首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Summary Field experiments were conducted at two sites with differing root zone water holding capacities. Corn grain yield was measured as a function of water management treatments. Stress development in given treatments was generally limited to one of three periods (planting-to-12-leaf, 12-leaf-to-blister-kernel, and blister-kernel-to-physiologic-maturity) during the growing season. Stress levels were defined as low (L), moderate (M) or severe (S) and were based on degree of soil water depletion and an allowable level of leaf xylem pressure depression in midafternoon.Yield vs seasonal ET exhibited linear relationships. Slope of an estimated upper bound function was 0.28 T/ha-cm of water use. Maximum seasonal grain yields were consistently produced with an L-L-L stress sequence allowing about 30–40% depletion of the root zone available water capacity (to 122 cm depth) between irrigations. A trickle irrigated treatment that maintained near zero soil water potential averaged about 4% more yield than the 30–40% depletion criteria, but this difference was not significant at P=0.05.Results, when normalized as relative yield (Y/Ym) vs relative seasonal evapotranspiration (ET/ETm), indicated an upper bound slope of 1.50% yield loss per 1% decline in seasonal ET from the ETm level. When stress was concentrated in the 12 leaf to blister kernel period, the yield reduction slope was 2.60%.Average observed Y/Ym ratios were 0.95 for M-L-L, 0.92 for S-L-L, 0.85 for L-M-L, 0.62 for L-S-L, 0.62 for L-S-L, 0.90 for L-L-M, and 0.69 L-L-S stress sequences.If water stress is limited to one growth period per season an upper bound yield attainment is likely if irrigations relieve stress before available root zone storage capacity is 90–95% depleted in the planting to 12 leaf period, 80–90% depleted in 12 leaf to blister kernel period or when a programmed depletion to 100% available water exhaustion near physiological maturity is achieved in the later grain fill period.Yield reduction of less than 5 % from potential levels appears likely in the climatic setting of this study when root zone available water depletions are limited to 60–70% in the early vegetative period (assumes near field capacity moisture at planting), 30–40% in the 12 leaf to blister kernel period, and 50–60% in the later grain fill period.This work was supported by North Dakota Agricultural Experiment Station Projects 1432 and 1435 and by funds provided by the U.S. Department of Interior, Water and Power Resources Service  相似文献   

2.
Potato evapotranspiration and yield under different drip irrigation regimes   总被引:1,自引:0,他引:1  
A field experiment comparing different irrigation frequencies and soil matric potential thresholds on potato evapotranspiration (ET), yield (Y) and water-use efficiency (WUE) was carried out in a loam soil. The experiment included five treatments for soil matric potential: F1 (-15 kPa), F2 (-25 kPa), F3 (-35 kPa), F4 (-45 kPa) and F5 (-55 kPa) and six treatments for irrigation frequency: N1 (once every day), N2 (once every 2 days), N3 (once every 3 days), N4 (once every 4 days), N6 (once every 6 days) and N8 (once every 8 days). Results indicate that both soil matric potential and drip irrigation frequency influenced potato ET, Y and WUE. Potato ET increased as irrigation frequency and soil matric potential increased. Comparing soil water potential, the highest ET was 63.4 mm (32.1%) more than the lowest value. Based on irrigation frequency treatments, the highest ET was 36.7 mm (19.2%) more than the lowest value. Potato Y and WUE were also found to increase as irrigation frequency increased. Potato Y increased with an increase in soil water potential then started to decrease. The highest Y and WUE values were achieved with a soil matric potential threshold of -25 kPa and an irrigation frequency of once a day.Communicated by J. Ayars  相似文献   

