气体减排,且增产增效的效果。  相似文献   

18.
Abstract

A short-term study was conducted to investigate the greenhouse gas emissions in five typical soils under two crop residue management practices: raw rice straw (Oryza sativa L., cv) and its derived biochar application. Rice straw and its derived biochar (two biochars, produced at 350 and 500°C and referred to as BC350 and BC500, respectively) were incubated with the soils at a 5% (weight/weight) rate and under 70% water holding capacity for 28 d. Incorporation of BC500 into soils reduced carbon dioxide (CO2) and nitrous oxide (N2O) emission in all five soils by 4?40% and 62?98%, respectively, compared to the untreated soils, whereas methane (CH4) emission was elevated by up to about 2 times. Contrary to the biochars, direct return of the straw to soil reduced CH4 emission by 22?69%, whereas CO2 increased by 4 to 34 times. For N2O emission, return of rice straw to soil reduced it by over 80% in two soils, while it increased by up to 14 times in other three soils. When all three greenhouse gases were normalized on the CO2 basis, the global warming potential in all treatments followed the order of straw > BC350 > control > BC500 in all five soils. The results indicated that turning rice straw into biochar followed by its incorporation into soil was an effective measure for reducing soil greenhouse gas emission, and the effectiveness increased with increasing biochar production temperature, whereas direct return of straw to soil enhanced soil greenhouse gas emissions.  相似文献   

19.
Methane-oxidizing bacteria (MOB, methanotrophs) limit the flux of methane to the atmosphere from sediments and soils, and consume atmospheric methane (King 1992; Oremland and Culbertson 1992). IPCC (1995) reported that an aerobic soil is equivalent to a sink of 10–20% of methane emissions. Hence MOB play an important role in regulating the atmospheric methane content (Mancinelli 1995). Over the last 20y, although a large amount of information has been supplied on the biochemistry of MOB, few ecological investigations have been devoted to them so far (Holzapfel-Pschorn et al. 1985; Oremland and Culbertson 1992).  相似文献   

20.
二氧化碳(CO2)和甲烷(CH4)是重要的温室气体,研究免耕稻田CO2和CH4排放有助于评价稻田免耕技术对全球气候变化及碳循环的影响。本文通过运用静态箱技术和田间原位碱液吸收法研究了免耕稻田土壤CO2和CH4的排放规律和排放量,及其稻田碳(C)的收支状况。研究表明,施肥提高了CH4排放,而不影响CO2的排放;免耕显著影响稻田CH4排放,而CO2的排放不受耕作影响。对稻田C收支及平衡的分析表明,施肥提高了稻田系统C的输入,同时,相对于翻耕处理,免耕处理表现为大气C的“汇”,表明了稻田免耕能将更多的碳累积于农田土壤碳库中,有利于提高稻田生态系统在减缓气温上升过程中所发挥的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号