首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pedostratigraphic levels (PLs) are typical assemblages of soil‐genetic horizons, formed by materials having the same degree of weathering. The pedostratigraphic approach can be very useful to comprehend the formation of the Quaternary soil cover, the environmental evolution of a territory, and to estimate the age of paleosols. A pedostratigraphic study of a Terra Rossa was carried out to understand the soil–parent material origin and to estimate the time of the beginning of pedogenesis. Besides soil and geomorphological survey, the Terra Rossa was analyzed for Fe forms, geochemistry, clay mineralogy, micromorphology, and with scanning electron microscope. Optical dating was applied to obtain age estimates for the deposition of the parent material of soil formation. The insoluble residue of limestone was obtained and analyzed for geochemistry and clay mineralogy. The bedrock is constituted by Quaternary lacustrine limestone, showing pronounced karst landforms. The soil profile is situated in a little dissolution doline and was divided into three PLs: PL1 (0–110 cm) is constituted by cambic and ochric horizons, formed during Holocene in a mixture of colluvial soil sediments and fresh limestone, with aeolian components; PL2 (110–290 cm) includes two argic horizons, which began to form during Late‐Middle Pleistocene in colluvial soil sediments, with few aeolian additions; PL3 (290–330 cm) is constituted by a red argic horizon, with nitic properties, which developed from the insoluble residue of the limestone. The age of PL3 was calculated through a mass balance and an estimation of the limestone‐dissolution rate during the Quaternary, which led to an approximate age of Middle Pleistocene, between 250 and 500 ky BP. The time of the beginning of pedogenesis on limestone can be used as a reference for the tectonic uplifting of the area and emersion of the plateau.  相似文献   

2.
[目的]理解和揭示深时古土壤的形成与演化有助于了解地球宜居性的形成与演化、促进土壤发生学理论的发展.[方法]以四川盆地晚中生代侏罗系和白垩系地层发育的古土壤为研究对象,通过对典型剖面的形态与微形态、矿物组成、颗粒组成以及地球化学等发生学特征的观察与分析,开展深时古土壤发生学特征与分类研究,并基于母质、气候、生物、地形和...  相似文献   

3.
The White River Plateau erosion surface (Miocene-Pliocene) at an elevation of approximately 2850 m (9500 ft) is dominated by weakly developed Holocene soils which commonly possess simple A-C horizonation. However, Pre-Wisconsin soils occur on the surface in isolated areas at both high and low topographic sites, most notably in Triangle Park. These Pre-Wisconsin soils consist of composite, polygenetic profiles having truncated, clayey subsoils which are overlain by stone or pebble lines, colluvium, soil creep, and probable local eolian deposits Truncation of the paleosols preceded development of the Holocene soils, which have formed on bedrock surfaces and have been superposed on the truncated, buried paleosols Soil distribution and character, in relation to structure of bedrock on the erosion surface, indicate that the surface as it now exists is structurally controlled and has a topography generated in late Tertiary to Pre-Wisconsin time.  相似文献   

4.
5.
The most favorable conditions for peat accumulation in Kamchatka existed during the Atlantic climatic optimum of the Holocene (5000–6000 yrs ago) and in the Boreal period (8000–9000 yrs ago). Less favorable conditions were in the Subboreal period. The growth of peat substrates in Kamchatka in the modern period is estimated at 1.1–1.5 mm/yr. During the earlier stage of the Subatlantic period (except for the last century), it comprised 0.1–0.3 mm/yr. The rate of peat growth in the Subboreal period varied within 0.03–0.08 mm/yr. During the Atlantic optimum, it increased up to 0.08–0.5 mm/yr. During the earlier stage of the Atlantic period, it comprised 0.06–0.2 mm/yr and, during the Boreal period, 0.1–0.6 mm/yr. The most significant variations in the rate of the peat accumulation in Kamchatka are related to changes in the climatic conditions of the peninsula from its western coast to its eastern coast.  相似文献   

