首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to evaluate the effects of increasing levels of β-glucanase on the modulation of jejunal mucosa-associated microbiota in relation to nutrient digestibility and intestinal health of pigs fed diets with 30% corn distiller’s dried grains with solubles and xylanase. Forty pigs at 12.4 ± 0.5 kg body weight (BW) were allotted in a randomized complete block design with initial BW and sex as blocks. Dietary treatments consisted of a basal diet with xylanase (1,500 endo-pentosanase units [EPU]/kg) and increasing levels of β-glucanase (0, 200, 400, and 600 U/kg) meeting nutrient requirements and fed to pigs for 21 d. Blood samples were collected on day 19. On day 21, all pigs were euthanized to collect intestinal tissues and digesta. Tumor necrosis factor-alpha, interleukin (IL)-6, and malondialdehyde were measured in the plasma and mid-jejunal mucosa. Viscosity was determined using digesta from the distal jejunum. Ileal and rectal digesta were evaluated to determine apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients. Mucosa samples from the mid-jejunum were utilized for microbiota sequencing. Data were analyzed using the MIXED procedure on SAS 9.4. Overall, increasing dietary β-glucanase tended to increase (linear; P = 0.077) the average daily gain of pigs. Increasing dietary β-glucanase affected (quadratic; P < 0.05) the relative abundance of Bacteroidetes, reduced (linear; P < 0.05) Helicobacter rappini, and increased (linear, P < 0.05) Faecalibacterium prausnitzii. β-Glucanase supplementation (0 vs. others) tended to increase (P = 0.096) the AID of crude protein in the diet, whereas increasing dietary β-glucanase tended to increase (linear; P = 0.097) the ATTD of gross energy in the diet and increased (linear; P < 0.05) the concentration of IL-6 in the plasma of pigs. In conclusion, increasing β-glucanase up to 600 U/kg feed in a diet containing xylanase (1,500 EPU/kg) modulated mucosa-associated microbiota by increasing the relative abundance of beneficial bacteria and reducing potentially harmful bacteria. Furthermore, increasing β-glucanase up to 600 U/kg feed in a diet containing xylanase (1,500 EPU/kg feed) enhanced the status of the intestinal environment and nutrient utilization, as well as reduced systemic inflammation of pigs, collectively resulting in moderate improvement of growth performance. Supplementing β-glucanase at a range of 312 to 410 U/kg with xylanase at 1,500 EPU/kg feed showed the most benefit on jejunal mucosa-associated microbiota and reduced systemic inflammation of pigs.  相似文献   

2.
In theory, supplementing xylanase in corn-based swine diets should improve nutrient and energy digestibility and fiber fermentability, but its efficacy is inconsistent. The experimental objective was to investigate the impact of xylanase on energy and nutrient digestibility, digesta viscosity, and fermentation when pigs are fed a diet high in insoluble fiber (>20% neutral detergent fiber; NDF) and given a 46-d dietary adaptation period. A total of 3 replicates of 20 growing gilts were blocked by initial body weight, individually housed, and assigned to 1 of 4 dietary treatments: a low-fiber control (LF) with 7.5% NDF, a 30% corn bran high-fiber control (HF; 21.9% NDF), HF + 100 mg xylanase/kg (HF + XY [Econase XT 25P; AB Vista, Marlborough, UK]) providing 16,000 birch xylan units/kg; and HF + 50 mg arabinoxylan-oligosaccharide (AXOS) product/kg (HF + AX [XOS 35A; Shandong Longlive Biotechnology, Shandong, China]) providing AXOS with 3–7 degrees of polymerization. Gilts were allowed ad libitum access to fed for 36-d. On d 36, pigs were housed in metabolism crates for a 10-d period, limit fed, and feces were collected. On d 46, pigs were euthanized and ileal, cecal, and colonic digesta were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment as a fixed effect. Compared with LF, HF reduced the apparent ileal digestibility (AID), apparent cecal digestibility (ACED), apparent colonic digestibility (ACOD), and apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), crude protein (CP), acid detergent fiber (ADF), NDF, and hemicellulose (P < 0.01). Relative to HF, HF + XY improved the AID of GE, CP, and NDF (P < 0.05), and improved the ACED, ACOD, and ATTD of DM, GE, CP, NDF, ADF, and hemicellulose (P < 0.05). Among treatments, pigs fed HF had increased hindgut DM disappearance (P = 0.031). Relative to HF, HF + XY improved cecal disappearance of DM (162 vs. 98 g; P = 0.008) and NDF (44 vs. 13 g; P < 0.01). Pigs fed xylanase had a greater proportion of acetate in cecal digesta and butyrate in colonic digesta among treatments (P < 0.05). Compared with LF, HF increased ileal, cecal, and colonic viscosity, but HF + XY decreased ileal viscosity compared with HF (P < 0.001). In conclusion, increased insoluble corn-based fiber decreases digestibility, reduces cecal fermentation, and increases digesta viscosity, but supplementing xylanase partially mitigated that effect.  相似文献   

