首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
长期施肥对红壤性水稻土团聚体稳定性及固碳特征的影响   总被引:21,自引:2,他引:21  
施用有机肥是提高土壤有机碳(SOC)含量、促进土壤团聚体形成和改善土壤结构的重要措施。本研究旨在探讨长期作物残留和投入有机物料对水稻土团聚体分布及稳定性的影响,分析不同粒级团聚体的固碳特征及其与团聚体形成的相关性,以及土壤和不同粒级团聚体对累积碳投入的响应。长期定位施肥试验始于1986年,设不施肥(CK)、单施化肥(CF)、秸秆化肥混施(RS)、低量粪肥配施化肥(M1)和高量粪肥配施化肥(M2)5个处理。2009年采集0~10 cm土壤样品,测定总土以及大团聚体(LM,2 mm)、较大团聚体(SM,0.25~2 mm)、微团聚体(MA,0.25~0.053 mm)和黏粉粒(SC,0.053 mm)的质量比例及其SOC浓度,并分析闭蓄于SM内部的颗粒有机物(POM)、微团聚体(MA-SM)和黏粉粒(SC-SM)的质量含量和SOC浓度。结果表明,与CK和CF比较,有机肥混施化肥处理(RS、M1和M2)均显著提高了LM和SM的质量比例和平均当量直径(MWD),降低了SC质量含量;两个粪肥配施化肥处理(M1和M2)的效果优于秸秆化肥混施(RS),但是M1和M2间差异不显著;单施化肥则降低了稳定性团聚体的比例。团聚体的SOC浓度没有随粒级增大而增加,各处理均为LM和SM结合的SOC浓度最高,其次为SC,最小为MA。与CK比较,有机肥混施化肥处理均显著提高了各粒级团聚体的SOC浓度。总土SOC的增加主要取决于SM的SOC含量,而MA-SM组分决定了SM固持SOC的能力。总土、LM和SM的SOC含量以及从SM分离出的POM、MA-SM和SC-SM的SOC含量均与累积碳投入量呈显著正相关,但总土分离出的MA和SC的SOC含量对累积碳投入量反应不敏感,表现出碳饱和迹象。因此,尽管长期大量施用有机物料促进了红壤性水稻土大团聚体的形成和团聚体稳定性,增加了其SOC的固持,但有机质可能不是该土壤水稳性团聚体形成的最主要黏结剂。  相似文献   

2.
不同肥力红壤水稻土根际团聚体组成和碳氮分布动态   总被引:7,自引:0,他引:7  
江春玉  刘萍  刘明  吴萌  李忠佩 《土壤学报》2017,54(1):138-149
研究水稻种植期间表层土壤团聚体数量及其有机碳、全氮含量的变化,对揭示人为耕作的影响、认知土壤肥力的演变规律具有重要意义。选择两种不同肥力的红壤性水稻土进行田间根袋试验,分别于水稻插秧前、分蘖期、孕穗期和成熟期采样,分析了水稻生长过程中根际和非根际土壤团聚体组成、稳定性以及有机碳、全氮分布的动态变化。结果表明,低肥力土壤团聚体以0.25 mm大团聚体为主(56.2%~64.0%),0.25~1 mm粒级团聚体含量最高;除1~2 mm粒级外,水稻生育期内根际土壤各粒级团聚体含量均有显著变化;取样时期、根际作用与取样时期的交互效应对0.25~1 mm和0.053~0.25 mm粒级含量有显著影响。高肥力土壤中以0.25 mm微团聚体为主(59.8%~72.0%),0.053~0.25 mm粒级团聚体比例最高,取样时期显著影响0.25 mm大团聚体含量,根际作用与取样时期的交互效应对2 mm粒级含量有极显著影响。与非根际相比,根际土壤大团聚体的破坏率较低,平均重量直径(MWD)较高,种植水稻有助于提高根际土壤的稳定性。两种肥力土壤团聚体中有机碳和全氮含量均表现为1~2 mm粒级最高,0.053~0.25 mm粒级最低,大团聚体中显著高于微团聚体。根际土壤中,水稻成熟期各粒级团聚体有机碳含量与插秧前无显著差异,而分蘖期和孕穗期有明显波动;水稻的生长降低了大团聚体中的全氮含量,对高肥力土壤的影响更为显著。总体而言,低肥力土壤中,根际作用主要影响团聚体组成和稳定性,取样时期影响团聚体碳氮含量;高肥力土壤中,团聚体组成和碳氮分布受根际作用和取样时期的共同影响。  相似文献   

