首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Like most plants, pea (Pisum sativum L.) becomes tolerant to frost if it is first exposed to low non-freezing temperatures, a process known as cold acclimation. Cold acclimation is a complex process involving many physiological and metabolic changes. Two spring dry peas, two winter dry peas and one winter forage line were exposed to cold temperature in a controlled environment in two experiments, one using low light intensity and the other regular light intensity. Plants were harvested throughout the experiment and dry matter accumulation, water content, soluble and insoluble sugar concentrations were determined from shoot and root samples. Cold acclimation did not occur when temperatures were low if light intensity was low, even in winter peas. In contrast, with regular light intensity, the winter peas acquired more freezing tolerance than spring peas and a close relationship was found between the soluble sugar concentration of leaves just before the frost and the degree of freezing tolerance obtained by the different genotypes. Relationships between freezing tolerance and carbon partitioning between shoot and roots are discussed.  相似文献   

2.
Summary A distant cross between a maintainer Zhenshan 97B and an early maturing F2 palnt of O. longistaminata x O. rufipogon was made in 1985, and a new CMS line Zaoxian A was bred in 1989 through continuous backcross of new maintainer plants derived from the distant cross to the leading CMS line Zhenshan 97A. Several experiments were carried out in Sichuan during 1990–1992, to analyze the inheritance of earliness of Zaoxian A and its application value to hybrid rice production. The results showed that Zaoxian A was as early-maturing as Zhenshan 97A, the earliness of Zaoxian A was incompletely dominant to the lateness of restorer lines, and was different from the earliness of Zhenshan 97A which was suppressed by the lateness of restorer lines. The F1 hybrids between Zaoxian A and late maturing restorers combined the early maturity and high yielding capacity, and significantly outyielded the provincial and national checks with same or longer growth duration, because the larger genetic distance between early and late maturing ecotypes remained unchanged and the new earliness could express in F1 generation. Therefore, the new dominant earliness character of Zaoxian A could enhance the regional and seasonal adaptability of rice. It is also valuable to hybrid rice production and the formation of new cropping systems with high yielding capacity and high economical profit.  相似文献   

3.
J.U. Chun  X.M. Yu  M. Griffith 《Euphytica》1998,102(2):219-226
Antifreeze proteins (AFPs) accumulate in the leaves of winter cereals during cold acclimation, where they may inhibit ice recrystallization during freezing and thawing cycles and provide nonspecific disease resistance. In this study, 21 wheat chromosome substitution lines and the parental lines Chinese Spring and Cheyenne wheat were used to determine the heritability of AFPs and the relationship between the accumulation of AFPs and winter survival. In cold-acclimated lines, antifreeze activity in leaf apoplastic extracts ranged from 1 (low) to 5 (high) with an average value of 3.2, and the accumulation of apoplastic proteins ranged from 30 μg (g FW)-1 to 115 μg (g FW)-1 with a mean value of 70 μ (g FW)-1. Examination of the individual lines revealed that Cheyenne chromosomes 5B and 5D carry major regulatory genes that increase both antifreeze activity and the accumulation of antifreeze proteins in plants grown at low temperature. Substitution lines carrying Cheyenne chromosomes 2A, 3A, 6B, and 7A exhibited lower freezing tolerance and also showed a marked decrease in the accumulation of specific AFPs during cold acclimation. Antifreeze activity and apoplastic protein content were not correlated with freezing tolerance (defined as % survival at -11 °C), but they were both significantly and positively correlated with winter field survival rates. Antifreeze activity (positively correlated) and total leaf fresh weight (negatively correlated) together accounted for about 55% of the variation in winter survival, indicating that high antifreeze activity and slow vegetative growth at low temperature are both important quantitative traits for winter survival. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
为比较抗寒性不同的冬麦品种低温和不同光强作用下叶绿素荧光参数的变化,以3个抗寒性不同的冬麦品种为材料,分别在低温驯化期、低温驯化结束期和封冻期取样,室内暗处理后给予6个不同的光强,测定不同光强下的光合电子传递速率(ETR)、光化学猝灭系数(qP)和非光化学猝灭系数(qN)。结果表明,低温、高光强下抗寒品种东农冬麦1号的ETR、qP和qN显著高于其他2个品种,济麦22的这几个叶绿素荧光参数最低。封冻前抗寒中间型东农705品系的热耗散保持较高水平,但进入封冻期后其热耗散能力迅速降低。  相似文献   

