首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pharmacokinetics of selamectin were evaluated in cats and dogs, following intravenous (0.05, 0.1 and 0.2 mg/kg), topical (24 mg/kg) and oral (24 mg/kg) administration. Following selamectin administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). After intravenous administration of selamectin to cats and dogs, the mean maximum plasma concentrations and area under the concentration-time curve (AUC) were linearly related to the dose, and mean systemic clearance (Clb) and steady-state volume of distribution (Vd(ss)) were independent of dose. Plasma concentrations after intravenous administration declined polyexponentially in cats and biphasically in dogs, with mean terminal phase half-lives (t(1/2)) of approximately 69 h in cats and 14 h in dogs. In cats, overall Clb was 0.470 +/- 0.039 mL/min/kg (+/-SD) and overall Vd(ss) was 2.19 +/- 0.05 L/kg, compared with values of 1.18 +/- 0.31 mL/min/kg and 1.24 +/- 0.26 L/kg, respectively, in dogs. After topical administration, the mean C(max) in cats was 5513 +/- 2173 ng/mL reached at a time (T(max)) of 15 +/- 12 h postadministration; in dogs, C(max) was 86.5 +/- 34.0 ng/mL at T(max) of 72 +/- 48 h. Bioavailability was 74% in cats and 4.4% in dogs. Following oral administration to cats, mean C(max) was 11,929 +/- 5922 ng/mL at T(max) of 7 +/- 6 h and bioavailability was 109%. In dogs, mean C(max) was 7630 +/- 3140 ng/mL at T(max) of 8 +/- 5 h and bioavailability was 62%. There were no selamectin-related adverse effects and no sex differences in pharmacokinetic parameters. Linearity was established in cats and dogs for plasma concentrations up to 874 and 636 ng/mL, respectively. Pharmacokinetic evaluations for selamectin following intravenous administration indicated a slower elimination from the central compartment in cats than in dogs. This was reflected in slower clearance and longer t(1/2) in cats, probably as a result of species-related differences in metabolism and excretion. Inter-species differences in pharmacokinetic profiles were also observed following topical administration where differences in transdermal flux rates may have contributed to the overall differences in systemic bioavailability.  相似文献   

2.
A pharmacokinetic study was conducted to compare the oral bioavailability of tepoxalin and its pharmacologically active acid metabolite in fasted dogs and dogs fed either a low-fat or high-fat commercial diet. Using a cross-over design, six beagles were administered tepoxalin (10 mg/kg) intravenously (i.v.) and orally (p.o.) after being fed one of three diets (fasted, low-fat, or high-fat). Thereafter, blood samples were collected at frequent intervals, concentrations of tepoxalin and acid metabolite in plasma were determined by high performance liquid chromatography, and pharmacokinetic parameters were estimated. After i.v. dosing, the mean (+/-SD) half-life of elimination (t(1/2(beta))) was 2.45 +/- 1.47 h. After p.o. administration, plasma concentrations of acid metabolite were consistently higher than corresponding concentrations of the parent tepoxalin, indicating that tepoxalin is subject to a substantial first-pass effect. Mean (+/-SD) peak concentrations of tepoxalin were significantly higher after feeding of low-fat (1.08 +/- 0.37 microg/mL) and high-fat (1.19 +/- 0.29 microg/mL) diets than in fasted dogs (0.53 +/- 0.20 microg/mL), suggesting that feeding improves oral bioavailability.  相似文献   

3.
Leptin is a protein synthesized and secreted primarily by adipocytes, and plays a key role in the regulation of energy balance. We have reported that serum leptin is elevated in obese dogs. In the present study, we examined diurnal variations of serum leptin in the dog, with special references to feeding and fasting cycles. Four male beagles were accustomed to feed once a day at 10:00 h, and blood samples were taken every 3 h for 24-36 h. Serum leptin concentration showed clear diurnal variations, being lowest before food intake (2.3+/-0.5 ng/mL) at 09:00 h, and highest (10.5+/-2.4 ng/mL) at 18:00 h. Such diurnal variations disappeared when the dogs were fasted. Serum insulin also showed diurnal variation with higher levels at 12:00-15:00 h. When insulin or glucose was injected in the fasted dogs to mimic the post-prandial insulin rise, serum leptin concentration was significantly increased in 4-8 h, but in both cases to a lesser extents than those after food intake. The results indicate that serum leptin concentrations change diurnally in association with feeding-fasting cycles in the dog, partially due to changes in insulin secretion.  相似文献   