3.
秸秆还田对盐渍土团聚体稳定性及碳氮含量的影响   总被引:5,自引:2,他引:3  
以黄河三角洲典型盐化潮土为研究对象,分析了3种盐渍化程度(轻度、中度、重度)和3 a连续秸秆还田下土壤水稳性团聚体组成、稳定性以及各级团聚体C、N含量的变化。研究结果表明:重度盐渍土0.25~2 mm和0.053~0.25 mm团聚体所占比例显著低于轻度和中度盐渍土;土壤盐分含量与0.25~2mm团聚体中有机碳和全氮的分配比例、0.053~0.25 mm团聚体中全氮的分配比例成显著负相关。秸秆还田使轻度盐渍土平均重量直径(MWD)、几何平均直径(GMD)和0.25 mm团聚体所占比例(R0.25)分别增加47.6%、39.7%和54.0%,使中度盐渍土MWD、GMD和R0.25分别增加31.0%、31.9%和31.4%;各粒级中秸秆还田使轻度盐渍土0.053~0.25 mm粒级有机碳和全氮含量增加最多,增加比例分别为29.1%和28.8%,该粒级中C、N分配比例也显著提高;秸秆还田使中度盐渍土0.25~2 mm团聚体有机碳及其分配比例提高最多,比例分别为56.1%和58.7%。秸秆还田对轻度和中度盐渍土团聚体的稳定性均起到了明显的改善作用,但不同盐渍土秸秆还田对土壤团聚体C、N分布的影响明显不同。  相似文献   

4.
生物质炭和秸秆长期还田对红壤团聚体和有机碳的影响   总被引:4,自引:2,他引:4  
孟祥天  蒋瑀霁  王晓玥  孙波 《土壤》2018,50(2):326-332
要 :秸秆还田和施用生物炭是提高土壤有机碳含量和改良土壤团聚体结构的有效方法,但长期施用生物炭与秸秆还田改良土壤的效率研究仍然缺乏比较。本研究针对中亚热带典型的旱地红壤,基于等碳量不同碳源投入的5年野外定位试验,研究秸秆还田、秸秆-猪粪配施和生物炭还田对红壤团聚体组成、稳定性和有机碳分布的影响,为建立红壤地力快速提升的有机培肥措施提供科学依据。本试验共设置对照、单施化肥、秸秆还田、秸秆-猪粪配施和生物炭还田五个处理,采用干筛和湿筛法分析了连续施用不同碳源5年后对土壤团聚体组成、稳定性和有机碳分布的影响。研究表明,施用等碳量的不同有机碳源5年后显著增加了土壤有机碳含量,其增幅顺序为:生物炭还田>秸秆-猪粪配施>秸秆还田。干筛法分析结果表明:与单施化肥处理相比,秸秆-猪粪配施和生物炭还田处理显著增加>0.25 mm机械稳定性团聚体含量(R0.25)、平均重量直径(mean weight diameter, MWD)和几何平均直径(geometric mean diameter, GMD);秸秆还田和生物炭还田处理显著增加了0.25-2 mm团聚体对土壤有机碳的贡献率。湿筛法分析结果表明:与单施化肥处理相比,秸秆还田和秸秆-猪粪配施处理显著增加R0.25、MWD和GMD,但生物炭还田处理和单施化肥处理相比差异不显著;秸秆还田和秸秆-猪粪配施处理显著降低团聚体破坏率(PAD),生物炭还田处理显著增加了PAD;秸秆配施猪粪处理和秸秆还田处理显著增加了>2mm团聚体对土壤有机碳的贡献率。总体上,秸秆配施猪粪协同提高团聚体有机质含量和团聚体稳定性的作用比秸秆还田和生物炭还田要强。  相似文献   