3.
This study investigated the different addition levels of iron (Fe) in growing-finishing pigs and the effect of different Fe levels on growth performance, hematological status, intestinal barrier function, and intestinal digestion. A total of 1,200 barrows and gilts ([Large White × Landrace] × Duroc) with average initial body weight (BW; 27.74 ± 0.28 kg) were housed in 40 pens of 30 pigs per pen (gilts and barrows in half), blocked by BW and gender, and fed five experimental diets (eight replicate pens per diet). The five experimental diets were control diet (basal diet with no FeSO4 supplementation), and the basal diet being supplemented with 150, 300, 450, or 600 mg/kg Fe as FeSO4 diets. The trial lasted for 100 d and was divided into the growing phase (27 to 60 kg of BW) for the first 50 d and the finishing phase (61 to 100 kg of BW) for the last 50 d. The basal diet was formulated with an Fe-free trace mineral premix and contained 203.36 mg/kg total dietary Fe in the growing phase and 216.71 mg/kg in the finishing phase based on ingredient contributions. And at the end of the experiment, eight pigs (four barrows and four gilts) were randomly selected from each treatment (selected one pig per pen) for digesta, blood, and intestinal samples collection. The results showed that the average daily feed intake (P = 0.025), average daily gain (P = 0.020), and BW (P = 0.019) increased linearly in the finishing phase of pigs fed with the diets containing Fe. On the other hand, supplementation with different Fe levels in the diet significantly increased serum iron and transferrin saturation concentrations (P < 0.05), goblet cell numbers of duodenal villous (P < 0.001), and MUC4 mRNA expression (P < 0.05). The apparent ileal digestibility (AID) of amino acids (AA) for pigs in the 450 and 600 mg/kg Fe groups was greater (P < 0.05) than for pigs in the control group. In conclusion, dietary supplementation with 450 to 600 mg/kg Fe improved the growth performance of pigs by changing hematological status and by enhancing intestinal goblet cell differentiation and AID of AA.  相似文献   

4.
Two experiments were conducted to evaluate dose–response and supplemental effects of whey permeate on growth performance and intestinal health of nursery pigs. In experiment (exp.) 1, 1,080 pigs weaned at 6.24 kg body weight (BW) were allotted to five treatments (eight pens/treatment) with increasing levels of whey permeate in three phases (from 10% to 30%, 3% to 23%, and 0% to 9% for phase 1, 2, and 3, respectively) fed until 11 kg BW and then fed a common phase 4 diet (0% whey permeate) until 25 kg BW in a 48-d feeding trial. Feed intake and BW were measured at the end of each phase. In exp. 2, 1,200 nursery pigs at 7.50 kg BW were allotted to six treatments (10 pens/treatment) with increasing levels of whey permeate from 0% to 18.75% fed until 11 kg BW. Feed intake and BW were measured during 11 d. Six pigs per treatment (1 per pens) were euthanized to collect the jejunum to evaluate tumor necrosis factor-alpha, interleukin-8 (IL-8), transforming growth factor-beta 1, mucin 2, histomorphology, digestive enzyme activity, crypt cell proliferation rate, and jejunal mucosa-associated microbiota. Data were analyzed using contrasts in the MIXED procedure and a broken-line analysis using the NLIN procedure of SAS. In exp. 1, increasing whey permeate had a quadratic effect (P < 0.05) on feed efficiency (G:F; maximum: 1.35 at 18.3%) in phase 1. Increasing whey permeate linearly increased (P < 0.05) average daily gain (ADG; 292 to 327 g/d) and G:F (0.96 to 1.04) of pigs in phase 2. In exp. 2, increasing whey permeate linearly increased (P < 0.05) ADG (349 to 414 g/d) and G:F (0.78 to 0.85) and linearly increased (P < 0.05) crypt cell proliferation rate (27.8% to 37.0%). The breakpoint from a broken-line analysis was obtained at 13.6% whey permeate for maximal G:F. Increasing whey permeate tended to change IL-8 (quadratic, P = 0.052; maximum: 223 pg/mg at 10.9%), to decrease Firmicutes:Bacteroidetes (P = 0.073, 1.59 to 1.13), to increase (P = 0.089) Bifidobacteriaceae (0.73% to 1.11%), and to decrease Enterobacteriaceae (P = 0.091, 1.04% to 0.52%) and Streptococcaceae (P = 0.094, 1.50% to 0.71%) in the jejunal mucosa. In conclusion, dietary inclusion of whey permeate increased the growth of nursery pigs from 7 to 11 kg BW. Pigs grew most efficiently with 13.6% whey permeate. Improvement in growth performance is partly attributed to stimulating intestinal immune response and enterocyte proliferation with positive changes in jejunal mucosa-associated microbiota in nursery pigs.  相似文献   

5.
Fifty-six litters from first-parity sows standardized to 12 piglets were used to determine the effects of creep feed composition and form and the provision of low- or high-complexity nursery diets on the evolution of small intestinal histomorphology and jejunal mucosa-specific enzyme activities postweaning. At 5 d of age, litters (initial bodyweight [BW] 2.31 ± 0.61 kg) were assigned to one of four creep feeding regimens (n = 14): 1) commercial creep feed (COM), 2) liquid milk replacer (LMR), 3) pelleted milk replacer (PMR), or 4) no creep feed (NO). At weaning (21 d of age), six pigs per litter were provided a HIGH- (contained highly digestible animal proteins) or LOW- (contained corn and soybean meal as main protein sources) complexity nursery diet (n = 7). At 21, 28, and 59 d of age, two pigs per pen (one castrated male and one female) were euthanized, and ileal and jejunal segments for histomorphological measurements and jejunal mucosal scrapings were collected to determine specific mucosa enzyme activities. At weaning, pigs provided COM had a greater ileal absorptive capacity (M) than LMR or NO, which were not different (14.1 vs. 10.4 and 10.5 ± 0.9 μm2; P < 0.05); PMR was intermediate. On days 28 and 59, M was not different among pigs regardless of creep feed treatments. Pigs fed LOW had reduced jejunal villus height (VH; P < 0.001) and M (P < 0.001) on day 28 vs. day 21. The VH and M were not different for pigs fed HIGH or LOW by the end of the nursery period. For all dietary treatments except COM-HIGH and COM-LOW, jejunal mucosal maltase-specific activity was not different between days 21 and 28 of age but greater on day 59 (P < 0.05). For pigs that received COM-HIGH, maltase-specific activity was not different between days 21 and 28 but greater on day 59 than day 28 (P < 0.05). For pigs that received COM-LOW, maltase-specific activity was not different between days 21, 28, and 59. Regardless of creep or nursery treatment, sucrase-specific activity was the greatest on day 59, followed by days 21 and 28 (P < 0.001), and lactase-specific activity was greater on day 21 than on days 28 and 59 (P < 0.001), which were not different. Therefore, pigs that provided LOW diet had greater villus atrophy and reduced M during the first week after weaning vs. pigs that provided HIGH, regardless of creep feeding regimen, but were able to recover by the end of the nursery period.  相似文献   