4.
The pharmacokinetics of oclacitinib maleate was evaluated in four separate studies. The absolute bioavailability study used a crossover design with 10 dogs. The effect of food on bioavailability was investigated in a crossover study with 18 dogs. The breed effect on pharmacokinetics was assessed in a crossover study in beagles and mongrels dogs. Dose proportionality and multiple dose pharmacokinetics were evaluated in a parallel design study with eight dogs per group. In all four studies, serial blood samples for plasma were collected. Oclacitinib maleate was rapidly and well absorbed following oral administration, with a time to peak plasma concentration of <1 h and an absolute bioavailability of 89%. The prandial state of dogs did not significantly affect the rate or extent of absorption of oclacitinib maleate when dosed orally, as demonstrated by the lack of significant differences in pharmacokinetic parameters between the oral fasted and oral fed treatment groups. The pharmacokinetics of oclacitinib in laboratory populations of beagles and mixed breed dogs also appeared similar. Following oral administration, the exposure of oclacitinib maleate increased dose proportionally from 0.6 to 3.0 mg/kg. Additionally, across the pharmacokinetic studies, there were no apparent differences in oclacitinib pharmacokinetics attributable to sex.  相似文献   

5.
The purpose of the study was to describe the pharmacokinetics of subcutaneous fentanyl (15μg/kg) in six healthy Greyhound dogs. Fentanyl plasma concentrations were determined by a liquid chromatography with mass spectrometry method. Non-compartmental pharmacokinetic analysis was used. Fentanyl was rapidly absorbed with a mean peak concentration (C(MAX)) of 3.56ng/mL at 0.24h. The mean terminal half-life, volume of distribution per bioavailability, and clearance per bioavailability were 2.97h, 7.09L/kg, 27.60mL/min/kg, respectively. Pain occurred on injection in all six dogs, but addition of 8.4% sodium bicarbonate (1mL per 20mL fentanyl) resulted in no pain on injection in 3/3 dogs but similar C(MAX) values. The subcutaneous route may be an alternative route of fentanyl administration if intravenous administration is not practical.  相似文献   

6.
The pharmacokinetic properties and in vitro potency of nimesulide, a nonsteroidal anti-inflammatory drug (NSAID) were investigated in 8 or 10 dogs after intravenous (i.v.), intramuscular (i.m.) and oral (single and multiple dose) administrations at the nominal dose of 5 mg/kg. After i.v. administration, the plasma clearance was 15.3 +/- 4.2 mL/kg/h, the steady-state volume of distribution was low (0.18 +/- 0.011 L/kg) and the elimination half-life was 8.5 +/- 2.1 h. After i.m. administration, the terminal half-life was 14.0 +/- 5.3 h indicating a slow process of absorption with a maximum plasma concentration (6.1 +/- 1.5 microg/mL) at 10.9 +/- 2.1 h postadministration and the systemic bioavailability was 69 +/- 22%. After oral administration in fasted dogs, the maximal plasma concentration (10.1 +/- 2.7 microg/mL) was observed 6.1 +/- 1.6 h after drug administration, the plasma half-life was 6.2 +/- 1.9 h and the mean bioavailability was 47 +/- 12%. After daily oral administrations for 5 days, the average plasma concentration during the fifth dosage interval was 8.1 +/- 2.9 microg/mL and the overall bioavailability was 58 +/- 16%. The mean accumulation ratio was 1.27 +/- 0.4. In vitro nimesulide inhibitory potencies for cyclooxygenase (COX)-1 and COX-2 isoenzymes were determined using a whole blood assay. Canine clotting blood was used to test for inhibition of COX-1 activity and whole blood stimulated by lipopolysaccharide (LPS) was used to test for inhibition of COX-2 activity. The inhibitory concentration (IC50) for inhibition of COX-2 and COX-1 were 1.6 +/- 0.4 microM (0.49 +/- 0.12 microg/mL) and 20.3 +/- 2.8 microM (6.3 +/- 0.86 microg/mL) giving a nimesulide COX-1/COX-2 ratio of 12.99 +/- 3.41. It was concluded that at the currently recommended dosage regimen (5 mg/kg), the plasma concentration totally inhibits COX-2 and partly inhibits COX-1 isoenzyme.  相似文献   