5.
孟祥天  蒋瑀霁  王晓玥  孙波 《土壤》2018,50(2):326-332
生物质炭和秸秆还田是提高土壤有机碳含量和改良土壤团聚体结构的有效方法,但在长期尺度上生物质炭与秸秆还田改良土壤的效率仍不清楚。本研究针对中亚热带第四纪红黏土发育的红壤,基于等碳量不同碳源投入的5 a田间定位试验,包括对照、单施化肥、秸秆还田、秸秆–猪粪配施和生物质炭还田5个处理,采用干筛和湿筛法分析了不同施肥处理对土壤团聚体组成、稳定性和有机碳分布的影响。研究表明:施用等碳量的不同有机碳源5 a后显著增加了土壤有机碳含量,其增幅顺序为:生物质炭还田秸秆–猪粪配施秸秆还田。干筛法分析结果表明:与单施化肥处理相比,秸秆–猪粪配施和生物质炭还田处理显著增加0.25 mm机械稳定性团聚体含量(R0.25)和平均重量直径(mean weight diameter,MWD);秸秆还田和生物质炭还田处理显著增加了0.25~2 mm团聚体对土壤有机碳的贡献率。湿筛法分析结果表明:与单施化肥处理相比,秸秆还田和秸秆–猪粪配施处理显著增加R_(0.25)和MWD,但生物质炭还田处理和单施化肥处理相比差异不显著;秸秆还田和秸秆–猪粪配施处理显著降低团聚体破坏率(PAD),生物质炭还田处理显著增加了PAD;秸秆配施猪粪处理和秸秆还田处理显著增加了2 mm团聚体对土壤有机碳的贡献率。总体上,秸秆配施猪粪协同提高团聚体有机碳含量和团聚体稳定性的作用比秸秆还田和生物质炭还田要强。  相似文献   

6.
中国黄土高原区轮耕对土壤团聚体、有机碳氮含量的影响   总被引:2,自引:0,他引:2  
In rain-fed semi-arid agroecosystems, continuous conventional tillage can cause serious problems in soil quality and crop production, whereas rotational tillage (no-tillage and subsoiling) could decrease soil bulk density, and increase soil aggregates and organic carbon in the 0-40 cm soil layer. A 3-year field study was conducted to determine the effect of tillage practices on soil organic carbon (SOC), total nitrogen (TN), water-stable aggregate size distribution and aggregate C and N sequestration from 0 to 40 cm soil in semi-arid areas of southern Ningxia. Three tillage treatments were tested: no-tillage in year 1, subsoiling in year 2, and no-tillage in year 3 (NT-ST-NT); subsoiling in year 1, no-tillage in year 2, and subsoiling in year 3 (ST-NT-ST); and conventional tillage over years 1-3 (CT). Mean values of soil bulk density in 0-40 cm under NT-ST-NT and ST-NT-ST were significantly decreased by 3.3% and 6.5%, respectively, compared with CT, while soil total porosity was greatly improved. Rotational tillage increased SOC, TN, and water-stable aggregates in the 0-40 cm soil, with the greatest effect under ST-NT-ST. In 0-20 and 20-40 cm soils, the tillage effect was confined to the 2-0.25 mm size fraction of soil aggregates, and rotational tillage treatments obtained significantly higher SOC and TN contents than conventional tillage. No significant differences were detected in SOC and TN contents in the >2 mm and <0.25 mm aggregates among all treatments. In conclusion, rotational tillage practices could significantly increase SOC and TN levels, due to a fundamental change in soil structure, and maintain agroecosystem sustainability in the Loess Plateau area of China.  相似文献   

7.

Purpose

Biochar application is deemed to modify soil properties, but current research has been mostly conducted on the degraded land in tropical regions. Using six consecutive years of biochar field trial, we investigated effects of biochar on soil aggregates, structural stability, and soil organic carbon (SOC) and black C (BC) concentrations in aggregate fractions. The findings have important implications in managing soil structure and SOC sequestration in high fertility soils of the temperate areas.

Materials and methods

The study had four treatments: control; biochar rate at 4.5 (B4.5) and biochar rate at 9.0 t ha?1 year?1 (B9.0); and straw return (SR). Soil samples were collected from 0–10-cm layer, and aggregate size distribution was determined with the wet-sieving method. Then, the mean weight diameter (MWD) of aggregates and the aggregate ratio (AR), i.e., the ratio of the >250 μm to the 53–250 μm size were calculated to assess the structural stability. Total SOC and BC concentrations in bulk soil (<2 mm) and separated fractions (i.e., >2000, 250–2000, 53–250, and <53 μm) were measured.