6.
Three hundred thirty-six Ross 308 male broiler chicks were used in a 21-d study to explore performance and gut function when treated with a proton pump inhibitor(PPI;0 or 89 mg/kg)in a 2×2 factorial arrangement with a xylanase(Xyl;0 or 0.1 g/kg)to determine if the beneficial activity of arabinoxylan(AX)depolymerisation,through arabinoxylo-oligosaccharides(AXOS)production,starts in the upper gastrointestinal tract.Treatment with the PPI started from d 14,and by d 21 animal performance had deteriorated(P<0.001).An interaction was observed between PPI and Xyl for feed conversion ratio(FCR)(P<0.05),whereby the combination reduced the negative effect of PPI on FCR.Application of PPI raised digesta pH in the gizzard and caecum(P<0.05),increased protein concentrations in the lower gut(P<0.05)and reduced intake of digestible nutrients(P<0.05).Caecal concentrations of indole,p-cresol,ammonia and the ratio of total volatile fatty acid(VFA)to butyric acid were increased with PPI(P<0.05),indicating enhanced protein fermentation.Xylanase activity in the digesta were greatest in the caeca,especially when Xyl was supplemented(P<0.001).The concentration of total soluble AX was greater in the gizzard and ileal digesta with Xyl supplementation(P<0.05),supporting the depolymerisation action of xylanase even under acidic conditions.These data suggest xylanase may function in the gizzard even though pH is not optimal for activity and emphasises the importance of chlorohydric acid secretions in ensuring overall optimum gut function.AX depolymerisation benefits animal performance although it is still unknown how the AXOS produced with xylanase supplementation in the upper gastrointestinal tract influence the microbial populations and overall gut functionality.  相似文献   

7.
Growth performance and physiological responses of nursery piglets when fed enzymatically treated yeast (HY40) and pharmacological ZnO alone or in combination were investigated. A total of 144 pigs (21 d old, BW 7.32 ± 0.55 kg) were placed in 36 pens (4 pigs/pen). Pigs were randomly assigned to one of four dietary treatments (n = 9): 1) control corn-wheat-soybean meal diet (control), 2) control + HY40 (HY40), 3) control + (ZnO) and 4) control + HY40 + ZnO (HY40+ZnO). Inclusion of HY40 and ZnO was 0.5% and 3,000 ppm in phase I (days 0 to 14), respectively, and halved in phase II (days 15 to 42). All diets contained 0.2% TiO2 for determination of apparent total tract digestibility (ATTD) of components. Body weight and feed disappearance were recorded weekly. One pig per pen was killed for organ weights, blood, and tissue samples on day 14. Except for phase II, when HY40 + ZnO pigs had greater average daily feed intake (P = 0.004) than all other treatments, there were no (P > 0.05) interactions between HY40 and ZnO on growth performance. Pigs fed HY40 or ZnO containing diets were heavier (P < 0.05) than pigs fed without by the end of the study. On day 14, pigs fed additives exhibited higher (P ≤ 0.009) ATTD of dry matter (DM) and gross energy (GE) than control pigs. On day 28, pigs fed control, HY40, and HY40 + ZnO had greater (P ≤ 0.022) ATTD of DM, crude protein, and GE than piglets fed ZnO only. Pigs fed HY40 + ZnO had lower ileal digesta Escherichia coli concentration (P < 0.05) than HY40 and control pigs. Ileal digesta of pigs fed ZnO diets had higher lactobacillus to E. coli ratio (1.44 vs. 1.20; P = 0.001), exhibited higher concentrations of acetic (P = 0.01) and butyric acid (P = 0.01) but lower lactic (P = 0.02) and total short chain fatty acids (P = 0.033) than pigs fed non-ZnO diets. Greater (P < 0.05) mRNA expression of nutrient transporters, tight junction proteins, and fecal excretion of zinc (Zn) was observed in ZnO pigs relative to non-ZnO pigs. Pigs fed HY40 diets had greater (P = 0.002) villus height to crypt depth ratio (VH:CD) than non-HY40 pigs. The concentration of plasma IgA was higher (P = 0.04) in HY40 + ZnO pigs relative to other pigs, whereas HY40 pigs showed higher (P < 0.001) jejunal IgA than non-HY40 pigs. Although the mode of action of HY40 and ZnO differed, the present study indicated that HY40 improved growth performance and jejunal function and immunity, making HY40 an effective alternative to pharmacological ZnO in nursery pigs feeding programs.  相似文献   

8.
The objective was to determine the nutritional and functional values of lysed Corynebacterium glutamicum cell mass (CGCM) as a protein supplement and a source of cell wall fragments supporting the growth and intestinal health of nursery pigs. Thirty-two pigs (21 d of age) were allotted to four treatments (n = 8) based on the randomized block design with sex and initial body weight (BW) as blocks. The main effect was the dietary supplementation of lysed CGCM (0, 0.7, 1.4, and 2.1%) replacing blood plasma and fed in two phases (10 and 11 d, respectively). Feed intake and BW were measured at the end of each phase. Pigs were euthanized on day 21 to collect jejunal tissue and mucosa to evaluate intestinal health. Ileal digesta were collected to measure the apparent ileal digestibility of nutrients in diets. Data were analyzed using Proc Mixed and Reg of SAS. Increasing daily intake of CGCM increased (linear; P < 0.05) ADG of pigs. Increasing CGCM supplementation affected (quadratic; P < 0.05) the relative abundance of Lactobacillaceae (minimum: 26.4% at 1.2% CGCM), Helicobacteraceae (maximum: 29.3% at 1.2% CGCM), and Campylobacteraceae (maximum: 9.0% at 1.0% CGCM). Increasing CGCM supplementation affected (quadratic; P < 0.05) the concentrations of immunoglobulin G (maximum: 4.94 µg/mg of protein at 1.0% CGCM) and protein carbonyl (PC; maximum: 6.12 nmol/mg of protein at 1.1% CGCM), whereas linearly decreased (P < 0.05) malondialdehyde (MDA) in the proximal jejunal mucosa. Increasing CGCM supplemention affected (quadratic; P < 0.05) intestinal enterocyte proliferation rate (maximum: 13.3% at 1.0% CGCM), whereas it did not affect intestinal morphology and the nutrient digestibility. In conclusion, supplementing 1.0% to 1.2%, reducing blood plasma supplementation by 0.7% to 0.9%, respectively, increased potential pathogenic microbiota associated in the jejunal mucosa resulting in increased immune response, enterocyte proliferation, and PC concentration. However, supplementing diets with 2.1% CGCM, replacing 1.5% blood plasma, improved growth performance, and reduced MDA without affecting nutrient digestibility, intestinal morphology, and microbiota in the jejunal mucosa. In this study, based on the polynomial contrast, supplementing 1.0% to 1.2% CGCM suppressed the benefits from blood plasma, whereas supplementing 2.1% CGCM showed functional benefits of CGCM with similar effects from blood plasma supplementation.  相似文献   