3.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

4.
Evaluation of simple reference evapotranspiration (ETo) methods has received considerable attention in developing countries where the weather data needed to estimate ETo by the Penman–Monteith FAO 56 (PMF-56) model are often incomplete and/or not available. In this study, eight pan evaporation-based, seven temperature-based, four radiation-based and ten mass transfer-based methods were evaluated against the PMF-56 model in the humid climate of Iran, and the best and worst methods were selected from each group. In addition, two radiation-based methods for estimating ETo were derived using air temperature and solar radiation data based on the PMF-56 model as a reference. Among pan evaporation-based and temperature-based methods, the Snyder and Blaney–Criddle methods yielded the best ETo estimates. The ETo values obtained from the radiation-based equations developed here were better than those estimated by existing radiation-based methods. The Romanenko equation was the best model in estimating ETo among the mass transfer-based methods. Cross-comparison of the 31 tested methods showed that the five best methods as compared with the PMF-56 model were: the two radiation-based equations developed here, the temperature-based Blaney–Criddle and Hargreves-M4 equations and the Snyder pan evaporation-based equation.  相似文献   

5.
6.
A computer simulation model can be used as a tool to help explain the impact of drought stress on plant growth and development because it integrates the complex soil–plant-atmosphere system through a set of mathematical equations. The objectives of this study were to determine the impact of different irrigation scheduling regimes on peanut growth and development, to determine the capability of the CSM-CROPGRO-Peanut model to simulate growth and development of peanut, and to determine the relationship between yield and the two cumulative drought stress indices simulated by the peanut model. The CSM-CROPGRO-Peanut model was evaluated with experimental data collected during two field experiments that were conducted in four automated rainout shelters located at The University of Georgia, USA, in 2006 and 2007. Irrigation was applied when the simulated soil water content in the effective root zone dropped below a specific threshold value for the available soil water capacity (AWC). The irrigation treatments corresponded to irrigation thresholds (IT) of 30, 40, 60, and 90 % of AWC. The results showed that growth and development was reduced for the 30 and 40 % IT treatments which resulted in yield reductions that were 92 and 45 %, respectively, of the 90 % IT treatment. The Cropping System Model (CSM)-CROPGRO-Peanut model was able to accurately simulate growth and development of peanut grown under different irrigation treatments when compared to the observed data. We found an inverse relationship between the two simulated total cumulative drought stress indices for leaf growth (expansion) and photosynthesis and simulated pod yield. Knowing the cumulative drought stress value prior to harvest maturity could help with the prediction of potential harvestable yield.  相似文献   

7.
浅层地下水对蔬菜腾发量和产量的   总被引:1,自引:1,他引:1  
为了提高旱作蔬菜的产、质量,以甜椒和冬菠菜为试验品种,采用4种地下水埋深处理,实测了腾发量、地下水利用量和产量,得了了它们与地下水埋深之间的变化规律。结论:在开展蔬菜节水灌溉中,即应考虑充分利用地下潜水量,也需注意控制适宜地下水埋深。  相似文献   

8.
Evapotranspiration was measured for a reference crop, rye grass (Lolium prerenne) and soybean (Glycine max L. Merril) grown over two seasons in 2000 and 2001 at Tal Amara Research Station, Lebanon, using drainage and weighing lysimeters. Climatic data from the field weather station were recorded daily. Within the experimental plots, irrigation was withheld at full bloom, R2 stage (S1 treatment), at seed enlargement, R5 stage (S2 treatment) and at mature seeds, R7 stage (S3 treatment). Further, a control (C) was fully-irrigated throughout the growing period.Average crop evapotranspiration (ETc) as measured by the drainage lysimeters in 2000 totaled 800 mm for a total growing period of 140 days. However, when ETc was measured by the weighing lysimeter in 2001, it was 725 mm during a growing period of 138 days. Average crop coefficients (Kc) were computed for different growth stages for the two growing periods by dividing the measured crop evapotranspiration (ETc) by the corresponding measured reference evapotranspiration (ETo-rye grass). Kc values ranged from 0.62 at V10 stage (10th node on the main stem beginning with the unifoliolate node) to 1.0 at pod initiation, then to 0.81 at mature pods.Growth parameters, leaf area index (LAI) and dry matter accumulation, have been shown to be sensitive to water stress caused by the deficit irrigations. However, growth parameters were found to compensate for water stress at early stages, while at seed maturity the compensation ability was decreased.Plants of the lysimeters produced average aboveground biomass and seed yield of 8.1 and 3.5 t ha−1, respectively. However, in the well-irrigated field treatment, aboveground biomass and seed yield averaged 7.3 and 3.2 t ha−1, respectively. Deficit irrigation at R2 stage reduced aboveground biomass and seed yield by 16 and 4%, respectively, while deficit irrigation at R5 stage reduced these two parameters by 6 and 28%, respectively, with comparison to the control. The significant decrease in biomass at R2 stage due to water deficit may be attributed to a pronounced reduction in the number of vegetative nodes. However, limited irrigation at this stage did not reduce significantly (P < 0.01) neither seed number nor seed weight, while at R5 stage these two parameters were reduced by 20 and 10%, respectively, with comparison to the control. Results showed also that deficit irrigation at R7 stage (S3) was more profitable than irrigation deficit at any other crop phenology and did not cause significant reductions either in seed number or seed weight.  相似文献   