Results and discussion

The B4.5 and B9.0 significantly increased macroaggregate (250–2000 μm) and MWD and AR indices relative to the control. Comparing to the SR, the improvements in soil aggregation under biochar treatments were limited. Additionally, more SOC in larger fractions (>2000, 250–2000, and 53–250 μm) and BC in extracted fractions under biochar soils were observed. These results implied that biochar addition enhanced both native SOC and BC physical protection by aggregation.

Conclusions

Biochar application is effective in mediating soil aggregation, and thus improves both native SOC and BC stabilization in an intensive cropping system of North China.
  相似文献   

8.
长期施肥对浙江稻田土壤团聚体及其有机碳分布的影响   总被引:20,自引:0,他引:20  
以浙江省稻田长期定位试验站为依托,研究长期不同施肥措施对土壤团聚体及其有机碳分布的影响。研究结果表明,与不施肥对照(CK)相比,栏肥与化肥配施(NPKOM)、单施栏肥(OM)、秸秆与化肥配施(NPKRS)和单施秸秆(RS)处理均显著提高了2 mm和2~0.25 mm水稳定性大团聚体的含量和团聚体平均重量直径(p0.05),强化了团聚体对土壤有机碳的物理保护作用。此外,长期有机无机配施(NPKOM和NPKRS)处理显著提高了各个粒级团聚体中有机碳含量,并且显著增加水稳定性大团聚体有机碳的贡献率,而长期单施化肥和单施秸秆处理并未有效增加土壤总有机碳含量。不同施肥处理下,2~0.25 mm粒级团聚体有机碳占土壤总有机碳的34.2%~48.6%,是土壤有机碳的主要载体。利用傅立叶变换红外光谱(FT-IR)技术对2~0.25 mm和0.053 mm团聚体进行结构表征,发现长期单施有机肥或者有机无机配施下芳香族C较CK提高29.9%~45.2%,较NPK处理提高22.3%~36.6%,提高了土壤有机碳的芳构化。在有机碳积累方面,施用有机肥,尤其是栏肥与化肥配施,同时强化了团聚体对有机碳的物理保护以及促进了化学抗性有机碳组分的积累,是加强稻田土壤有机碳库积累的合理施肥模式。  相似文献   

9.
免耕对土壤团聚体特征以及有机碳储量的影响   总被引:15,自引:3,他引:12  
以实施7年的中国科学院禹城综合试验站冬小麦夏玉米轮作免耕长期定位试验场为对象,研究免耕条件下土壤水稳性团聚体和有机碳储量的变化,为进一步评价免耕措施对黄淮海平原土壤结构和质量的影响提供科学依据。设置免耕(NT)、免耕秸秆不还田(NTRR)、常规耕作(CT)3种处理,分析土壤表层(0~20 cm)及深层(20~60 cm)水稳性团聚体分布特征、土壤有机碳以及团聚体有机碳的变化和相互关系。研究结果表明:由于减少了对土壤的破坏以及增加了秸秆还田和有机肥的施用,与常规耕作相比,NT和NTRR可提高表层土壤有机碳含量和储量、水稳性团聚体平均重量直径(MWD)和几何平均直径(GMD),以及大团聚体有机碳的含量和储量。其中,秸秆覆盖比施用有机肥对表层土壤有机碳储量和0.25~2 mm团聚体有机碳储量的提高具有更显著的作用。与表层不同,深层土壤有机碳和大团聚体有机碳的含量和储量表现为NT相似文献   

10.

Purpose

Soil aggregates play an important role in promoting soil fertility, as well as increasing the sink capacity and stability of soil carbon. In this study, we consider the following research questions:1. Under field conditions, do different dosages of biochar increase the soil aggregation after 3 years of application?2. How does the application of biochar affect the concentration and distribution of soil total organic carbon (TOC) and total nitrogen (TN) in different sizes of aggregates?3. Can the application of biochar alter the composition of organic carbon in soil aggregates?

Materials and methods

Different amounts of biochar (up to 90 t ha?1) were applied to a calcareous soil in a field experiment in 2009 along with the application of chemical fertilizer annually and the returning of winter wheat and summer maize straws. After 3 years, 0–20-cm soil samples were taken to measure the size distribution of soil water-stable aggregates by wet sieving, the concentrations of TOC and TN in whole aggregates and light or heavy fractions by elemental analysis equipment, and composition of TOC by Fourier transform infrared (FTIR) and pyrolysis-gas chromatography/mass spectrometer (Py–GC/MS).