5.
6.
不同基因型抗虫棉的光合生产与叶源特征   总被引:10,自引:7,他引:10  
以33B为对照,对早发型常规Bt棉鲁棉研17、鲁棉研21,晚发型Bt棉鲁棉研22,杂交Bt棉鲁棉研15、鲁棉研20进行了2年的种植和比较。早发型品种中前期干物质积累和叶面积增长快,但后期干物质积累慢、叶面积下降快,表现出明显的早发早熟和干旱年份易早衰的特点;晚发型品种前期干物质积累和叶面积增长慢,但后期增长快,表现出明显的晚发甚至贪青晚熟的特点。两个杂交棉品种表现出与早发型品种基本相同的生育规律,但中前期叶面积系数和干物质积累量显著高于其它供试品种。盛铃期以前,未见品种间功能叶光合速率的显著差异,但在干旱年份,早发型品种在始絮期功能叶的光合速率显著低于晚发型品种。早发型品种中后期的根冠比和功能叶含K量显著低于晚发型品种,而叶面积载荷量却显著高于晚发型品种。不同品种干物质产量和熟相的差异可能分别与叶面积系数大小和库源比例不同有关。  相似文献   

7.
The expected temperature rise in late summer/early autumn can change the conditions for acclimation and affect the winter survival of perennial crops. This study examined the effect of the temperature just before the onset of cold acclimation (pre‐acclimation) on freezing tolerance of timothy (Phleum pratense L.), perennial ryegrass (Lolium perenne L.) and red clover (Trifolium pratense L.) populations (both cultivars and breeding populations) adapted to either northern or southern parts of Norway. Using phytotron experiments, we studied whether increasing pre‐acclimation temperature delays growth cessation, affects photoacclimation and reduces freezing tolerance. Furthermore, we assessed whether these effects were related to the latitudinal adaptation of the plant material. The results showed that a rise in pre‐acclimation temperature decreased both cold acclimation capacity and photoacclimation in these species. This affected the freezing tolerance, which was reduced significantly more in northern‐adapted population of timothy and perennial ryegrass compared with southern‐adapted populations. Red clover was less affected by temperature changes than the grasses.  相似文献   

8.
Summary For breeding early heading wheat cultivars with resistance to frost damage which are well adapted to dry areas of West Asia and North Africa, the relationships between winter hardiness, ear primordia development and heading traits, i.e. veernalization requirement, photoperiodic response and narrow-sense earliness, were assessed using a total of 30 genotypes of wheat (Triticum aestivum L.) grown in an experiment in Syria. The results of artificial freezing tests indicated that cultivars with good winter hardiness were to be found only in the winter wheat cultivars which required 50 or more days of vernalization treatment. These winter wheat cultivars did not initiate internode elongation without vernalization even at 95 days after planting. Thus their ear primordia were still underground and were protected from frost injury at this stage. Photoperiodic response and narrow-sense earliness were not associated with winter hardiness and earliness of internode elongation, but were related to the number of days to heading after planting. This indicated the possibility for breeding early heading cultivars with winter hardiness and tiller frost avoidance by combining high vernalization requirement, short narrow-sense earliness and neutral response to photoperiod.  相似文献   