9.
With the availability of irrigation water, supplemental irrigation in winter-grown crops, such as lentil, wheat, and barley, has been intensely practiced to prevent crop yield losses due to the incidence of intermittent drought stress. In the crop growing seasons of 2006-2007 and 2008-2009, a study was conducted to determine the effect of supplemental irrigations on Canola (Brassica napus L. cv. Elvis F1) under the semiarid climatic conditions of the Harran plain, Sanliurfa, Turkey. A sprinkler irrigation system was used to irrigate the study plots. The irrigation treatments included 0.0, 0.25, 0.50, 0.75, and 1.0 (full irrigation) of Class-A pan evaporation amounts. The full irrigation treatment during both years consisted of 250 and 225 mm, respectively. In turn, crop water use values during the same years and treatments were 462 and 449 mm. In general, plant height and 1000 seed weight ranged from 140 to 165 cm and from 2.5 to 3.3 g, respectively, and these variables significantly differed among irrigation treatments (p < 0.05). Crop yield and above ground biomass measurements were affected by irrigation treatments and varied from 1094 to 3943 kg ha−1 and from 6746 to 18,311 kg ha−1, respectively (p < 0.05). Similarly, harvest index values were affected (p < 0.05) and ranged from 0.16 to 0.23 on average. The water use efficiency obtained in the different treatments indicated a strong positive relationship between crop yield and irrigation. Overall, our results indicate that supplemental irrigation substantially increased canola yield; however, for an optimum yield, full irrigation is suggested.  相似文献   

10.
Cover cropping is a common agro-environmental tool for soil and groundwater protection. In water limited environments, knowledge about additional water extraction by cover crop plants compared to a bare soil is required for a sustainable management strategy. Estimates obtained by the FAO dual crop coefficient method, compared to water balance-based data of actual evapotranspiration, were used to assess the risk of soil water depletion by four cover crop species (phacelia, hairy vetch, rye, mustard) compared to a fallow control. A water stress compensation function was developed for this model to account for additional water uptake from deeper soil layers under dry conditions. The average deviation of modelled cumulative evapotranspiration from the measured values was 1.4% under wet conditions in 2004 and 6.7% under dry conditions in 2005. Water stress compensation was suggested for rye and mustard, improving substantially the model estimates. Dry conditions during full cover crop growth resulted in water losses exceeding fallow by a maximum of +15.8% for rye, while no substantially higher water losses to the atmosphere were found in case of evenly distributed rainfall during the plant vegetation period with evaporation and transpiration concentrated in the upper soil layer. Generally the potential of cover crop induced water storage depletion was limited due to the low evaporative demand when plants achieved maximum growth. These results in a transpiration efficiency being highest for phacelia (5.1 g m−2 mm−1) and vetch (5.4 g m−2 mm−1) and substantially lower for rye (2.9 g m−2 mm−1) and mustard (2.8 g m−2 mm−1). Taking into account total evapotranspiration losses, mustard performed substantially better. The integration of stress compensation into the FAO crop coefficient approach provided reliable estimates of water losses under dry conditions. Cover crop species reducing the high evaporation potential from a bare soil surface in late summer by a fast canopy coverage during early development stages were considered most suitable in a sustainable cover crop management for water limited environments.  相似文献   