Results and discussion

(1) The 3 years of biochar application had no significant effects on degree of soil aggregation but reduced the breakage of large soil aggregates (>1000 μm); (2) biochar significantly increased the contents of TOC and TN in soil macro-aggregates (>250 μm), as well as their ratios to total soil amount. Biochar also significantly increased the contents of TOC and TN in light fractions as well as the C/N ratio, which made the soil organic matter more active. The biochar dosage showed a significant positive correlation with organic carbon, total nitrogen, and C/N ratio in light fraction components of aggregates (>250 μm). Biochar mainly affected the organic matter in the heavy fraction components of macro-aggregates; (3) from the Py–GC/MS results, biochar increased the CO2 content originated from active organic carbon.

Conclusions

Long-term application of biochar improved the stability of soil aggregates, increased the contents of TOC and TN as well as organic carbon and total nitrogen in macro-aggregates, and usually increased the contents of CO2 originated from active organic carbon in light fractions. The findings were helpful in evaluating the effects of biochar on soil aggregation and organic matter stability.
  相似文献   

11.
Abstract

The effect of organic manure and inorganic fertilizer on soil aggregate size distribution and stability, and associated carbon (C) within aggregates varies greatly in previous studies because of the differences in soil conditions, cropping systems, and management practices. This study was conducted as two field fertilization experiments, with different cropping systems, under a subtropical climate in China. The two field experiment sites were located in Jinhua (established in April 2011) in the Jinqu basin in Zhejiang province and Jintan (established in October 2010) in the low-middle Yangtze River plain in Jiangsu province. Both experiments consisted of four treatments, including unfertilized (CK), mineral fertilizer nitrogen (N)–phosphorus (P)–potassium (K) (NPK), NPK plus straw (NPK?+?SR), and NPK plus cattle manure (NPK?+?FYM) or half NPK plus cattle manure (1/2NPK?+?FYM). Water stable aggregate size classes (>5, 2–5, 1–2, 0.5–1, 0.25–0.5, and <0.25?mm) and associated soil organic C (SOC) at 0–15?cm depth were measured. The mean weight diameter (MWD), geometric mean diameter (GMD), and water stable aggregates (WSA)?>?0.25?mm were also determined. The results showed that aggregate-size distribution varied with soil types. Combined application of NPK and organic matter (straw residue or cattle manure), unlike the CK and NPK treatments, significantly increased the WSA >0.25?mm, MWD, and GMD, while obviously reducing the proportion of <0.25?mm aggregates. However, no differences in WSA >0.25?mm, MWD, GMD, and associated C were observed between CK and NPK at both sites. The addition of FYM to the NPK treatment yielded the highest SOC contents in bulk soil, and showed significantly higher associations of C within all size aggregates at both sites. In contrast, NPK?+?SR significantly increased SOC within aggregate classes (2–5?mm, 0.5–1?mm, 0.25–0.5?mm, and <0.25?mm) at Jinhua and (>5?mm and 1–2?mm) at Jintan compared to the CK and NPK treatments. Overall, the combined application of FYM and mineral NPK was the best sustainable management practice for the improvement of aggregate stability and SOC sequestration.  相似文献   

