首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水曲柳落叶松混交林中细根空间分布   总被引:4,自引:0,他引:4  
王庆成 《林业研究》2002,13(4):265-268
采用根钻取样方法对年生水曲柳落叶松混交林中细根空间分布状况进行了研究。结果表明,水曲柳落叶松地下生物量的空间分配差异显著。在林分水平上,水曲柳的根生物量密度高于落叶松(分别为4442.3和2234.9g/m3)。两树种在相邻区域中分配的细根生物量较高,表明种间根系竞争较弱。落叶松行间的水曲柳细根生物量密度和根长密度均高于水曲柳行间的落叶松细根,表明水曲柳地下部分具有较强能力。根系的空间分布有利于混交林中水曲柳的生长。图1表4参19。  相似文献   

2.
Morphology and vertical distribution patterns of spruce and beech live fine roots (diameter ≤2 mm) were studied using a soil core method in three comparable mature stands in the Solling: (1) pure beech, (2) pure spruce and (3) mixed spruce–beech. This study was aimed at determining the effects of interspecific competition on fine root structure and spatial fine root distribution of both species. A vertical stratification of beech and spruce fine root systems was found in the mixed stand due to a shift in beech fine roots from upper to lower soil layers. Moreover, compared to pure beech, a significantly higher specific root length (SRL, P<0.05) and specific surface area (SSA, P<0.05) were found for beech admixed with spruce (pure beech/mixed beech SRL 16.1–23.4 m g−1, SSA 286–367 cm2 g−1). Both indicate a flexible ‘foraging’ strategy of beech tending to increase soil exploitation and space sequestration efficiency in soil layers less occupied by competitors. Spruce, in contrast, followed a more conservative strategy keeping the shallow vertical rooting and the root morphology quite constant in both pure and mixed stands (pure spruce/mixed spruce SRL 9.6/7.7 m g−1, P>0.10; SSA 225/212 cm2 g−1, P>0.10). Symmetric competition belowground between mixed beech and spruce was observed since live fine roots of both species were under-represented compared to pure stand. However, the higher space sequestration efficiency suggests a higher competitive ability of beech belowground.  相似文献   

3.
4.
The soil-plant system is a very important subsystem of the soil-plant-atmosphere continuum (SPAC). The water uptake by plant roots is an important subject in the research on water transport in this SPAC and is also the most active study direction in the fields of ecology, hydrology and environment. The study of the spatial distribution pattern of fine roots of plants is the basis of constructing a water absorption model of plant roots. Our study on the spatial distribution pattern of fine roots of Populus euphratica in a desert riparian forest shows that the density distribution of its root lengths can be expressed horizontally as a parabola. The fine roots are concentrated within the range of 0–350 cm from the tree trunk and their amount accounts for 91.9% of the total root mass within the space of 0–500 cm. In the vertical direction, the density distribution of the fine root lengths shows a negative exponential relation with soil depth. The fine roots are concentrated in the 0–80 cm soil layer, accounting for 96.8% of the total root mass in the 0–140 cm soil layer. __________ Translated from Chinese Journal of Ecology, 2007, 26(1): 1–4 [译自: 生态学杂志]  相似文献   

5.
A study was conducted in northwest Florida, USA, to investigate root development and morphology of cotton (Gossypium hirsutum L.) under pecan (Carya illinoensis K. Koch) trees in an alleycropping experiment. Root:shoot ratio, root biomass, total root length and root length density were examined under three treatments: (1) barrier (separating belowground interspecific competition by trenching to a depth of 120 cm and installing polyethylene barrier), (2) non-barrier (root systems were free to interact), and (3) monoculture of cotton (without above and belowground interspecific competition with trees). Results indicated that plants in the barrier and non-barrier treatments had lower root:shoot ratios compared to the monoculture treatment. Belowground competition for resources between pecan and cotton in the non-barrier treatment resulted in 25 and 33% reduction of total root length (359 cm) when compared to that of the barrier (477 cm) and monoculture (539 cm) treatments, respectively. The non-barrier plants also exhibited the lowest root length density. Specific root length was highest for the monoculture (179 cm g−1) and lowest for the non-barrier treatment (146 cm g−1) with the barrier treatment being intermediate (165 cm g−1). Interspecific competition with pecan significantly altered root development and morphology of cotton plants. Research in agroforestry should take into account the developmental differences in root systems of the associated crop species so that better models incorporating nutrient and water uptake can be developed.  相似文献   