9.
Soybean has been considered a cold intolerant species; based largely upon seed germination and soil emergent evaluations. This study reports a distinct acquisition of cold tolerance, in seedlings, following short acclimation periods. Diversity in cold responses was assessed in eight cultivars of Glycine max and six accessions of G. soja. All varieties of soybean significantly increased in freezing tolerance following acclimation. This study indicates soybean seedlings are indeed capable of sensing cold and acquiring cold tolerance. Germination rates after cold imbibition were negatively correlated with maturity group, but positively correlated with cold acclimation potential in G. soja. Seed fatty acid composition was varied between the species, with Glycine soja accessions containing about 2‐times more linolenic acid (18:3) than G. max. Furthermore, high levels of linoleic acid (18:2) in seeds were positively correlated with germination rates following cold imbibition in G. soja only. We suggest that domestication has not impacted the overall ability of soybean to cold acclimate at the seedling stage and that there is little variation within the domesticated species for ability to cold acclimate. Thus, this brief comparative study reduces the enthusiasm for the “wild” species as an additional source of genetic diversity for cold tolerance.  相似文献   

10.
Prehardening of winter rape, i.e. its early growth in a reduced day temperature (+12°C) from emergence to the beginning of cold acclimation at chilling temperatures (the 1st stage of cold acclimation), has a beneficial influence on frost resistance. In earlier studies it has been demonstrated that during prehardening, plants formed leaf rosettes and increased the photosynthetic efficiency at chilling temperatures. In the present study investigations were carried out on the effect of prehardening on the growth rate of the plants during the 1st stage of cold acclimation, and the progress of selected physiological processes occurring during this stage and resulting in increased frost resistance. It has been demonstrated that a greater inflow of photoassimilates during the 1st stage of cold acclimation results in greater increments of the dry mass of prehardened plants. These plants show also a distinct inhibition both of the elongation growth and the rate of expanding new leaves. The acquired energy is thus spent to a greater extent on the processes associated with increasing frost resistance, and not on growth. In prehardened seedlings, during the 1st stage of cold acclimation, there have been observed in leaves a higher rate of both water content decrease and drop in the osmotic potential of the cell sap and water potential in the tissues. Also an increased accumulation of soluble sugars and free proline was noticed. However, the beginning of these processes was not observed during the prehardening period. Prehardening stimulated the effectiveness of the 1st stage indirectly through changes leading to the increased amount of available energy and enabling the utilisation of the greater part of acquired energy in the cold acclimation process.  相似文献   

11.
12.
Winter‐hardiness is a complex trait limiting cultivation of winter barley (Hordeum vulgare ssp. vulgare) with respect to the regions of temperate climate. In the present studies, we verified whether inexpensive and fast physiological markers characterizing photosynthetic acclimation to cold may provide robust characteristics of winter barley genotypes for improved frost resistance. Freezing tolerance of 28 winter barley varieties and advanced breeding lines were tested for three winters in field‐laboratory experiment and under fully controlled conditions. To increase the environmental variability of freezing tolerance, a part of the plants were also de‐acclimated under semi‐controlled conditions and re‐acclimated in laboratory before freezing tests. After controlled cold acclimation, apparent quantum yield of photosystem II (Fv/Fm) as well as photochemical (qP) and non‐photochemical (NPQ) coefficients of chlorophyll fluorescence quenching were studied. Field‐laboratory method assessment of freezing tolerance gives distinct and even opposite results in subsequent years. Also de‐acclimation interacted with growth conditions in the field, giving different rankings of genotypes each year. The results obtained suggest that high level of freezing tolerance measured in laboratory, which is connected with photosynthetic acclimation to cold may be not sufficient for the expression of field resistance, especially when winter conditions are not favourable for cold acclimation.  相似文献   