11.
Summary This paper reports the results of a three-year field study conducted in El Salvador, Central America to develop yield response functions for corn to irrigation levels and nitrogen fertilizer. Four levels of irrigation were imposed using two application methods, furrow and trickle, in combination with four nitrogen fertilizer rates. Yields generally increased with higher levels of applied water and with higher nitrogen rates up to 200 kg N/ha, with a strong interaction between these two variables. Yield was independent of irrigation method although less water was applied with the trickle system.In cooperation with the El Salvador Ministry of Agriculture and Livestock and the United States Agency for International DevelopmentPartial support was provided under Contract AID/ta-c-1103Research Engineer, Professor of Soils, Research Agronomist, Research Assistant, Utah State University; and Agronomist, Peace Corps, respectively  相似文献   

12.
A study was conducted to determine the effects of different drip irrigation regimes on yield and yield components of cucumber (Cucumbis sativus L.) and to determine a threshold value for crop water stress index (CWSI) based on irrigation programming. Four different irrigation treatments as 50 (T-50), 75 (T-75), 100 (T-100) and 125% (T-125) of irrigation water applied/cumulative pan evaporation (IW/CPE) ratio with 3-day-period were studied.Seasonal crop evapotranspiration (ETc) values were 633, 740, 815 and 903 mm in the 1st year and were 679, 777, 875 and 990 mm in the 2nd year for T-50, T-75, T-100 and T-125, respectively. Seasonal irrigation water amounts were 542, 677, 813 and 949 mm in 2002 and 576, 725, 875 and 1025 mm in 2003, respectively. Maximum marketable fruit yield was from T-100 treatment with 76.65 t ha−1 in 2002 and 68.13 t ha−1 in 2003. Fruit yield was reduced significantly, as irrigation rate was decreased. The water use efficiency (WUE) ranged from 7.37 to 9.40 kg m−3 and 6.32 to 7.79 kg m−3 in 2002 and 2003, respectively, while irrigation water use efficiencies (IWUE) were between 7.02 and 9.93 kg m−3 in 2002 and between 6.11 and 8.82 kg m−3 in 2003.When the irrigation rate was decreased, crop transpiration rate decreased as well resulting in increased crop canopy temperatures and CWSI values and resulted in reduced yield. The results indicated that a seasonal mean CWSI value of 0.20 would result in decreased yield. Therefore, a CWSI = 0.20 could be taken as a threshold value to start irrigation for cucumber grown in open field under semi-arid conditions.Results of this study demonstrate that 1.00 IW/CPE water applications by a drip system in a 3-day irrigation frequency would be optimal for growth in semiarid regions.  相似文献   

13.
In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experiments were carried out with different apple trees. Three irrigation levels were applied: 85%-100%(H1), 70%-85%(H2)and 55%-70%(H3)of the field water capacity, respectively, and three nitrogen levels were N1(360 g/plant), N2(240 g/plant)and N3(120 g/plant). The results show that irrigation and nitrogen application has significant effects on new shoot length, flowering, fruit-setting, fruit diameter, fruit volume and yield of apple. The leaf area index(LAI)shows a singlet trend during the growth period, and the peak value appears in the middle of July. Under the same irrigation level, compared with N3, N1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 17.91%, 28.31%, 18.75%, 11.38%, 10.13%, 36.60%, 20.92% and 5.19%, respectively, while N2 also increases by 12.40%, 15.63%, 4.86%, 5.40%, 5.11%, 17.01%, 26.17% and 13.74%, respectively. The rate of flowering and fruit setting decreases with the increase of nitrogen application. Under the same nitrogen level, compared with H3, H1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 34.65%, 15.49%, 30.77%, 3.93%, 4.95%, 12.86%, 33.15% and 28.62%, respectively, while H2 also increases by 33.67%, 16.42%, 67.52%, 3.81%, 2.97%, 11.57%, 43.45%, and 27.26%, respectively. The rate of flowering and fruit setting decreases first and then increases with the increase of irrigation amount. Compared with H3N3, the yield of other treatments increases by 2.69%-52.20%, While H2N1 treatment has the highest yield(26 852.55 kg/ha). Considering from the point of view of promoting growth and increasing yield, the best water and nitrogen combination mode of mountain apple in northern Shaanxi is medium water deficit irrigation and high nitrogen(H2N1)treatment. The results from this study can provide a theoretical basis for apple water and nitrogen management in mountainous areas of northern Shaanxi.  相似文献   