9.
Canola meal (CM) contains less crude protein (CP) and more fiber and anti-nutritional factors such as glucosinolates than soybean meal (SBM) and consequently has a lower nutrient digestibility. Therefore, processing strategies that may increase the feeding value of CM warrant study. In two experiments, the effects of extrusion of Brassica napus CM on apparent (AID) and standardized ileal digestibility (SID) of amino acids (AA), apparent total tract digestibility (ATTD) of gross energy (GE) in growing pigs, and growth performance and diet digestibility in weaned pigs were assessed. Solvent-extracted CM was extruded using a single-screw extruder at three screw speeds: 250 (CM-250), 350 (CM-350), or 450 (CM-450) rpm. In exp. 1, in a double 4 × 4 Latin square, eight ileal-cannulated barrows (initial body weight [BW], 68.1 kg) were fed corn starch-based diets containing 50% CM or extruded CM. The CM sample contained 43.2% CP, 33.2% total dietary fiber (TDF), and 8.9 µmol of total glucosinolates/g on a dry matter (DM) basis. Extrusion increased (P < 0.05) the AID of CP, reduced (P < 0.05) apparent hindgut fermentation of CP, and decreased (P < 0.05) predicted net energy (NE) value of diets. Extrusion increased diet AID and CM SID of most indispensable AA by 3.1 to 5.3%-units. In exp. 2, 200 weaned pigs (initial BW, 8.3 kg) were fed diets containing 20% SBM, CM, or extruded CM starting 2 wk postweaning for 3 wk. The CM sample contained 42.7% CP, 28.3% TDF, and 5.3 µmol total glucosinolates/g DM. Wheat-based diets provided 2.3 Mcal NE/kg and 5.1 g SID Lys/Mcal NE. Dietary inclusion of extruded CM replacing SBM decreased (P < 0.05) diet ATTD of DM, GE and CP, and DE value. Average daily feed intake, average daily gain (ADG), and gain:feed (G:F) of pigs did not differ between extruded CM and SBM diets and were not affected by extrusion, but increasing extruder screw speed linearly increased (P < 0.05) ADG for day 1 to 7 and G:F for the entire trial. In conclusion, extrusion increased diet AID and CM SID of AA but not DE and predicted NE values of CM. However, increasing extruder speed did not further increase the SID of most of the AA of CM in growing pigs. Dietary inclusion of 20% CM or extruded CM did not affect the growth performance in weaned pigs.  相似文献   

10.
The efficacy of exogenous carbohydrases in pig diets has been suggested to depend on enzyme activity and dietary fiber composition, but recent evidence suggests other factors such as ambient temperature might be important as well. Therefore, we investigated the effect of heat stress (HS) on the efficacy of a multienzyme carbohydrase blend in growing pigs. Ninety-six (barrows: gilts; 1:1) growing pigs with initial body weight (BW) of 20.15 ± 0.18 kg were randomly assigned to six treatments, with eight replicates of two pigs per pen in a 3 × 2 factorial arrangement: three levels of carbohydrase (0, 1X, or 2X) at two environmental temperatures (20 °C or cyclical 28 °C nighttime and 35 °C day time). The 1X dose (50 g/tonne) provided 1,250 viscosimetry unit (visco-units) endo-β-1,4-xylanase, 4,600 units α-l-arabinofuranosidase and 860 visco-units endo-1,3(4)-β-glucanase per kilogram of feed. Pigs were fed ad libitum for 28 d and 1 pig per pen was sacrificed on day 28. There was no enzyme × temperature interaction on any response criteria; thus, only main effects are reported. Enzyme treatment quadratically increased (P < 0.05) BW on day 28, average daily gain (ADG) (P < 0.05), and average daily feed intake (ADFI) (P < 0.05) with the 1X level being highest. HS reduced the BW at day 14 (P < 0.01) and day 28 (P < 0.01), ADG (P < 0.01), and ADFI (P<0.001). There was a trend of increased feed efficiency (G:F) (P < 0.1) in the HS pigs. HS increased apparent jejunal digestibility of energy (P < 0.05) and apparent ileal digestibility of calcium (P < 0.01). At day 1, HS reduced serum glucose (P < 0.001) but increased nonesterified fatty acid (P < 0.01). In the jejunum, there was a trend of increased villi height by carbohydrases (P < 0.1), whereas HS reduced villi height (P < 0.05). HS increased the jejunal mRNA abundance of IL1β in the jejunum (P < 0.001). There was a trend for a reduction in ileal MUC2 (P < 0.1) and occludin (P < 0.1) by HS, and a trend for increased PEPT1 (P < 0.1). There was no effect of HS on alpha diversity and beta diversity of the fecal microbiome, but there was an increase in the abundance of pathogenic bacteria in the HS group. In conclusion, HS did not alter the efficacy of carbohydrases. This suggests that carbohydrases and HS modulate pig performance independently.  相似文献   