6.
The effect of different understoreys on the early growth and quality of radiata pine (Pinus radiata) in a silvopastoral system was evaluated in Canterbury, New Zealand. Fitted models successfully represented the effect of understorey on the growth (basal area and height) and a quality of trees (diameter over stubs). Basal area, diameter, height and volume growth were affected by understorey competition. Trees growing with no-understorey had 34%and 29% higher volume than trees growing with lucerne (Medicagosativa) and cocksfoot (Dactylis glomerata)understoreys, respectively. However, the height of trees at age 10 grown without understorey competition was only 9% and 15% more than trees grown with grass and lucerne understorey, respectively. Understorey competition effects on growth became more evident during the summer and early autumn months when water deficits occurred. The quality of trees was also affected by understorey competition. While trees grown in bare ground had higher growth than trees grown with understorey competition, they had the poorest stem quality with higher diameters over stubs, branch size, sweep and proportion of stem defects. This will have an impact on the agroforestry system profitability by affecting the net harvest revenue. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
[目的]探明广西不同栽培区江南油杉细根生物量的空间分布共性及其对土壤水分的响应机制.[方法]以广西3个栽培区江南油杉人工幼林为研究对象,采用根系全株分层挖掘和根系形态结构分析法,定量分析江南油杉幼树不同径级细根生物量密度、根长密度和表面积密度的空间分布特征.[结果]1)江南油杉幼林期细根生物量在垂直方向上主要分布在0~...  相似文献   

8.
At present, our understanding of the dynamics of microbial biomass and soil N in silvopastoral systems is very limited. In this paper, the effects of understorey management on soil microbial C and N, net N mineralization, and net nitrification were studied in two seven-year-old radiata pine (Pinus radiata D. Don) – pasture systems, consisting of plots with and without ryegrass (Lolium perenne) as an understorey. Mini-plots (1 × 1 m) with animals excluded and herbage repeatedly clipped and removed were used for soil sampling. Three mini-plots formed a transect at each of two positions: 0.9 and 3.5 m north of the tree rows. Measurements were taken from July 1997 to June 1998 about once every 40 days. One composite sample was collected from each of two sampling depths (0–10 and 10–20 cm) at each transect position on each sampling date. Temporal and spatial variability of N mineralization rates and microbial biomass C and N was large. Net mineralization and nitrification rates were higher in the bare ground than in the ryegrass plots for a major part of the year, particularly from late spring to early fall. Net N mineralization and nitrification rates were higher in the 0–10 than in the 10–20 cm soil layers in both the ryegrass and bare ground treatments; however, the depth effect on microbial biomass C and N was only significant in the ryegrass treatment. In the surface soil layer, microbial biomass C and N were substantially greater in the ryegrass than in the bare ground plots. Soil microbial properties and activities were closely linked to pasture root activities, soil depth, and site biophysical conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
As part of a study on soil carbon flow in forest ecosystems, the biomass of fine roots (2.0mm in diameter) and root-associated fungi, including ectomycorrhizal fungi, were estimated in the summer season in 1998 at a Pinus densiflora (Japanese red pine) stand in western Japan. Fine roots of pine were classified into three categories: class I roots (0.5–2.0mm in diameter), long class II roots (long roots with diameter 0.5mm; IIL), and short class II roots (short roots with diameter 0.5mm; IIS). Total biomass of fine roots (I + IIL + IIS) at this stand was estimated to be 91.0gm–2, about 23% of which was class II roots (IIL + IIS). Ergosterol, which is a component of fungal membranes, was analyzed to estimate the biomass of root-associated fungi in roots. In the upper soil layers (from the surface to 13.4cm in depth), ergosterol contents in the class I, IIL and IIS roots were in the ranges 43.1–82.2, 126.1–196.3 and 271.2–321.0µgg–1 root DW, respectively. The ergosterol content was converted to fungal biomass using the median (minimum–maximum) value of ergosterol concentration reported for ectomycorrhizal fungi. Root-associated fungal biomass in this stand was estimated to be 2.0 (0.5–9.6) gm–2. The data suggest the biomass of ectomycorrhizal fungi in the P. densiflora stand is small compared with that in other forest ecosystems.  相似文献   