6.
Physical and chemical properties, macro‐ and micromorphology, clay mineralogy, and stable‐isotope compositions of paleosols within a pedostratigraphic column (PSC) of early to late Pleistocene age, interstratified paleosols, and loess (NW Caucasus, S Russia) were examined to better understand the evolution of the pedogenic environment over this time period, separating the effects of postpedogenic diagenesis. The column includes eight paleosols and six intercalated loessic horizons. Most of paleosols represent Vertisols or vertic intergrades. Vertic features increase in the middle of the PSC, where the paleosols are more clayey in texture and reddish in color. The morphology of carbonate nodules and soft masses, morphology‐ and depth(age)‐related changes in stable C and O isotope compositions, soil color, redoximorphic features, clay mineralogy, and illuviated clay indicate periods of wetter pedoenvironment in the past and suggest the Pleistocene paleosols are polygenetic and were formed with several wet/dry stages under a climate generally similar to the modern environment in the N Caucasus (mean annual temperature approx. 9°C–12°C). Interpretation of the time sequence of climate/environmental change requires careful separation of pedogenic mineral phases from phases altered by later diagenesis. The early Pleistocene period of paleosol formation appeared to be wetter or more humid, resulting in more significant development of vertic features. The terrestrial ecosystem remained dominated by C3 vegetation throughout the formation of the PSC, with four small periods of change towards a greater proportion of C4 plants or increased moisture stress.  相似文献   

7.
Catenary changes, archeology, micromorphology, and magnetic mineralogy of paleosols in coastal sands, Israel, were investigated under chronostratigraphic control by available luminescence datings from adjacent sites. At the outlet of Hadera stream, eolianites (Hebrew: “kurkar”) underlie paleosols with Epipaleolithic (approx. 17–20 ky) artifacts at the top and occasional Mousterian (>40 ky) artifacts in the subsoil. The optically stimulated–luminescence/infrared stimulated–luminescence (OSL/IRSL) dates (>50–12 ky) from adjacent sites roughly agree with the archeological findings. The paleosols show a magnetically depleted Vertisol superimposed on a magnetically enhanced cumulative Chromic Luvisol (WRB) (USDA: Rhodoxeralf, Israeli class.: Hamra). The latter contain approx. 0.25 mm thick, isotropic clay infillings distinctly separated from the soil matrix. These infillings are tentatively interpreted as the result of strong environmental disturbances, such as surface desiccation, subsequent waterlogging, and enhanced dust deposition, presumably at the time of the Last Glacial Maximum. In addition to the massive accumulation of eolian dust, diverse pedogeomorphic changes lagging in time from the onset of climatic deterioration may have taken place in coastal settings. Recurrent desiccation cracks may have exposed subsurface materials repeatedly to sunlight, consequently resetting the luminescence signal. The eolianite sequences are thus distinct from loess/paleosol sequences from temperate climates and have to be treated more rigorously at a site‐specific level.  相似文献   

8.
Borisov  A. V.  Ganchak  T. V.  Demkina  T. S.  Demkin  V. A. 《Eurasian Soil Science》2006,39(1):S106-S111
The contents of fungal mycelium have been studied in paleosols of ancient archeological monuments and in surface soils within the steppe, dry steppe, and desert zones of European Russia, on the Stavropol, Privolzhskaya, and Ergeni uplands. The buried paleosols date back to the Bronze Age (4600–4500 and 4000–3900 BP), the Early Iron Age (1900–1800 BP), and the early 18th century (1719–1721). The fungal mycelium has been found in all these paleosols. The biomass of fungal mycelium varies from 2 to 124 μg/g of soil. The distribution patterns of fungal mycelium in the profiles of buried paleosols and surface soils have been identified. It is shown that the dark-colored mycelium is typical of the ancient paleosols. In some cases, the content of the dark-colored mycelium in them may reach 100% of the total mycelium biomass.  相似文献   

9.
《Geoderma》1987,39(4):293-306
Red clay layers interbedded with basalt flows of Pleistocene age in the Golan Heights have been described and sampled for analyses. Data for these layers have been compared with those for modern soils of the locality. Because the layers have pedogenic features and most also contain quartz of assumed aeolian origin, they are considered to by paleosols even though they are low in organic matter. Smectite is the dominant clay mineral in the paleosols, as it is in modern soils of the area. At the same time, minerals characteristic of hydrothermal activities are absent. Low proportions of kaolinite as compared to those of modern soils are attributed to weathering under a drier climate in the Middle Pleistocene (approximately 0.7–1.6 m.y. B.P.) than that of the present. The paleosols are dense, have strong columnar structure and have well expressed mangans. These features, as well as the dehydration of iron oxides, are attributed to contacts with molten rock that become the basalt flows.  相似文献   