7.
Yancey, M. F., Merritt, D. A., Lesman, S. P., Boucher, J. F., Michels, G. M. Pharmacokinetic properties of toceranib phosphate (Palladia?, SU11654), a novel tyrosine kinase inhibitor, in laboratory dogs and dogs with mast cell tumors. J. vet. Pharmacol. Therap. 33 , 162–171. Toceranib phosphate (Palladia?, SU11654), an oral tyrosine‐kinase inhibitor, is under investigation for the treatment of mast cell tumors in dogs. The pharmacokinetics of toceranib phosphate has been characterized in dogs. Means of the following pharmacokinetic parameters were estimated following a 1.0 mg/kg i.v. dose to laboratory beagles: plasma clearance of 1.45 L/kg/h, volume of distribution of 29.7 L/kg, and terminal half‐life of 17.7 h. Following single oral doses of 3.25 mg/kg administered to laboratory beagles, mean Cmax estimates ranged from 68.6 ng/mL to 112 ng/mL with tmax ranging from 5.3 h and 9.3 h postdose. Terminal half‐life was estimated at 31 h. Oral bioavailability was 76.9%. There were no statistically significant (P > 0.05) differences with any pharmacokinetic parameter due to fed/fasted state or with time during 13 weeks of every‐other‐day dosing at 3.25 mg/kg. Toceranib concentrations were proportional with dose over the range of 2.0 to 6.0 mg/kg. The pharmacokinetics of toceranib in client‐owned dogs of a variety of pure and mixed breeds with mast cell tumors was similar to that in healthy laboratory dogs. In summary, toceranib phosphate exhibited moderate clearance, a high volume of distribution, and a moderate elimination half‐life. After a single oral dose at 3.25 mg/kg, the concentration vs. time curve showed broad, sustained exposure with measurable concentrations for more than 48 h. These pharmacokinetic parameters support every‐other‐day administration of toceranib phosphate at an initial dose of 3.25 mg/kg for the treatment of mast cell tumors in dogs.  相似文献   

8.
The pharmacokinetics and intramuscular (i.m.) bioavailability of cefoperazone and cefamandole (20mg/kg) were investigated in dogs and the findings related to minimal inhibitory concentrations (MICs) for 90 bacterial strains isolated clinically from dogs. The MICs of cefamandole for Staphylococcus intermedius (MIC(90) 0.125 microg/mL) were lower than those of cefoperazone (MIC(90) 0.5 micro/mL) although the latter was more effective against Escherichia coli strains (MIC(90) 2.0 microg/mL vs. 4.0 microg/mL). The pharmacokinetics of the drugs after intravenous administrations were similar: a rapid distribution phase was followed by a slower elimination phase (t((1/2)lambda2) 84.0+/-21.3 min for cefoperazone and 81.4+/-9.7 min for cefamandole). The apparent volume of distribution and body clearance were 0.233 L/kg and 1.96 mL/kg/min for cefoperazone, 0.190 L/kg and 1.76 mL/kg/min for cefamandole. After i.m. administration the bioavailability and peak serum concentration of cefamandole (85.1+/-13.5% and 35.9+/-5.4 microg/mL) were significantly higher than cefoperazone (41.4+/-7.1% and 24.5+/-3.0 micog/mL), but not the serum half-lives (t(1/2el) 134.3+/-12.6 min for cefoperazone and 145.4+/-12.3 min for cefamandole). The time above MIC(90) indicated that cefamandole can be administered once daily to dogs for the treatment of staphylococcal infections (T>MIC for S. intermedius 23.8+/-0.3 and for Staphylococcus aureus 21.6+/-0.6h).  相似文献   