10.
Understanding the changes in soil properties in silvopastoral systems is important in regulating the interactions between tree and understorey pastures. In this study, the effects of understorey management on soil mineral N and moisture availability, soil temperature, soil C, and tree growth were investigated in a seven-year-old silvopastoral agroforestry experiment in Canterbury, New Zealand. The systems included understorey treatments of bare ground and ryegrass (Lolium perenne) pasture. Soil mineral N, moisture content, and temperature were monitored from July 1997 to July 1998 in two positions (0.9 and 3.5 m north of tree rows) and two soil depths (0–10 and 10–20 cm). Soil C and N in the 0–10 cm depth were higher in the ryegrass than in the bare ground plots, reflecting the organic C and N input in the ryegrass plots, as well as greater N loss from the bare ground plots in the form of nitrate leaching and/or denitrification. Soil C was higher in the position 0.9 m than 3.5 m away from the tree rows, possibly caused by the greater C input from decomposing fine tree roots and needle litterfall at the 0.9 m position. Soil moisture availability was greater in the bare ground than in the ryegrass plots in the summer. No effect of understorey management on soil temperature was found. Soil nitrate levels were lower in the ryegrass plots and may be limiting when soil moisture supply was adequate. Tree volume growth from winter 1997 to 1998 was significantly greater in the bare ground treatment, reflecting better soil moisture and N supply conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Quantitative field measurements of biological nitrogen fixation (BNF) and biomass production by four different understorey pastures in a Pinus radiata-pasture agroforestry system were determined over a period of one year. The trees were two years old at the beginning of this study and the understorey pastures were being cut and removed for silage. The BNF was determined using the 15N dilution technique. Pastures of ryegrass+clover, cocksfoot+clover, phalaris+clover and lucerne were used. Substantial amounts of BNF were found (71 to 230 kg N ha–1 year–1) with lucerne showing the highest N fixation. However, lucerne derived only 71 to 72% of its N from the atmosphere (%Ndfa) during the spring/summer period compared to 83–97% with clovers, thus the net N demand from the soil was substantially higher with lucerne. This caused increased N stress to the trees. Clover in ryegrass+clover pasture fixed more N than the other grass+clover pastures. Although pasture position in relation to trees did not affect annual pasture total DMY and %Ndfa, pastures north of tree row grew better than those in other positions. Trees significantly affected the BNF of legumes and the botanical composition of pastures with highest BNF and legume production occurring in pastures midway between two rows of trees. These results suggest that it would be advantageous to evaluate different legumes and grasses for tolerance of shade and moisture stress in future studies. As the trees studied were only 1.5 to 3 m in height, their effects on BNF, seasonal pasture biomass production and botanical composition are expected to increase with tree dominance in the ecosystem with time. Amounts of N fixed were related to the productivity (i.e. dry matter and N yield) and seasonal persistence of the legumes. The productivity was high in spring and summer and low in autumn and winter.  相似文献   

12.
Fine roots are a key component of forested ecosystems, but available information is still limited. This study examined the production and mortality of fine roots less than 1 mm in diameter in a Japanese cedar (Cryptomeria japonica D. Don) plantation located on the Kanto Plain in central Japan. We used a minirhizotron technique in combination with soil coring, and collected data for 1 year (May 2002–May 2003). Fine root production and mortality were determined from changes in the lengths of individual fine roots on minirhizotron tubes. Both fine root production and mortality rates were greater in the upper soil than in lower soil levels. Both rates were seasonal, with higher values in summer than in winter; this trend was more pronounced in upper soil levels. These results suggest that environmental conditions, such as temperature or soil properties, affect the production and mortality rates of fine roots. Fine root production and mortality occurred simultaneously, and their rates were similar, which may have led to unclear seasonal changes in fine root standing crop estimates. Soil coring indicated that the fine root biomass of this stand was about 120 g m−2, of which 40% was from Japanese cedar. The estimated rates of dry matter production and mortality of total fine roots, including understory plants, were both approximately 300 g m−2 year−1.  相似文献   

13.
From September 1999 to July 2000, N and P concentrations of fine roots were measured with the method of sequential soil core at bimonthly intervals in a mixed forest of Tsoong's tree (Tsoongiodendron odorum Chun) and Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) in Sanming, Fujian. The results showed that N, P concentration of Chinese fir and Tsoong's tree in fine roots were negatively related to root diameter size. The concentrations of N and P in living roots and dead roots were compared. The order of N concentration in fine roots in different samples was Tsoong's tree>undergrowth>Chinese fir, while that of P was undergrowth>Tsoong's tree>Chinese fir. For Chinese fir, the seasonal change of N, P concentrations in fine roots with various diameter classes showed a single-apex curve with a maximum in September. For Tsoong's tree, maximized concentration of N in fine roots appeared in July or September and maximized P concentration in May. Foundation item: The project was supported by The Foundation of Post-doctoral Research of China (1999, No 10), the Foundation for University Key Teacher by the Ministry of Education, and the Research Programs on Basic Theory of Fujian Province (2000F004). Biography: YANG Yu-sheng (1964-), male, professor in Fujian Agricultural and Forestry University, Nanping 353001, P.R. China. Responsible editor: Zhu Hong  相似文献   