10.
Micromorphological examination of the paleosols (50–10 ka) developed in alluvial fan deposits of the NW Himalayas and the bordering polygenetic soils (mainly Holocene) of the Gangetic Plains has been used to differentiate the pedosedimentary features indicating climatic changes during late Quaternary time. The paleosols within rapidly aggrading sediments of the alluvial fans of the Dehradun valley resulted in response to the reduced rate of sedimentation and climatic changes and correspond to the MIS3 and MIS2 stages. Distinctive micromorphic features of these paleosols provided the details of the prevalent pedogenesis in response to the paleoclimatic changes during 50 ka. Microfabrics of these paleosols show reorganization of the pedality from massive and/or subangular blocky to platy and prismatic structures, strong to very strong mobilization of the plasma, different types of textural pedofeatures along with faunal activities. These pedofeatures are indicative of cold-humid climate with subsequent change to even colder but drier conditions during the last Glaciation. Comparison of the micromorphological characters of the paleosols of the NW Himalayas and the polygenetic soils of the Gangetic Plains show the same degree of soil development indicating 5–10 ka pedogenic intervals in alluvial fans of the Dehradun Valley. However, the difference in their pedofeatures is attributed to different pedogenic environments. The paleosols of the Dehradun Valley show predominance of the illuvial features with superposed impure silty clay on earlier clay pedofeatures and banded clay fabric features without any pedogenic calcium carbonate. The bordering Gangetic Plains are covered with polygenetic soils developed on stable surfaces and are < 13.5 ka. These surficial soils developed during the period marked by deglaciation and correspond to MIS1 stage. These are defined by the juxtaposition of different illuvial pedofeatures along with pedogenic calcium carbonate. This study suggests that formation of the paleosols in NW Himalayas was mainly controlled by warmer intervals during the last glaciation and the movement along the adjacent thrusts. While fluctuating climate punctuated with humid–semiarid–humid conditions played a major role during the formation of soils on the Gangetic Plains in Holocene that favoured illuviation, calcification and dissolution of pedogenic carbonates in the polygenetic soils.  相似文献   

11.
石灰岩发育的乔木林下土壤团聚体形成的影响因素   总被引:4,自引:0,他引:4  
将采集的喀斯特地区纯石灰岩发育的林下土壤,全部进行干筛分为>5、5—2、2—1、1—0.5、0.5—0.25 mm五个粒级,再将五个粒级的土壤分别湿筛,烘干后收集为>5、5—2、2—1、1—0.5、0.5—0.25 mm五个粒级。对五个粒级的土壤分别进行碳水化合物、胡敏酸、游离氧化铁铝、非晶质氧化铁铝和钙、镁的提取和测定,迅速将提取过胶体的土壤进行湿筛测定分解的各级团聚体含量,以此来分析土壤团聚体稳定性与各因子间的关系。研究结果表明:土壤经干筛后,团聚体含量高,团聚体以大粒径为主,小粒级含量低;土壤经湿筛后,团聚体含量减少不是很明显,组成也是以大粒径为主;胡敏酸对<2 mm粒级的团聚体的稳定性作用最大,游离氧化铁、铝对大团聚体(>5 mm)稳定性的作用最大;0—5cm土层土壤团聚体稳定性总体上好于5—20 cm土壤层;有机胶体对小粒级团聚体稳定性的影响很大。  相似文献   

12.
Paleosols buried under kurgans dating back to the Yamnaya, Catacomb, and Post-Catacomb cultural epochs of the Bronze Age (4600–3900 BP) on the territory of the Stavropol Upland (the North Caucasus) in the area occupied by vertic chernozems were studied. It was found that solonchakous and deeply solonchakous and solonetzic chestnut soils and solonetzes proper predominated in the study area during the Bronze Age. The solonetzic process was the leading pedogenetic process in the automorphic paleosols of the second half of the third millennium BC. The vertic features were weakly developed in the automorphic paleosols; they were better manifested in the paleosols developed on the floodplains. The paleosol data were used to reconstruct the environmental conditions in the region during the Bronze Age. The climatic conditions of that period were more arid and with less sharp contrasts between wet and dry seasons in comparison with the modern climate.  相似文献   