9.
Leptin is a protein synthesized and secreted primarily by adipocytes, and the circulating leptin concentration is elevated in obese humans and rodents. Recently, we have established a sandwich enzyme-linked immunosorbent assay for canine leptin. In the present study, plasma leptin concentrations were measured in experimentally developed obese beagles and in clinically obese dogs. When 5 male beagles were given a high-energy diet for 3 months, all of them became obese and the plasma leptin concentration significantly increased from 2.4+/-1.2 to 4.9+/-0.9 ng/ml, positively correlating with body fat content estimated by the deuterium oxide dilution method (r=0.87). The leptin concentrations of plasma samples collected from 59 dogs in veterinary practices were compared with their body condition scores (BCS). The plasma leptin concentrations of obese dogs were 9.7+/-0.7 and 12.3+/-1.5 ng/ml at BCS=4 and BCS=5, respectively, which were significantly higher than those of optimal (BCS=3) dogs (2.7+/-0.3 ng/ml). There was no significant effect of sex and breed. A weak positive correlation (r=0.37) was found between the plasma leptin concentration and age, probably due to the lesser content of visceral fat in puppies younger than 1 year old. These results indicate that plasma leptin is a good index of adiposity in dogs regardless of breed, age and sex, and may be useful for quantitative assessment of obesity in small animal practice.  相似文献   

10.
Methadone is an opioid, which has a high oral bioavailability (>70%) and a long elimination half-life (>20 h) in human beings. The purpose of this study was to evaluate the effects of ketoconazole [a CYP3A and p-glycoprotein (p-gp) inhibitor] and omeprazole (an H+,K(+)-ATPase proton-pump inhibitor) on oral methadone bioavailability in dogs. Six healthy dogs were used in a crossover design. Methadone was administered i.v. (1 mg/kg), orally (2 mg/kg), again orally following oral ketoconazole (10 mg/kg q12 h for two doses), and following omeprazole (1 mg/kg p.o. q12 h for five doses). Plasma concentrations of methadone were analyzed by high-pressure liquid chromatography or fluorescence polarization immunoassay. The mean +/- SD for the elimination half-life, volume of distribution, and clearance were 1.75 +/- 0.25 h, 3.46 +/- 1.09 L/kg, and 25.14 +/- 9.79 mL/min.kg, respectively following i.v. administration. Methadone was not detected in any sample following oral administration alone or following oral administration with omeprazole. Following administration with ketoconazole, detectable concentrations of methadone were present in one dog with a 29% bioavailability. MDR-1 genotyping, encoding p-gp, was normal in all dogs. In contrast to its pharmacokinetics humans, methadone has a short elimination half-life, rapid clearance, and low oral bioavailability in dogs and the extent of absorption is not affected by inhibition of CYP3A, p-gp, and gastric acid secretion.  相似文献   