14.
为了验证保护性耕作小麦抗旱效果,沧州市沧县2011和2012年进行了保护性耕作小麦抗旱试验。试验结果:实施保护性耕作的小麦凸显出抗旱优势,土壤含水量高,苗齐苗壮。为了验证保护性耕作小麦增产效果,沧州市沧县2012年进行了保护性耕作小麦测产试验。试验结果:实施保护性耕作的小麦增产显著。试验结论 :保护性耕作可增强土壤蓄水保墒能力,利于小麦生长发育,有效提高小麦产量。  相似文献   

15.
《Agricultural Systems》2005,85(1):59-81
Decision-making processes in agriculture often require reliable crop response models to assess the impact of specific land management. While process-based models are often preferred over empirical ones in current modelling communities, empirical crop growth models can play an important role in identifying the hidden structure of crop growth processes relating to a wide range of land management options. This study investigates the potential of predicting crop yield responses under varying soil and land management conditions by applying three different adaptive techniques: general linear models (GLMs), artificial neural networks (ANNs), and regression trees (RTs). The crop yield data used in this research consist of 720 maize yield indices from 11 different land management trials in southern Uganda. GLM showed the poorest results in terms of modelling accuracy, prediction accuracy, and model uncertainty, which might suggest its inability to model the non-linear causal relationships present in complex soil–land and crop-management interactions. The other two non-parametric adaptive models show significantly higher prediction accuracy than GLM. RT is the most robust technique for predicting crop yield at the study site. ANN is also a promising tool for predicting crop yield and offers insight into the causal relationships through the use of sensitivity analyses, but the complex parameterization and optimum model structure require further attention. The three adaptive techniques compared in this research showed different advantages and disadvantages. When these methods are used together, valuable information can be provided on crop responses, and more reliable crop growth models may result.  相似文献   

16.
The methodology proposed by the Food and Agriculture Organization (FAO) (Doorenbos, J., Pruitt, W.O., 1977. Crop water requirements. FAO irrigation and drainage. Paper No. 24. FAO, Rome) and updated by Allen et al. (Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO irrigation and drainage. Paper No. 56. FAO, Rome) for calculating crop water requirements is the most extended and accepted method worldwide. This method requires the prior calculation of reference evapotranspiration (ETo). This study evaluates the FAO-56 and American Society of Civil Engineers (ASCE) Penman–Monteith (PM) equations for estimation of hourly ETo under the semiarid conditions of the province of Albacete (Spain). The FAO-56 and ASCE equations (hourly time step) were compared against measured lysimeter ETo values at Albacete for 13 days during the period of April–October 2002 and 16 days during April–October 2003. The average of estimated FAO-56 Penman–Monteith ETo values was equal to the average of measured values. However, the average of estimated ASCE Penman–Monteith values was 4% higher than the average of measured lysimeter ETo values. This method overestimated measured lysimeter ETo values by 0.45 mm h−1.Simple linear regression and error analysis statistics suggest that agreement between both estimation methods and the lysimeter was quite good for the province of Albacete.In this paper, the FAO-56 Penman–Monteith equation for calculating hourly ETo values was more accurate than the ASCE Penman–Monteith method under semiarid weather conditions in Albacete.  相似文献   

17.
In this paper, daily ET0 estimates at two semiarid locations, Zaragoza and Córdoba, were obtained from the Penman–Monteith equation using either fixed (70 s m−1) or variable rc values. Variable rc values were computed with two models, Katerji and Perrier, and Todorovic. Daily ET0 estimates were computed from 24-h meteorological averages or from the sum of hourly estimates. Daily ET0 measured values were obtained from a weighing lysimeter (Zaragoza) and an eddy covariance system (Córdoba). There was a good agreement at both locations between estimated and measured ET0 values using a fixed rc value and 24-h meteorological averages. Estimates obtained from the sum of hourly estimates were somewhat worse. When 24-h meteorological averages were used, the Katerji and Perrier model for variable rc slightly improved ET0 estimates at both locations. But that improvement does not support the effort to locally calibrate that model. When daily ET0 estimates were obtained from the sum of hourly estimates, the Todorovic model improved the estimation at Zaragoza and, at a lesser degree, at Córdoba. Under the semiarid conditions of the two studied locations, the use of the Todorovic model is recommended to get hourly ET0 estimates from which daily estimates can be obtained. If 24-h meteorological averages are used, a fixed rc value as proposed by Allen et al. [Crop evapotranspiration: guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper No. 56, FAO, Rome, 1998] should be enough for accurate ET0 estimates.  相似文献   