13.
Paleosol studies were conducted on the Moskva-Oka interfluve in the center of the East European Plain. Three paleosol complexes were distinguished in the sequence of soil-loess deposits: the Mezin complex of the Late Pleistocene age and the Kamensk and Inzhavin complexes of the Middle Pleistocene. Each of them consisted of the paleosols of two phases: the earlier interglacial phase and the later interstadial phase. In some cases, the paleosols of these two phases were separated by a thin layer of sediments with distinct features of cryoturbation. Paleosols of the interstadial phases are represented by the dark-colored humus-rich meadowchernozemic and chernozem-like prairie soils. During the interglacial periods in the Middle and Late Pleistocene, the soils with pronounced eluvial-illuvial differentiation of their profiles were developed under forest cenoses. Data on the morphology of paleosols; their physical, chemical, and physicochemical properties (particle-size distribution, pH, humus, carbonates, amorphous and crystallized iron oxides, etc.); and their micro-morphological features studied in thin sections prepared from undisturbed soil monoliths make it possible to judge the character of the pedogenesis during different epochs.  相似文献   

14.
The need for reliable estimates of soil loss under different land management practices (LMPs) is becoming imperative in the Mediterranean basin to inform decisions on more effective strategies for land management. The effect of LMPs on soil erosion and land degradation has been investigated using experiments from November 2008 to November 2011 in an olive grove in central Crete (Greece). The study area was on sloping land with soils formed on marl deposits which are vulnerable to desertification because of surface runoff and tillage. The experimental design included three treatments with two replicates (3 × 5 m experimental plots) corresponding to the following LMPs: (i) no tillage–no herbicide application, (ii) no tillage–herbicide application and (iii) ploughing to 20 cm perpendicular to the contours. The following variables were monitored: surface water runoff, sediment loss, soil temperature at 10 cm, soil moisture content at depths of 20 and 50 cm, as well as selected climatic variables. The results show that the no tillage–no herbicide management practice gave the lowest sediment loss (1.44–4.78 g/m2/yr), the lowest water runoff (1.8–11.5 mm/yr), the greatest amount of water stored in the soil, the lowest soil temperature and the lowest desertification risk compared with the other treatments. Tillage resulted in the greatest sediment loss (13.6–39.2 g/m2/yr) and surface runoff (16.5–65.0 mm/yr), and an intermediate amount of water stored in the soil. In addition, this treatment led to the loss of soil thickness of 3.7 mm/yr because of ploughing. The results demonstrate the high risk of desertification in the investigated region and the methodology can be used in other Mediterranean areas as an assessment framework for evaluating land degradation and the impact of land management on soil erosion.  相似文献   

15.
Zheng  Taihui  Yang  Jie  Zhang  Jie  Tang  Chongjun  Liao  Kaitao  Liu  Yaojun 《Journal of Soils and Sediments》2019,19(3):1342-1354
Purpose

The main objective of this study was to investigate the effects of abiogenic and biogenic factors, and their interaction, on aggregate stability determined at different particle sizes.

Materials and methods

Soil samples with the same land use pattern were collected and fractioned into five aggregate sizes: 10–15 mm, 5–10 mm, 2–5 mm, 0.25–2 mm, and <?0.25 mm. Contents of iron/aluminum (Fe/Al) oxides, soil organic carbon (SOC), clay, and mean weight diameter (MWD) values for aggregates at different sizes were determined. The respective contributions of these factors were further estimated using path analysis.

Results and discussion

The results showed that SOC contents in A horizon declined with the increase of aggregate size. Highest amorphous iron oxide (Feo) contents were observed in 0.25–2 and 2–5 mm aggregates, but highest amorphous aluminum oxide (Alo) contents were found in 5–10 mm aggregates. Abiotic factors (Fe/Al oxides, clay) played a more important role in determining the formation of <?0.25 mm aggregates, whereas both abiotic and biotic factors play an effective role in stabilizing larger aggregates (0.25–2, 2–5, 5–10, and 10–15 mm). The organo-mineral complexes played a certain role in the stability of soil aggregates, especially the larger aggregates.

Conclusions

We conclude that abiotic and biotic factors play variable roles in soil aggregates at different sizes, and more studies are needed to better assess their respective roles to improve our understanding of soil aggregation.