11.
Au, A. Y., Hasenwinkel, J. M., Frondoza, C. G. Silybin inhibits interleukin‐1β‐induced production of pro‐inflammatory mediators in canine hepatocyte cultures. J. vet. Pharmacol. Therap. 34 , 120–129. Hepatocytes are highly susceptible to cytokine stimulation and are fundamental to liver function. We established primary canine hepatocyte cultures to study effects of anti‐inflammatory agents with hepatoprotective properties. Hepatocyte cultures were incubated with control media alone, silybin (SB), or the more bioavailable silybin–phosphatidylcholine complex (SPC), followed by activation with interleukin‐1 beta (IL‐1β; 10 ng/mL). Inflammatory response was measured by prostaglandin E2 (PGE2), interleukin‐8 (IL‐8), and monocyte chemotactic protein‐1 (MCP‐1) production and also nuclear factor‐kappa B (NF‐κB) translocation. Hepatocyte cultures continued production of the phenotypic marker albumin for more than 7 days in culture. IL‐1β exposure increased PGE2, IL‐8, and MCP‐1 production, which was paralleled by NF‐κB translocation from the cytoplasm to the nucleus. Pretreatment with SB and SPC significantly inhibited IL‐1β‐induced production of pro‐inflammatory markers and attenuated NF‐κB nuclear translocation. We demonstrate for the first time that primary canine hepatocyte cultures can be maintained in culture without phenotypic loss. The observation that hepatocyte cultures respond to pro‐inflammatory IL‐1β activation indicates hepatocytes as primary cellular targets of extrinsic IL‐1β. The ability of SB and SPC to inhibit hepatocyte culture activation by IL‐1β reinforces the notion of their hepatoprotective effects. Our primary canine hepatocyte culture model facilitates identification of hepatoprotective agents and their mechanism of action.  相似文献   

12.
The aim of this study was to investigate the effects of methylprednisolone treatment on serum leptin and ghrelin levels in healthy dogs (n=40). After 14 h of fasting, the dogs were injected intramuscularly with saline (control group) or methylprednisolone (1, 5 or 10mg/kg). Blood samples were collected prior to (baseline) and 2, 3, 4, 8, 12 and 24h subsequent to the treatments. Serum leptin and ghrelin were measured by radioimmunoassay. The mean baseline serum leptin and ghrelin were 2.5+/-0.1 ng/mL (n=40) and 35.0+/-2.1 pg/mL (n=40), respectively. In the control dogs, serum leptin, but not ghrelin levels showed a significant fluctuation during the 24h observation period. Serum leptin increased significantly (p<0.05-0.01) between 2 and 12h after 1mg/kg of methylprednisolone. Serum leptin levels showed biphasic response to 5mg/kg of methylprednisolone: its level decreased to 1.9+/-0.1 ng/mL (p<0.01) at 2h and increased at 12h (2.6+/-0.1 ng/mL) (p<0.01). In response to 10mg/kg of methylprednisolone, serum leptin levels decreased significantly (p<0.01) for 24h. Serum ghrelin levels decreased to 19+/-5 pg/mL at 2-3h (p<0.01) or increased to 87+/-18 pg/mL at 3-8h (p<0.05-0.01) after 1mg/kg of methylprednisolone or 10mg/kg of methylprednisolone, respectively. Serum ghrelin levels did not change at any time point during 24h observation period after 5mg/kg of methylprednisolone. There was a significant (p<0.001) inverse correlation (r=-0.635) between serum leptin and ghrelin levels. In conclusion, we found that methylprednisolone increases or decreases serum leptin and ghrelin levels depending upon its dose and there is a negative correlation between serum leptin and ghrelin levels after methylprednisolone administration.  相似文献   