11.
High dietary protein may increase susceptibility of weaned pigs to enteric pathogens. Dietary supplementation with functional amino acids (FAA) may improve growth performance of pigs during disease challenge. The objective of this study was to evaluate the interactive effects of dietary protein content and FAA supplementation above requirements for growth on performance and immune response of weaned pigs challenged with Salmonella. Sixty-four mixed-sex weanling pigs (13.9 ± 0.82 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (AA–) or FAA profile (AA+; Thr, Met, and Trp at 120% of requirements) as factors. After a 7-d adaptation period, pigs were inoculated with either a sterile saline solution (CT) or saline solution containing Salmonella Typhimurium (ST; 3.3 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, ST shedding score in feces and intestinal colonization, fecal and digesta myeloperoxidase (MPO), and plasma urea nitrogen (PUN) were measured pre- and postinoculation. There were no dietary effects on any measures pre-inoculation or post-CT inoculation (P > 0.05). Inoculation with ST increased body temperature and fecal score (P < 0.05), serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), PUN, and fecal MPO, and decreased serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) compared with CT pigs (P < 0.05). ST-inoculation reduced average daily gain (ADG) and feed intake (ADFI) vs. CT pigs (P < 0.05) but was increased by AA+ vs. AA– in ST pigs (P < 0.05). Serum albumin and GSH:GSSG were increased while haptoglobin and SOD were decreased in ST-inoculated pigs fed AA+ vs. AA– (P < 0.05). PUN was higher in HP vs. LP-fed pigs postinoculation (P < 0.05). Fecal ST score was increased in ST-inoculated pigs on days 1 and 2 postinoculation and declined by day 6 (P < 0.05) in all pigs while the overall score was reduced in AA+ vs. AA– pigs (P < 0.05). Cecal digesta ST score was higher in HP vs. LP-fed pigs and were lower in AA+ compared with AA– fed pigs in the colon (P < 0.05). Fecal and digesta MPO were reduced in ST pigs fed AA+ vs. AA– (P < 0.05). These results demonstrate a positive effect of FAA supplementation, with minimal effects of dietary protein, on performance and immune status in weaned pigs challenged with Salmonella.  相似文献   

12.
An experiment was conducted to test the hypothesis that inclusion of Cu oxide (Cu2O) in diets for growing–finishing pigs improves body weight (BW) and bone mineralization, and reduces accumulation of Cu in the liver compared with pigs fed diets containing Cu sulfate (CuSO4). Two hundred growing pigs (initial BW: 11.5 ± 0.98 kg) were allotted to a randomized complete block design with 2 blocks of 100 pigs, 5 dietary treatments, 5 pigs per pen, and a total of 8 pens per treatment. Treatments included the negative control (NC) diet that contained 20 mg Cu/kg, and 4 diets in which 125 or 250 mg Cu/kg from CuSO4 or Cu2O were added to the NC diet. The experiment was divided into 4 phases and concluded when pigs reached market weight. Pig weights were recorded on day 1 and at the end of each phase and feed provisions were recorded throughout the experiment. On the last day of phases 1 and 4, 1 pig per pen was sacrificed to obtain samples of liver and spleen tissue, and the right metacarpal was collected. Results indicated that pigs fed diets containing 250 mg Cu/kg from CuSO4 had greater BW at the end of phases 1 and 2 than pigs fed NC diets. Pigs fed diets containing 250 mg Cu/kg from Cu2O had greater (P < 0.05) BW at the end of phases 1, 2, 3, and 4 compared with pigs fed NC diets, and these pigs also had greater BW at the end of phases 3 and 4 than pigs fed all other diets. Pigs fed the diets with 250 mg Cu/kg tended to have greater (P < 0.10) feed intake than pigs fed the NC diet at the end of phase 2, and for the overall experimental period, pigs fed diets containing 250 mg Cu/kg from Cu2O had greater (P < 0.05) feed intake than pigs on all other treatments. However, no differences in gain:feed ratio were observed among treatments. Copper accumulation in liver and spleen increased with Cu dose, but at the end of phase 1, pigs fed 250 mg Cu/kg from CuSO4 had greater (P < 0.05) Cu concentration in liver and spleen than pigs fed 250 mg Cu/kg from Cu2O. Pigs fed diets containing 250 mg Cu/kg from Cu2O had greater (P < 0.05) quantities of bone ash and greater (P < 0.05) concentrations of Ca, P, and Cu in bone ash than pigs fed NC diets or the 2 diets containing CuSO4, but Zn concentration in bone ash was less (P < 0.05) in pigs fed diets containing 250 mg Cu/kg from Cu2O. To conclude, supplementing diets for growing pigs with Cu2O improves growth performance and bone mineralization with less Cu accumulation in liver compared with pigs fed diets containing CuSO4.  相似文献   