  相似文献   

16.
Low‐activity clay soils on old planation surfaces of the tropics are generally considered as stable end points of soil formation. It is therefore surprising to find Andisols on them. We characterized the properties of six profiles representative of these soils in the western part of the Nilgiri Hills (2000–2500 m above mean sea level), Southern India, where the present climatic conditions are cool (mean annual temperature 15°C) and humid (mean annual rainfall 2500 mm). Thick (50–80 cm) dark‐reddish brown topsoil overlies strongly desilicated yellowish‐red materials. This horizon has andic properties to a sufficient depth and the carbon content requirement of the melanic epipedon to place these soils in the Andisol order. Our data as well as the history of the Nilgiri Hills suggest that the formation of these non‐allophanic Andisols resulted from the succession of two main steps. First, a ‘lateritic’ weathering cycle led to the relative accumulation of secondary Al and Fe oxides. Later, the accumulation of organic matter favoured by a more recent climatic change induced complexation by organic acids of Al and Fe oxides, and the production of enough metal–humus complexes to give rise to andic properties. Such soils, in which secondary Al and Fe oxides, generally considered as indicators of an advanced weathering stage, are involved in a new cycle of soil formation, are original Andisols.  相似文献   

17.
The morphology and chemical and physicochemical properties of paleosols buried at the Upper Paleolithic multilayered site Kostenki-1 in Kostenki–Borshchevo district of Voronezh oblast were studied. Four in situ paleosols formed 20–40(45) ka ago were separated in the archaeological excavation. Together with the surface soils, they characterized two different epochs of pedogenesis—the interstadial and interglacial (Holocene) epochs—and three shorter cycles of pedogenesis. The traces of human occupation in the studied hollow in the Late Paleolithic were found in the layers corresponding to the interstadial epoch. The buried paleosols had a simple horizonation: A(W)–C. A shallow thickness of the soil profiles could be due to relatively short periods of pedogenesis and to the shallow embedding by the carbonate geochemical barrier. The degree of the organic matter humification in the paleosols varied from 0.6 to 1.5, which corresponded to the mean duration of the period of biological activity of 60 to 150 days per year characterizing the climatic conditions of the tundra, taiga, forest-steppe, and steppe natural zones. In the excavation Kostenki-1 (2004–2005), soil–sediment sequences composed of five series of lithological layers with soil layers on top of them were found. Their deposition proceeded in two phases—the water phase and the aerial phase—that predetermined the morphology and composition of the soil–sediment sequences. The history of sediment accumulation in the studied hollow consisted of five stages. Similar morphologies and compositions of the soil–sediment sequences corresponding to these stages attest to the cyclic pattern of their development. The stages of sedimentation and soil formation corresponded to cyclic climate fluctuations with changes in the temperature and moisture conditions. A comparative analysis of the morphology and properties of the paleosols and soil–sediment sequences made it possible to characterize the environmental conditions of ancient humans and the dynamics of the climate during the past 50 ka.  相似文献   

18.
The total microbial biomass (TMB) was assessed in the chestnut and light chestnut soils and in the paleosols under burial mounds (steppe kurgans) in the Lower Volga region on the basis of data on the organic carbon content in the extracted microbial fraction supplemented with the data on the extraction completeness as a conversion coefficient. The completeness of the microbial fraction extraction was determined by direct counting of the microbial cells and colony-forming units (on plates with soil agar). The total microbial biomass varied from 400 to 6600 μg of C/soil. Its values in the buried soils were 3–5 times lower than those in the surface soils. The TMB distribution in the buried chestnut soil profile was close to that in its modern analogue (with the minimum in the B1 horizon). In the buried light chestnut paleosols, the TMB values usually increased down the profile; in the recent light chestnut soils, the maximum TMB values were found in the uppermost horizon.  相似文献   

19.
杭州附近几种红壤中磁性矿物的分离与鉴定   总被引:4,自引:0,他引:4  
卢升高  俞劲炎 《土壤通报》2000,31(5):196-198
对杭州附近由第四纪红土、泥岩、石灰岩和花岗岩发育的红壤中磁性矿物进行了研究 .由X -衍射和矿物磁测技术证明四种红壤中的磁性矿物是磁赤铁矿 (γ -Fe2 O3) ,它是红壤磁性的主要贡献者 ,且磁赤铁矿以稳定单畴和超顺磁性颗粒态存在  相似文献   

20.
黄淮海平原晚第四纪古土壤   总被引:4,自引:0,他引:4  
刘良梧 《土壤学报》1999,36(1):9-14
本文运用孢子花粉,古生物化石和放射性碳断代等手段,从土壤剖面层段的特征,土壤年龄和环境变化方面证明,分布于黄淮海平原的变性土不是现代土壤,而是古土壤,该古土壤自晚新世晚期以来经历了三次沉积-成土作用旋回,其土壤发育程度较弱,且是由钙质结核土层,暗色土层,表土层和(或)淤土层组成的一个叠置型古土壤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号