13.
OBJECTIVES: To measure urinary concentrations of doxycycline in cats and dogs and tetracycline in dogs 4 h after conventional oral dosing and determine whether these antibiotics were present in sufficient concentrations to be effective against common feline and canine urinary tract pathogens as assessed in vitro by Epsilometer and disc diffusion antimicrobial susceptibility methods. DESIGN: A prospective study involving oral administration to clinically normal cats and dogs of doxycycline or tetracycline (dogs only) and culture of bacteria from dogs and cats with urinary tract infections to determine their susceptibility to both doxycycline and tetracycline in vitro. PROCEDURE: In the first study, nine cats and eight dogs were administered doxycycline monohydrate (5 mg/kg every 12 h) and a further eight dogs were administered tetracycline hydrochloride (20 mg/kg every 8 h) for 72 h. Blood was collected at 2 and 4 h, and urine at 4 h, after the last dose. The concentration of each agent in serum and urine was determined by modified agar diffusion. In the second study, 45 urine samples from cats and dogs with urinary tract infections were cultured. Every bacterial isolate was tested in vitro using both Epsilometer (doxycycline and tetracycline) and disc diffusion (doxycycline, tetracycline or amoxycillin-clavulanate) tests. RESULTS: Serum doxycycline concentrations in sera of cats and dogs at 2 h were 4.2 +/- 1.0 mg/mL and 3.4 +/- 1.1 mg/mL, respectively. The corresponding concentrations at 4 h were 3.5 +/- 0.7 mg/mL and 2.8 +/- 0.6 mg/mL. Urinary doxycycline concentrations at 4 h (53.8 +/- 24.4 mg/mL for cats and 52.4 +/- 24.1 mg/mL for dogs) were substantially higher than corresponding serum values. Serum tetracycline concentrations in dogs at 2 and 4 h, and in urine at 4 h, were 6.8 +/- 2.8, 5.4 +/- 0.8, 144.8 +/- 39.4 mg/mL, respectively. Most of the urinary tract pathogens (35/45) were susceptible to urinary concentrations of doxycycline and 38/45 were susceptible to tetracycline. In contrast 41/45 of all isolates were susceptible to amoxycillin-clavulanate. CONCLUSION: This is the first report of urinary concentrations of doxycycline after conventional oral administration. Concentrations attained in the urine of normal cats and dogs were sufficient to inhibit the growth of a significant number of urinary tract pathogens and thus doxycycline may be a useful antimicrobial agent for some urinary tract infections.  相似文献   

14.
The clinical effects and pharmacokinetics of medetomidine (MED) and its enanti-omers, dexmedetomidine (DEX) and levomedetomidine (LEVO) were compared in a group of six beagle dogs. The dogs received intravenously (i.v.) a bolus of MED (40 microg/kg), DEX (20 and 10 microg/kg), LEVO (20 and 10 microg/kg), and saline placebo in a blinded, randomized block study in six separate sessions. Sedation and analgesia were scored subjectively, and the dogs were monitored for heart rate, ECG lead II, direct blood pressure, respiratory rate, arterial blood gases, and rectal body temperature. Blood samples for drug analysis were taken. Peak sedative and analgesic effects were observed at mean (+/- SD) plasma levels of 18.5 +/- 4.7 ng/mL for MED40, 14.0 +/- 4.5 ng/mL for DEX20, and 5.5 +/- 1.3 ng/mL for DEX10. The overall level of sedation and cardiorespiratory effects did not differ between MED40, DEX20 and DEX10 during the first hour, apparently due to a ceiling effect. However, the analgesic effect of DEX20 lasted longer than the effect of the corresponding dose of racemic medetomidine, suggesting greater potency for dexmedetomidine in dogs. Levomedetomidine had no effect on cardio-vascular parameters and caused no apparent sedation or analgesia. The pharmacokinetics of dexmedetomidine and racemic medetomidine were similar, but clearance of levomedetomidine was more rapid (4.07 +/- 0.69 L/h/kg for LEVO20 and 3.52 +/- 1.03 for LEVO10) than of the other drugs (1.26 +/- 0.44 L/h/kg for MED40, 1.24 +/- 0.48 for DEX20, and 0.97 +/- 0.33 for DEX10).  相似文献   

15.
Oral bioavailability and pharmacokinetic behaviour of clindamycin in dogs was investigated following intravenous (IV) and oral (capsules) administration of clindamycin hydrochloride, at the dose of 11 mg/kg BW. The absorption after oral administration was fast, with a mean absorption time (MAT) of 0.87+/-0.40 h, and bioavailability was 72.55+/-9.86%. Total clearance (CL) of clindamycin was low, after both IV and oral administration (0.503+/-0.095 vs. 0.458+/-0.087 L/h/kg). Volume of distribution at steady-state (IV) was 2.48+/-0.48 L/kg, indicating a wide distribution of clindamycin in body fluids and tissues. Elimination half-lives were similar for both routes of administration (4.37+/-1.20 h for IV, vs. 4.37+/-0.73 h for oral). Serum clindamycin concentrations following administration of capsules remained above the MICs of very susceptible microorganisms (0.04-0.5 microg/mL) for 12 or 10 h, respectively. Time above the mean inhibitory concentration (MIC) is considered as the index predicting the efficacy of clindamycin (T(>MIC) must be at least 40-50% of the dosing interval), so a once-daily oral administration of 11 mg/kg BW of clindamycin can be considered therapeutically effective. For less susceptible bacteria (with MICs of 0.5-2 microg/mL) the same dose should be given but twice daily.  相似文献   