13.
The effect of a novel consensus bacterial 6-phytase variant (PhyG) on apparent ileal digestibility (AID) of amino acids (AA) and phosphorus (P) utilization in young broilers when added to diets with high phytate-P (PP) content without added inorganic phosphate (Pi) and deficient in digestible (dig) AA and metabolizable energy (ME) was investigated. A total of 256 Ross 308 male broilers were assigned to 4 treatments (8 birds/cage, 8 cages/treatment) in a completely randomized design. Treatments comprised a positive control (PC, 2,975 kcal/kg ME, 3.7 g/kg dig P, 2.83 g/kg PP, 8.4 g/kg Ca, 10.6 g/kg dig lysine), a negative control (NC) without added Pi (ME −68 kcal/kg, crude protein −10 g/kg, dig AA −0.1 to −0.4 g/kg, Ca −2.0 g/kg, dig P −2.2 g/kg, Na −0.4 g/kg vs. PC), and NC plus 500 or 1,000 FTU/kg of PhyG. Test diets were corn/soy/rapeseed-meal/rice-bran-based and fed from 5 to 15 d of age. Ileal digesta and tibias were collected on day 15. Excreta was collected during days 12 to 15 to determine P retention. The NC (vs. PC) reduced (P < 0.05) P retention (−10.4% units), tibia ash (−14.3% units), weight gain (−109 g), feed intake (−82 g) and increased FCR (from 1.199 to 1.504), confirming that the NC was extremely deficient in nutrients and energy. Phytase addition to the NC linearly (P < 0.001) improved performance, but did not fully recover it to the level of the PC due to the severe nutrients/energy reduction in NC. Phytase linearly increased P retention (P < 0.001), tibia ash (P < 0.001), AID of dry matter (P < 0.05), nitrogen (P < 0.01), gross energy (P < 0.05), and all 17 individual AA (P < 0.01). At 1,000 FTU/kg, phytase increased (P < 0.05) P retention vs. PC and NC (+14.5 and +24.9% units, respectively) and increased tibia ash vs. NC (+13.8% units), equivalent to PC. The NC decreased AID of Cys, Gly, Thr, and Met vs. PC (P < 0.05). At 1,000 FTU/kg, phytase increased AID of all 17 AA vs. NC (P < 0.01), equivalent to PC. At 1,000 FTU/kg, AID AA responses (above NC) ranged from +4.5% (Met) to +15.0% (Cys), being maximal for essential Thr (+10.4%) and Val (+8.2%) and non-essential Cys (+15.0%) and Gly (+10.4%). The results highlight the efficacy of PhyG at a dose level of 500 to 1,000 FTU/kg in young broilers for improving the ileal digestibility of nitrogen, AA, and energy alongside P retention and tibia ash. The performance data emphasize the need to consider digestible nutrient intake as a response variable in exogenous enzyme studies.  相似文献   

14.
A total of 2,184 pigs (DNA 600 × PIC L42) were used to evaluate the effects of weaning age and antibiotic (AB) use on pig performance from weaning to marketing in a commercial production system. Experimental treatments were arranged in a 3 × 2 factorial with main effects of weaning age (18.5, 21.5, or 24.5 d of age) and with the use of ABs or an antibiotic-free (NAE) program. At birth, pigs were ear tagged, and the date of birth and sex recorded. Pigs were weaned from a 4,000-sow farm over four consecutive weeks. Four weaning batches (one per week) of 546 pigs were used. Each weaning batch had one-third of pigs of each weaning age. Pigs were placed in pens by weaning age and then randomly assigned to an AB or NAE program. There were 14 replicate pens per treatment and 26 pigs per pen (13 barrows and 13 gilts). Pigs allocated to the AB program were fed a diet containing 441 mg/kg chlortetracycline (CTC) from day 8 to 21 postweaning. They were also administered 22 mg/kg of body weight (BW) of CTC via drinking water for five consecutive days after a porcine respiratory and reproductive syndrome outbreak during week 7 after weaning. In the first 42 d postweaning, increasing weaning age improved (linear, P < 0.001) BW at day 42, average daily gain (ADG), and average daily feed intake (ADFI). From weaning to 197 d of age, increasing weaning age increased (linear, P < 0.001) ADG and ADFI. Pigs on the AB program had greater (P = 0.031) ADG and ADFI compared with NAE pigs. An interaction (linear, P = 0.005) was observed for feed efficiency (G:F). When ABs were provided, increasing weaning age did not result in any change in G:F; however, in the NAE program, increasing weaning age increased G:F. Pigs on the AB program had lower (P < 0.001) total losses (mortality and removals) than those on the NAE program. Increasing weaning age marginally (linear, P = 0.097) decreased total losses. Increasing weaning age decreased (quadratic, P < 0.001) the number of pigs treated with an injectable AB but the AB program did not (P = 0.238). The weight sold (at 197 d of age) per pig weaned was increased (linear, P = 0.050) by increasing weaning age and by using AB in feed and water (P = 0.019). In summary, increasing weaning age linearly improved most of the pig performance criteria and relatively the short-term use of ABs reduced mortality and removals with both factors contributing to increased weight sold per pig weaned.  相似文献   

15.
Two experiments were conducted to determine the effect of supplementation of xylanase to a wheat-based diet on the apparent ileal digestibility (AID) of AA and the performance of growing pigs fed diets limiting in AA. In Exp. 1, eight pigs (average initial BW = 20.5+/-1.2 kg) fitted with a simple T-cannula at the distal ileum, were fed four diets according to a repeated 4 x 4 Latin square design. Diet 1 was a basal diet that contained 97.6% wheat. Diets 2, 3, and 4 were the basal diet supplemented with xylanase at rates of 5,500, 11,000, and 16,500 units of xylanase activity (XU), respectively (as-fed basis). There were linear and quadratic effects (0.062 < P < 0.001) of xylanase supplementation on the AID of CP and most of the AA. The largest increases in AID of CP and AA were obtained when xylanase was supplemented at a rate of 11,000 XU; no further increases were observed with xylanase supplementation at a rate of 16,500 XU. In Exp. 2, 30 pigs (average initial BW 21.4+/-1.8 kg) were randomly allotted to six dietary treatments. Diets 1 to 4 were similar to those used in Exp. 1. Diet 5 was the same as Diet 1, but supplemented with 0.53% lysine, 0.12% threonine, and 0.05% methionine. Diet 6 (positive control diet) was a wheat-soybean meal diet that contained 18.2% CP (as-fed basis). The total contents of lysine, threonine, and methionine were similar for Diets 5 and 6. There was a linear effect of xylanase supplementation on ADG (P = 0.093) and feed:gain ratio (P = 0.089), and a quadratic effect on ADG (P = 0.067) and feed:gain ratio (P = 0.074). But, the greatest response was obtained with the supplementation of 11,000 XU. The supplementation of lysine, threonine, and methionine to Diet 1 increased (P = 0.001) ADG and ADFI and improved (P = 0.01) feed:gain ratio. There was no difference (P = 0.508) in the performance of pigs fed the AA-supplemented or control diet. In conclusion, the supplementation of xylanase to a diet in which wheat provided the sole source of protein and energy improved the AID of AA, ADG, and feed:gain ratio; however, this improvement was very small compared with that obtained with the supplementation of synthetic amino acids.  相似文献   