18.
The purpose of this study was to estimate precipitation (P), reference evapotranspiration (ETo), precipitation deficit (PD = P − ETo) and relative crop yield reduction (YR) for a generic crop under climate change conditions for three locations in Puerto Rico: Adjuntas, Mayagüez, and Lajas. Reference evapotranspiration was estimated by the Penman-Monteith method. Precipitation and temperature data were statistically downscaled and evaluated using the DOE/NCAR PCM global circulation model projections for the B1 (low), A2 (mid-high) and A1fi (high) emission scenarios of the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios. Relative crop yield reduction was estimated from a water stress factor, which is a function of soil moisture content. Average soil moisture content for the three locations was determined by means of a simple water balance approach.Results from the analysis indicate that the rainy season will become wetter and the dry season will become drier. The 20-year average September precipitation excess (i.e., PD > 0) increased for all scenarios and locations from 121 to 321 mm between 2000 and 2090. Conversely, the 20-year average February precipitation deficit (i.e., PD < 0) changed from −27 to −77 mm between 2000 and 2090. The results suggest that additional water could be saved during the wet months to offset increased irrigation requirements during the dry months. The 20-year average relative crop yield reduction for all scenarios decreased on average from 12% to 6% between 2000 and 2090 during September, but increased on average from 51% to 64% during February. Information related to the components of the hydrologic water budget (i.e., actual evapotranspiration, surface runoff, aquifer recharge and soil moisture storage) is also presented. This study provides important information that may be useful for future water resource planning in Puerto Rico.  相似文献   

19.
针对塑料地膜对农业生产造成的严重污染问题,运用对照处理方法,探讨了液体地膜覆盖对夏玉米生长发育及产量等方面的影响。结果表明,液膜覆盖使夏玉米株高和茎粗均比对照偏大,其中,低水分处理下差异最为显著。夏玉米叶面积指数低水分处理时液膜覆盖在生育前期较对照偏大,生育后期偏小;而中、高水分下液膜覆盖叶面积指数在整个生育期内均比对照偏大。液膜覆盖使夏玉米光合速率和蒸腾速率显著增大,有利于光合产物的形成。低水分处理下液膜覆盖增产效果最好,增产率达到56.97%,产投比为1.695,高水分下液膜覆盖增产效果最差,增产率仅为15.57%,液膜覆盖产投比小于对照。研究认为,夏玉米液膜覆盖能有效抵抗干旱逆境从而达到节水增产的显著效果。  相似文献   

20.
Risk assessment of maize yield was carried out using a crop growth model combined with a deterministic runoff model and a stochastic rainfall intensity model. These were compared with empirical models of daily rainfall–runoff processes. The combination of the deterministic runoff model and the stochastic rainfall intensity model gave more flexible performance than the empirical runoff model. Scenarios of crop simulation included production techniques (water harvesting, WH, and conventional total soil tillage, CT) and initial soil water content at planting (empty, half and full). The in-field water harvesting technique used in the simulation was a no-till type of mini-catchment with basin tillage and mulching. The lower the initial soil water content at planting, the greater the yield difference between the WH and CT production techniques. With the low initial soil water content at planting, the WH production technique had up to 50% higher yield compared to the CT production technique, clearly thus demonstrating the superiority of the WH production technique. Under all the variations in agronomic practices (planting date, plant population, cultivar type) tested, the WH had a lower risk than CT under these semi-arid climatic conditions (i.e., WH increased the probability of higher crop yields).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号