16.
Endostatin concentrations in healthy dogs and dogs with selected neoplasms   总被引:1,自引:0,他引:1  
Endostatin prevents angiogenesis and tumor growth by inhibiting endothelial cell proliferation and migration. The purpose of this study was to determine serum endostatin concentrations in 53 healthy dogs and in 38 dogs with confirmed malignant neoplasms. Endostatin concentration was determined with a competitive enzymatic immunoassay (EIA) with rabbit polyclonal antibody generated against a recombinant canine endostatin protein. Both the presence of cancer and increasing age were associated with increased serum concentration of endostatin. Endostatin concentration in healthy dogs was 87.7 +/- 3.5 ng/mL. Upper and lower limits of the reference range for serum endostatin concentration in healthy dogs were 60 and 113 ng/mL. Dogs with lymphoma (LSA) and hemangiosarcoma (HSA) had endostatin concentrations of 107 +/- 9.3 ng/mL. In conclusion, this study demonstrates that endostatin can be quantified in dogs and that endostatin concentrations are high in dogs with HSA and LSA.  相似文献   

17.
Pharmacokinetic variables of fosfomycin were determined after administration of buffered disodium-fosfomycin intravenously (IV), intramuscularly (IM), subcutaneously (SC) and orally (PO), in mongrel dogs, at 40 and 80 mg/kgday for three days. Renal integrity was also assessed by measuring key serum variables. Day 1, day 2 and day 3 plasma concentration vs. time profiles were undistinguishable, but there appears to be a lineal increase in serum concentrations vs. time with the dose. A non-accumulative kinetic behavior was observed after three days with both doses and most pharmacokinetic variables remain unaltered. Considering a MIC range from 1 mirog/mL to 16 microg/mL of fosfomycin in serum for sensitive bacteria, and a negligible plasma protein binding of fosfomycin (<0.5%), useful plasma concentrations can only be achieved after the SC injection of 80 mg/kg every 12h, having a C(max)=18.96+/-0.3 microg/mL; a T(1/2beta)=2.09+/-0.06 microg/mL and a bioavailability of 84-85%. No alterations were observed in serum variables of kidney-related biochemical values.  相似文献   

18.
The pharmacokinetic properties of cefpodoxime, and its prodrug, cefpodoxime proxetil, were evaluated in two separate studies, one following intravenous (i.v.) administration of cefpodoxime sodium and the second after oral (p.o.) administration of cefpodoxime proxetil to healthy dogs. After cefpodoxime administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). A single i.v. administration of cefpodoxime sodium at a dose of 10 mg cefpodoxime/kg body weight resulted in a cefpodoxime average maximum plasma concentration (Cmax) of 91 (+/-17.7) microg/mL, measured at 0.5 h after drug administration, an average half-life (t1/2) of 4.67 (+/-0.680) h, an average AUC(0-infinity) of 454 (+/-83.1) h.microg/mL, an average V(d(ss)) of 151 (+/-27) mL/kg, an average Cl(B) of 22.7 (+/-4.2) mL/h/kg and an average MRT(0-infinity) of 5.97 (+/-0.573) h. When dose normalized to 10 mg cefpodoxime/kg body weight, cefpodoxime proxetil administered orally resulted in Cmax of 17.8 +/- 11.4 microg/mL for the tablet formulation and 20.1 +/- 6.20 microg/mL for the suspension formulation and an average AUC(0-LOQ) of 156 (+/-76.1) h.microg/mL for the tablet formulation and 162 (+/-48.6) h.microg/mL for the suspension formulation. Relative bioavailability of the two oral formulations was 1.04 (suspension compared with tablet), whereas the absolute bioavailability of both oral formulations was estimated to be approximately 35-36% in the cross-study comparison with the i.v. pharmacokinetics. Combined with previous studies, these results suggest that a single daily oral dose of 5-10 mg cefpodoxime/kg body weight as cefpodoxime proxetil maintains plasma concentrations effective for treatment of specified skin infections in dogs.  相似文献   