14.
We investigated fine root biomass and distribution patterns in a species-rich temperate Carpinus–Quercus–Fagus–Tilia forest and searched for experimental evidence of symmetry or asymmetry in belowground competition. We conducted extensive root coring and applied the recently introduced in situ-root growth chamber technique for quantifying fine root growth under experimentally altered intra- and interspecific root neighbourhoods in the intact stand. In 75% of all soil cores, fine roots of more than two tree species were present indicating a broad overlap of the root systems of neighbouring trees. Quercus trees had more than ten times less fine root biomass in relation to aboveground biomass or productivity (stem growth) and a much higher leaf area index/root area index ratio than Carpinus, Fagus and Tilia trees. The root growth chamber experiments indicated a high belowground competitive ability of Fagus in interspecific interactions, but a low one of Quercus. We conclude that (1) interspecific root competition is ubiquitous in this mixed stand, (2) root competition between trees can be clearly asymmetric, and (3) tree species may be ranked according to their belowground competitive ability. Fagus was found to be the most successful species in belowground competition which matches with its superiority in aboveground competition in this forest community.  相似文献   

15.
To characterize effects of plant roots on preferential flow(PF),we measured root length density(RLD)and root biomass(RB) in Jiufeng National Forest Park,Beijing,China.Comparisons were made for RLD and RB between soil preferential pathways and soil matrices.RLD and RB declined with the increasing soil depth(0–10,10–20,20–30,30–40,40–50,50–60 cm) in all experimental plots.RLD was greater in soil preferential pathways than in the surrounding soil matrix and was 69.5,75.0 and72.2 % for plant roots of diameter(d) \1,1 \ d \ 3 and3 \ d \ 5 mm,respectively.Fine root systems had the most pivotal influence on soil preferential flow in this forest ecosystem.In all experimental plots,RB content was the sum of RB from soil preferential pathways and the soil matrix in each soil depth.With respect to 6 soil depth gradient(0–10,10–20,20–30,30–40,40–50,50–60 cm) in each plot,the number of soil depth gradient that RB content was greater in soil preferential pathways than in the soil matrix was characterized,and the proportion was68.2 % in all plots.  相似文献   

16.
Besides aboveground interactions, pruning of trees may also modify their rooting pattern for which a better understanding is needed for the optimisation of agroforestry systems. Thus, variation in fine root (d 2 mm) distribution of pruned trees and crops were assessed during three cropping seasons by sampling soil layers at 10 cm intervals up to 50 cm and at four distances from tree trunk. Three crown pruning treatments (totally-pruning, half-pruning and no-pruning) were applied to karité (Vitellaria paradoxa) and néré (Parkia biglobosa). In 1999, 59% (0.477 cm cm–3) and 69% (0.447 cm cm–3) of fine roots for karité and néré respectively occurred in the upper 20 cm with a significant decrease in root length density with soil depth. However, in 2000, totally-pruned trees of néré and karité showed 32% (0.051 cm cm–3) and 34% (0.078 cm cm–3) of their density in the upper 20 cm whereas root distribution in 2001 was similar to that of 1999. Thus, pruning to reduce belowground competition for the benefit of associated crops can be recommended in the light of the temporary reduction of root density in crop rooting zone and consequently the increase in crop production.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
Spatial distribution and seasonal fluctuation of fine root density (mass per unit soil volume) and abundance (mass or surface area per unit ground surface area) were investigated by the sequential coring technique in a 100–220 year old mixed Fagus sylvatica-Quercus petraea stand on acidic sandy soil in northwest Germany. The fine root systems of the two co-existing species overlapped completely with beech roots being twice as abundant as oak roots. Since Fagus and Quercus occupied equivalent parts of the canopy volume, oak appeared to be under-represented in the below-ground space. There was evidence for some degree of below-ground niche partitioning between the species in both the vertical and the horizontal direction. Oak fine roots were found to be more superficially distributed than beech roots in the organic layers, indicating a vertical stratification of the root systems of the two species. In the forest floor, fine roots were more abundant in the vicinity of aok stems where thicker organic layers occurred. However, this distribution pattern was not a consequence of a greater abundance of oak roots close to their parent stem, but was due to a higher frequency of beech roots here.  相似文献   