13.
Argentine wheat cultivars are assumed to be essentially vernalization insensitive or very slightly sensitive. However, there are only speculations on this lack of vernalization requirement and a greater unawareness on the variation in earliness per se. The aims of this research have been to determine the extent of variability in vernalization requirement and earliness per se, and how the variability in both traits was produced by breeding programs, through the release of wheat cultivars from the 1930's to the 1990's in Argentina. Sixty-eight cultivars, selected among those of highest performance in each era, were evaluated under field and glasshouse conditions for their vernalization response and earliness per se. Forty per cent of the cultivars showed some vernalization response. There was a decrease in this requirement along the first decades of the analysed breeding period, likely in response to the considerable introgression of CIMMYT germplasm. This initial trend to release earlier cultivars was also evidenced in a clear decrease in earliness per se. As this tendency in both characteristics was reverted during the last two decades, it may denote that certain vernalization response and not extreme earliness per se, may contribute to achieve higher yield cultivars in our area. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The effect of cold acclimation on the water status and the fate of carbohydrates was studied in white clover (Trifolium repens L., cv Huia) subjected to chilling and/or freeze-thaw cycles. Treatments were applied in a controlled environment, with a constant photoperiod, for 6 weeks to plants either acclimated or non-acclimated to low temperature.

Cold acclimated plants had a higher concentration of starch in the stolons at the end of the acclimation period than non-acclimated plants (54 vs. 15 mg g−1 DW). During the experiment, the leaves of cold acclimated plants subjected to frosts maintained a higher relative water content (RWC) than did leaves of plants not acclimated for which we observed a strong dehydration of 80%.

Under chilling, cold acclimated plants demonstrated an osmotic adjustment. We showed that only 30–40% of the variation of the osmotic potential was explained by variation in free sugar concentration, suggesting that compounds other than carbohydrates participated in the osmotic regulation.

Chilling increased the carbohydrate content and frost decreased the starch concentration in non-acclimated plants only.

We showed in white clover that the cold acclimation contributed to frost and chilling tolerance by the maintenance of the hydration of tissues. We demonstrated that osmotic adjustment was not completely explain by the accumulation of free sugars.  相似文献   


15.
Winter conditions are subjected to rapid climate changes. Increased precipitation and snow melting during warmer winters may result in low‐temperature flooding. These factors probably affect plant overwintering strategies. This study investigated the relationships between the photosynthetic adjustment and freezing tolerance following a short‐term low‐temperature flooding in two forage grasses (Lolium perenne and Festuca pratensis). The effect of flooding on the photosynthetic apparatus acclimation to cold was determined using chlorophyll a fluorescence measurements. Freezing tolerance was estimated using an electrolyte leakage test. It has been shown that genotypes activating non‐photochemical mechanisms of photosynthetic acclimation to cold during low‐temperature flooding may show increased freezing tolerance. Freezing tolerance reduction observed in Festuca pratensis was probably connected with decreased photochemical activity and photoinhibition of photosynthesis. It can be concluded that photosynthetic apparatus response to low‐temperature flooding may contribute to changes in the freezing tolerance. The direction of the changes is associated with different photosynthetic apparatus performance.  相似文献   

16.
Dry seeds of an early variety of jute (Fanduk) were X-irradiated to study the effect of selection for days to flower. Variation was induced in days to flower as evident from the high values of genotypic variances and hen lability estimates in the Mi generation. Asymmetric-response was realized in the M4 generation following disruptive selection — response being more towards lateness than earliness. However, significant variances for days to flower were present among both early and late selections in M4 generation. While late lines were superior to the mother variety in plant height and fibre vie Id: pi ant, early lines were inferior to the mother variety in these-traits. Distribution of 15 late lines in fibre yield and plant height classes showed that S lines exceeded the mother variety in fibre yield, plant and 7 of them exceeded it in plant height. In general, gradual shift towards lateness was associated with gradual shift towards greater plant height and fibre yield. Two late lines were very promising and earlier in maturity than the recommended early varieties.  相似文献   