19.
OBJECTIVE: To evaluate the pharmacokinetics and pharmacodynamics of morphine after IV administration as an infusion or multiple doses in dogs by use of a von Frey (vF) device. ANIMALS: 6 dogs. PROCEDURE: In the first 2 crossover experiments of a 3-way crossover study, morphine or saline (0.9%) solution was administered via IV infusion. Loading doses and infusion rates were administered to attain targeted plasma concentrations of 10, 20, 30, and 40 ng/mL. In the third experiment, morphine (0.5 mg/kg) was administered IV every 2 hours for 3 doses. The vF thresholds were measured hourly for 8 hours. Plasma concentrations of morphine were measured by high-pressure liquid chromatography. RESULTS: No significant changes in vF thresholds were observed during infusion of saline solution. The vF thresholds were significantly increased from 5 to 8 hours during the infusion phase, corresponding to targeted morphine plasma concentrations > 30 ng/mL and infusion rates > or = 0.15 +/- 0.02 mg/kg/h.The maximal effect (EMAX) was 78 +/- 11% (percentage change from baseline), and the effective concentration to attain a 50% maximal response (EC50) was 29.5 +/- 5.4 ng/mL. The vF thresholds were significantly increased from 1 to 7 hours during the multiple-dose phase; the EC50 and EMAX were 23.9 +/- 4.7 ng/mL and 173 +/- 58%, respectively. No significant differences in half-life, volume of distribution, or clearance between the first and last dose of morphine were detected. CONCLUSIONS AND CLINICAL RELEVANCE: Morphine administered via IV infusion (0.15 +/- 0.02 mg/kg/h) and multiple doses (0.5 mg/kg, IV, every 2 hours for 3 doses) maintained significant antinociception in dogs.  相似文献   

20.
This study was undertaken to characterize the population pharmacokinetics (PK), therapeutic dose, and preferred route of administration for pyrazinamide (PZA) in elephants. Twenty-three African (Loxodonta africana) and Asian (Elephas maximus) elephants infected with or in contact with others culture positive for Mycobacterium tuberculosis were dosed under treatment conditions. PZA was dosed daily at 20-30 mg/kg via oral (fasting or nonfasting state) or rectal (enema or suppository) administration. Blood samples were collected 0-24 h postdose. Population PK was estimated using nonlinear mixed effect modeling. Drug absorption was rapid with T(max) at or before 2 h regardless of the method of drug administration. C(max) at a mean dose of 25.6 (+/-4.6) mg/kg was 19.6 (+/-9.5 microg/mL) for PZA given orally under fasting conditions. Under nonfasting conditions at a mean dose of 26.1 +/- 4.2 mg/kg, C(max) was 25% (4.87 +/- 4.89 microg/mL) and area under concentration curve (AUC) was 30% of the values observed under fasting conditions. Mean rectal dose of 32.6 +/- 15.2 mg/kg yielded C(max) of 12.3 +/- 6.3 microg/mL, but comparable AUC to PZA administered orally while fasting. Both oral and rectal administration of PZA appeared to be acceptable and oral dosing is preferred because of the higher C(max) and lower inter-subject variability. A starting dose of 30 mg/kg is recommended with drug monitoring between 1 and 2 h postdose. Higher doses may be required if the achieved C(max) values are below the recommended 20-50 microg/mL range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号