18.
A field survey was undertaken to determine the quantity, spatial distribution and influence of large woody debris (LWD) in a fifth-order river system in old-growth forest in New Zealand. LWD attributes were assessed at 25 sites distributed in the headwaters and along the main stem of the Whirinaki River system (73 km2). LWD volume, number of pieces, piece length and piece size, were positively correlated with bankfull width, whereas the number of pieces/unit area, LWD/unit area, number of pieces suspended across the channel and LWD influence on channel morphology, were negatively correlated. Pieces influencing channel morphology were larger, longer and more stable than average. We identified four key zones in the river system based on LWD spatial distribution patterns and influence on habitat complexity. Zonal boundaries occurred where there were changes in the transport capacity, fluvial processes, channel width and geomorphic structure of the channel. The results of this study highlight the need to understand the characteristics, spatial distribution patterns and influence of LWD at the catchment level when undertaking protective, management or rehabilitation programmes in forested river ecosystems.  相似文献   

19.
《Southern Forests》2013,75(2):75-81
Little information is available on the interactive effects of soluble and less-soluble phosphorus (P) fertilisers and weed control on growth and P nutrition of second-rotation Pinus radiata plantations. A study was initiated on three-year-old second-rotation P. radiata and to determine the relationship between needle P concentrations and soil P forms in an Orthic Pumice soil two years after application. Four rates of P (0, 50, 100, and 200 kg P ha?1) were applied as two forms of P fertiliser sources (triple superphosphate [TSP] and Ben-Guerir phosphate rock [BGPR]) in combination with weed control (weedy and weed-free). The results showed that the applied TSP and BGPR can increase tree needle P concentrations even when the needle P concentrations before fertiliser application were marginally higher than the critical P concentrations. The application of P fertilisers had no effect on tree growth during the two-year period of the trial, though it increased P. radiata needle P concentrations. However, the weed removal increased tree height, diameter at breast height, and basal area. In this plantation site the higher needle P concentrations than the critical P concentration suggests that the growth increase due to weed removal treatment was probably due to an increase in the availability of soil water and nutrients other than P. The needle P concentrations of P. radiata can be predicted by soil tests, Bray-2 P, Olsen P, resin-Pi, and NaOH-Pi tests. Of these soil tests, Bray-2 P seems to be the best test in predicting soil P availability to P. radiata. The P concentrations in the needles had a relationship with the NaOH-Pi fraction but had no relationship with the H2SO4-Pi fraction. These results suggest that P. radiata was probably taking up P mainly from the pool of P-adsorbed to allophane and Fe+Al oxides (NaOH-Pi) in this high P-fixing acidic soil.  相似文献   

20.
A study on the biomass of fine roots and its relationship with water-stable aggregates (WSA) was conducted in two herbaceous models, triploid Populus tomentosa + Lolium multiflorum (TL) and triploid P. tomentosa + natural grass (TN). Both of the model triploid P. tomentosa stands were four years old converted from agriculture. Unconverted steep slope farmland was used as a control site. Results showed that the biomass of fine roots (⩽ 1 mm) in different layers varied in the following descending order: upper layer, middle layer and lower layer, at approximate ratios of 50:30:20. The average annual biomass of fine roots in ryegrass was twice that of the mixed natural grass-forest land. The total amount of natural grass roots was 4.4 times that of the ryegrass model. Water-stable aggregates of the upper, middle and lower layers and the unconverted farmland did not show any significant differences, whereas the amounts of water-stable aggregates of big-particles in the upper and middle layers were much larger than those of unconverted lands. The amounts of water-stable aggregates of natural grass-forest lands (TN model) were higher than those of managed grass-forest lands (TL model). Two-way analysis of variance indicated that fine roots (≤ 1 mm) could significantly enhance water-stable aggregates and total water-stable aggregates. We conclude that the program of converting agricultural lands to forest-grass lands is an effective way in improving soil anti-erosion capability. __________ Translated from Scientia Silvae Sinicae, 2007, 43(5): 24–29 [译自:林业科学]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号