17.
Freezing tolerance of 60 breeding lines of winter hexaploid triticale (×Triticosecale Wittmack) was studied in the field‐laboratory experiment. The experiment was repeated over three winters. The survey was also carried out in plants grown and cold‐acclimated in the laboratory. In both the experiments, plant survival analysis and chlorophyll fluorescence‐based studies on energy flows in photosystem II (PSII) (JIP‐test) after freezing of detached leaves were performed. In the laboratory experiment, the temperature of 50 % electrolyte leakage from leaves and the resistance against cold‐induced photoinhibition were additionally investigated. In the case of plants’ cold‐acclimated in the field, determination of the freezing tolerance of PSII gave similar results as the determination of freezing tolerance of whole plants. Both traits were strongly affected by genotype–environmental interactions, but these effects were less visible for PSII characteristics. In the laboratory experiments, a strong correlation between freezing tolerance and the tolerance for cold‐induced photoinhibition of photosynthesis was observed. The possibility of the use of chlorophyll fluorescence‐based techniques for the determination of freezing tolerance in triticale is discussed.  相似文献   

18.
Autumn‐sown winter‐type faba bean (Vicia faba L.) has been shown to have a yield advantage over spring sowing. Still, adoption of this overwintered pulse crop remains limited in temperate locations, due to inadequate winter hardiness. This research sought to understand how the prevailing temperature during emergence and seedling development, that is pre‐acclimation, influences freezing tolerance. Seedlings grown under a controlled “warm” 17/12°C (day/night) pre‐acclimation environment were initially less freezing tolerant than those grown under a “cold” 12/5°C temperature treatment. Stem and particularly root tissues were primarily responsible for slower cold acclimation, and there was a genotype specific response of above‐ground tissues to pre‐acclimation treatment. Both above and below‐ground tissues should be tested across a range of pre‐acclimation temperatures when screening faba bean germplasm for freezing tolerance.  相似文献   

19.
The effect of prehardening (early stage of growth at moderate low temperatures (+12°C) during the day) on the reliability of frost resistance estimation in a controlled environment has been studied on three winter oilseed rape cultivars differing markedly in their field survival rate (Leo, Górczański and Idol). It has been also examined the relationship between the photosynthetic activity during the first stage of cold acclimation and the level of frost resistance observed in investigated cultivars. Presented results demonstrated that prehardening, which increases to a significant degree the effectiveness of the cold acclimation process, also increases the differences in cold hardiness between cultivars, and limits the magnitude of experimental errors made during frost resistance estimation under controlled conditions. In all studied cultivars, prehardening increases significantly the photosynthetic activity during cold acclimation. On the other hand, both in the prehardened and in the non-prehardened plants, no relation has been found between either gas exchange rates or chlorophyll 'a' fluorescence characteristics at low temperatures and cultivar ability for acclimation. Neither the existing differences in photosynthetic activity, nor the degree of photosynthetic apparatus acclimation to cold, which occurs during prehardening, are the factors responsible for the frost resistance variation observed between studied cultivars.  相似文献   

20.
Summary Knowledge of inheritance of early maturity or its components is important to groundnut breeders in developing short-duration cultivars. This study was conducted to determine the inheritance of two components of early maturity: days to first flower from sowing, and days to accumulation of 25 flowers from the appearance of first flower, using three groundnut genotypes. Two early-maturing (Chico and Gangapuri) and one late-maturing (M 13) genotypes were crossed in all possible combinations, including reciprocals. The parents, F1, F2, F3, and backcross populations were evaluated for days to first flower from sowing, and for days to accumulation of 25 flowers. The data suggest that days to first flower in the crosses studied is governed by a single gene with additive gene action. Chico and Gangapuri possess the same allele for this component of earliness. Three independent genes with complete dominance at each locus appear to control the days to accumulation of 25 flowers. In crosses between late (M 13) and early (Chico or Gangapuri) parents, a segregation pattern suggesting dominant-recessive epistasis (13 late:3 early) was observed for this component. Segregation in the F2 generation (1 late:15 early) of both early parents (Chico x Gangapuri) indicated that the genes for early accumulation of flowers in these two parents are at different loci.Submitted as ICRISAT J.A. No. 1557.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号