16.
We recently showed that dietary supplementation with key functional amino acids (FAA) improves growth performance and immune status of Salmonella Typhimurium (ST)-challenged pigs. It is not known if ST-challenged pigs will benefit from a longer adaptation period to FAA. The objective of this study was to evaluate the effects of different adaptation periods to diets containing FAA above requirements for growth on performance and immune response of weaned pigs subsequently challenged with ST. A total of 32 mixed-sex weanling pigs (11.6 ± 0.3 kg) were randomly assigned to 1 of 4 dietary treatments, being a basal amino acid (AA) profile fed throughout the experimental period (FAA−) or a functional AA profile (FAA+; Thr, Met, and Trp at 120% of requirements) fed only in the postinoculation (FAA+0), for 1 wk pre- and postinoculation (FAA+1), or throughout the experimental period (FAA+2). After a 14-d adaptation period, pigs were inoculated with ST (2.15 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, score for ST shedding in feces and intestinal colonization, and fecal and digesta myeloperoxidase (MPO) were measured pre- and postinoculation. Postinoculation body temperature and fecal score, serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), and fecal MPO were increased while serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) were reduced compared to pre-inoculation (P < 0.05). Average daily gain and G:F were greater in FAA+2 pigs compared to FAA− pigs (P < 0.05). Serum albumin was higher in FAA+2 and FAA+1 compared to FAA+0 and FAA− pigs (P < 0.05) while FAA+2 pigs had lower haptoglobin compared to FAA− (P < 0.05). Plasma SOD was increased and GSH:GSSG was decreased in FAA− pigs compared to the other treatments (P < 0.05). Score for ST shedding in feces was progressively lower from d 1 to 6 regardless of treatment (P < 0.05) and was lower in FAA+2 pigs compared to FAA− and FAA+0 (P < 0.05). Counts of ST in colon digesta were higher in FAA− and FAA+0 pigs compared to FAA+2 (P < 0.05). Fecal and colonic digesta MPO were lower in FAA+2 and FAA+1 pigs compared to FAA− (P < 0.05). These results demonstrate a positive effect of a longer adaptation period to FAA-supplemented diets on performance and immune status of weaned pigs challenged with Salmonella.  相似文献   

17.
The aim of this study was to determine the effect of dietary Forsythia suspensa extract (FSE) supplementation to lactating sows and nursery pigs on post-weaning performance, antioxidant capacity, immunoglobulins, and intestinal health. Based on backfat, body weight (BW), and parity, 24 gestating sows (Landrace × Yorkshire) with average parity of 3.38 ± 0.61 and BW of 234 ± 6.81 kg were allotted into two dietary treatments (control vs. 100 mg/kg FSE) with 12 sows per treatment from day 107 of gestation to day 21 of lactation. After weaning, based on the initial BW and source litter, 192 nursery pigs (Duroc × [Landrace × Yorkshire], average BW of 6.98 ± 0.32 kg, weaned at day 21) were allotted into four dietary treatments with eight replicate pens per treatment, six pigs per pen for a 4-wk study. The treatments included the following: 1) CC (sows and their piglets both fed control diet); 2) CF (sows fed control diet and their piglets fed FSE diet [containing 100 mg/kg FSE]); 3) FC (sows fed FSE diet and their piglets fed control diet); and 4) FF (sows and their piglets both fed FSE diet). The MIXED procedures of SAS for a split-plot arrangement with sow diet as the whole plot and nursery diet as split plot were used to analyze the data. After weaning, piglets from FSE-fed sows had improved (P < 0.05) average daily gain and feed efficiency, and lower (P < 0.05) diarrhea rate in overall (day 1 to 28) compared with those from sows fed control diet. Piglets from FSE-fed sows also had higher (P < 0.05) contents of immunoglobulin G (IgG), growth hormone, superoxide dismutase (SOD), total antioxidant capacity in serum, villus height in ileum, and villus height to crypt depth ratio in jejunum, as well as lower (P < 0.05) content of malondialdehyde (MDA) in serum and crypt depth in ileum compared with those from sows fed control diet. Piglets fed FSE during nursery had increased (P < 0.05) concentrations of IgG, SOD, and catalase, and decreased (P < 0.05) MDA and tumor nuclear factor-α levels in serum compared with those fed control diet during nursery. Piglets from FC group had increased (P < 0.05) protein expression of occludin in jejunal mucosa and relative abundance of Lactobacillus on genus level in colon compared with those from CC group. In conclusion, for the performance and intestinal health, diets supplemented with FSE during lactation phase seemed more efficient to alleviate weaning stress than the nursery phase. In terms of the antioxidant status and immunoglobulins, FSE supplemented in both phases were efficient for nursery pigs.  相似文献   

18.
Three experiments were conducted to evaluate the effect of supplementing phytase and xylanase on nutrient digestibility and performance of growing pigs fed wheat-based diets. In Exp. 1, 10 diets were fed to 60 pigs from 20 to 60 kg of BW to determine the effect of combining phytase and xylanase on apparent total tract digestibility (ATTD) of nutrients and growth performance. The 10 diets included a positive control diet (PC; 0.23% available P; 0.60% Ca) and a negative control diet (NC; 0.16% available P; 0.50% Ca) supplemented with phytase at 0, 250, and 500 fytase units (FTU)/kg and xylanase at 0, 2,000, and 4,000 xylanase units (XU)/kg in a 3 x 3 factorial arrangement. In Exp. 2, 6 ileally cannulated barrows (initial BW = 35.1 kg) were fed 4 wheat-based diets in a 4 x 4 Latin square design, with 2 added columns to determine the effect of combining phytase and xylanase on apparent ileal digestibility (AID) of nutrients. The 4 diets were NC (same as that used in Exp. 1) or NC supplemented with phytase at 500 FTU/kg, xylanase at 4,000 XU/kg, or phytase at 500 FTU/kg plus xylanase at 4,000 XU/kg. In Exp. 3, 36 barrows (initial BW = 55.5 kg) were fed 4 diets based on prepelleted (at 80 degrees C) and crumpled wheat for 2 wk to determine the effect of phytase supplementation on ATTD of nutrients. The 4 diets fed were a PC (0.22% available P; 0.54% Ca) and a NC (0.13% available P; 0.43% Ca) alone or with phytase at 500 or 1,000 FTU/kg. All diets in the 3 experiments contained Cr(2)O(3) as an indigestible marker. No synergistic interactions were detected between phytase and xylanase on any of the response criteria measured in Exp. 1 or 2. There were no dietary effects on growth performance in Exp. 1. In Exp. 1, phytase at 250 FTU/kg increased the ATTD of P and Ca by 51 and 11% at 20 kg of BW or by 54 and 10% at 60 kg of BW, respectively, but increasing the level of phytase to 500 FTU/kg only increased (P < 0.05) ATTD of P at 20 kg of BW. In Exp. 2, phytase at 500 FTU/kg increased (P < 0.05) the AID of P and Ca by 21 and 12%, respectively. In Exp. 3, phytase at 500 FTU/kg improved (P < 0.05) ATTD of P by 36%, but had no further effect at 1,000 FTU/kg. Xylanase at 4,000 XU/kg improved (P < 0.05) AID of Lys, Leu, Phe, Thr, Gly, and Ser in Exp. 2. In conclusion, phytase and xylanase improved P and AA digestibilities, respectively, but no interaction between the 2 enzymes was noted.  相似文献   

19.
This study evaluated the effects of barley inclusion and glucanase supplementation on the productive performance and digestive function in laying ducks. The experiment used a randomized design with a 5 × 2 factorial arrangement of 5 graded levels of barley (0%, 15%, 30%, 45% and 60%) with or without 1.5 g/kg β-1,3-1,4-glucanase (15,000 U/kg). During the experimental period of 120 d, the weight and total number of eggs within each pen were recorded daily, and egg quality was determined every 4 wk. At the end of the experiment, 3 randomly selected ducks within each replicate were sacrificed, then duodenal digesta and jejunal mucosa was collected. Dietary inclusion of barley had no effects on egg production, daily egg mass or FCR, but supplementation with glucanase improved egg production and FCR (P < 0.01). Barley did not affect feed intake of laying ducks, but glucanase tended to increase feed intake (P = 0.09). Neither barley nor β-glucanase had effects on the egg quality variables, except for yolk color score, which was decreased with increasing barley supplementation. Glucanase, but not barley, increased the activity of chymotrypsin and amylase in duodenal digesta. Barley inclusion affected the activity of alkaline phosphatase and maltase in jejunal mucosa (P < 0.05), but β-glucanase had no effects on the activity of these brush border enzymes. Barley inclusion increased the glucan content in duodenal digesta, but supplementation of glucanase to barley-based diet reduced digesta glucan content and reduced total volatile fatty acids and increased the proportion of acetic acid in cecal contents. The results indicate that, without glucanase, the optimal dietary barley level in the diets of laying ducks is about 13% for maximal production performance; glucanase supplementation of the barley diets improved production performance, probably through enhancing digestive function.  相似文献   

20.
This experiment was conducted to evaluate potential replacements for pharmacological levels of Zn (provided by Zn oxide), such as diet acidification (sodium diformate) and low dietary crude protein (CP: 21 vs 18%) on nursery pig performance and fecal dry matter (DM). A total of 360 weaned pigs (Line 200 × 400, DNA, Columbus, NE; initially 5.90 ± 0.014 kg) were used in a 42-d growth study. Pigs were weaned at approximately 21 d of age and randomly assigned to pens (five pigs per pen). Pens were then allotted to one of eight dietary treatments with nine pens per treatment. Experimental diets were fed in two phases: phase 1 from weaning to day 7 and phase 2 from days 7 to 21, with all pigs fed the same common diet from days 21 to 42. The eight treatment diets were arranged as a 2 × 2 × 2 factorial with main effects of Zn (110 mg/kg from days 0 to 21 or 3,000 mg/kg from days 0 to 7, and 2,000 mg/kg from days 7 to 21), diet acidification, (without or with 1.2% sodium diformate), and dietary CP (21% or 18%, 1.40% and 1.35% in phases 1 and 2 vs. 1.20% standardized ileal digestible Lys, respectively). Fecal samples were collected weekly from the same three pigs per pen to determine DM content. No 2- or 3-way interactions (P > 0.05) were observed throughout the 42-d study for growth performance; however, there was a Zn × acidifier × CP interaction (P < 0.05) for fecal DM on day 7 and for the overall average of the six collection periods. Reducing CP without acidification or pharmacological levels of Zn increased fecal DM, but CP had little effect when ZnO was present in the diet. From days 0 to 21, significant (P < 0.05) main effects were observed where average daily gain (ADG) and gain:feed (G:F) increased for pigs fed pharmacological levels of Zn, sodium diformate, or 21% CP (P < 0.065). In the subsequent period (days 21 to 42) after the experimental diets were fed, there was no evidence of difference in growth performance among treatments. Overall (days 0 to 42), main effect tendencies were observed (P < 0.066) for pigs fed added Zn or sodium diformate from days 0 to 21, whereas pigs fed 21% CP had greater G:F than those fed 18% CP. Pig weight on day 42 was increased by adding Zn (P < 0.05) or acidifier (P < 0.06) but not CP. In summary, none of the feed additives had a major influence on fecal DM, but dietary addition of pharmacological levels of Zn or sodium diformate independently improved nursery pig performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号