12.
通过对滨海盐化潮土小麦—玉米轮作2年田间定位试验,研究不同改良剂施用对土壤团聚体分布、稳定性及土壤团聚体中有机碳含量、各级团聚体有机碳对总有机碳贡献率的影响。试验共设置3个处理:对照(CK)、有机土壤改良剂(OSA)和有机—无机土壤改良剂(CSA),分析土壤团聚体分布、水稳性大团聚体(R_(0.25))、平均重量直径(mean weight diameter,MWD)、几何平均直径(geometric mean diameter,GMD)、分形维数(D)、有机碳储量(soil organic carbon storage,SOCS)和有机碳贡献率(contribution rate of organic carbon)。结果表明,滨海盐化潮土水稳性团聚体组成主要以0.25 mm粒径为主,改良剂施用后土壤R_(0.25)显著提高,其影响主要集中在5 mm和2~5 mm粒径级,OSA处理2个粒级团聚体含量较CK分别显著增加167.38%和59.00%,CSA处理分别显著增加89.17%和100.66%。施用OSA与CSA同时显著提高了土壤团聚体MWD和GMD值,说明2种改良剂的施用均有利于提高大团聚体数量及稳定性。施用改良剂2年处理土壤各粒级团聚体中有机碳含量均有所提高,OSA处理以1~2 mm粒级提高最多,CSA以2~5 mm粒级提高最多,且前者达显著水平。与CK相比,改良剂可促使土壤有机碳向大团聚体富集,显著提高1~2 mm粒级团聚体对土壤总有机碳的贡献率93.62%~109.76%,降低或显著降低1~2 mm粒级团聚体对土壤总有机碳的贡献率20.55%~24.92%。在小麦—玉米轮作模式下,改良剂施用不仅可以显著提高滨海盐化潮土水稳性大团聚体含量和稳定性,还可显著增加水稳性大团聚体有机碳含量与储量,是加强盐碱土壤有机碳库积累的有效措施。  相似文献   

13.
Different land use and management actions can affect soil aggregates (SAs) and nutrient stocks, which are crucial for sustainable agriculture. The impacts of various chrono-sequences on the soil aggregate structure, soil organic carbon (SOC) and nutrients associated with aggregate fractions in wolfberry (Lycium barbarum L.) plantations are still not fully understood. This study examined the composition and stability of SAs, SOC, total nitrogen (TN), available phosphorus (AP) and exchangeable cations (K+, Na+, Ca2+ and Mg2+) in bulk soil and various aggregate-size fractions from five wolfberry plantations with varying ages (1, 4, 6, 10 and 13 years) and a corn field (0 years) in the arid region of northwest Ningxia in China. The results indicated that silt–clay (<53 μm) fractions were dominant in the soil, accounting for 51%–66%, under different plantation ages. The proportion of the macro-aggregates (>250 μm) increased significantly, by 40%–47%, over the 4 years of wolfberry plantation. Likewise, the soil aggregate stability was improved, and total exchangeable bases (TEB) along with numerous cations concentrations (K+, Na+, Ca2+ and Mg2+) in SAs were significantly reduced as the wolfberry plantings became older. Both concentrations of SOC and TN in the soil aggregates peaked in the 13th year. The silt–clay fractions stored a considerable amount of SOC and nutrients. However, short-term (under 6 years) cultivation of wolfberry reduced the stocks of SOC, TN and AP in the soil, while long-term (over 10 years) cultivation increased them, particularly in macro-aggregates. These findings indicated that long-term wolfberry farming had several advantages, such as enhancing soil structure, accumulating SOC and nutrients and ameliorating alkaline soils, especially after 10 years, in the arid northwest of China.  相似文献   

14.
生物炭和氮肥配施提高土团聚体稳定性及作物产量   总被引:1,自引:1,他引:0  
【目的】通过田间定位试验,探讨生物炭和氮肥配施对土耕层土壤水稳性团聚体组成、稳定性、有机碳土层分布及冬小麦–夏玉米轮作体系下产量的影响,为生物炭在关中地区农业生产中的应用提供科学依据。【方法】本试验设置4个生物炭水平和2个氮肥水平,生物炭水平分别为0、1000、5000、10000 kg/hm2,依次记为B0、B1、B2、B3;氮肥水平包括两季总氮量480 kg/hm2(NT) 和两季总氮量减半240 kg/hm2(NH),共组成8个处理。采集0—10 cm、10—20 cm土层土壤样品,利用TTF-100土壤团聚体分析仪湿筛获得5种粒级的团聚体 (> 2 mm、1~2 mm、0.5~1 mm、0.25~0.5 mm、< 0.25 mm),用 > 0.25 mm团聚体含量 (R0.25)、平均重量直径 (MWD)、几何重量直径 (GMD) 表示水稳性团聚体的的稳定性,并测定了不同粒级团聚体中有机碳的含量及小麦–玉米两季作物总产量。【结果】与不施生物炭 (B0NT、B0NH) 相比,施用生物炭的处理显著增加了 > 2 mm、1~2 mm粒级水稳性大团聚体的百分含量 (P < 0.05),两粒级增幅范围分别为3.5%~180.3%、9.4%~98.9%。施用生物炭10000 kg/hm2(B3NT、B3NH) 时,MWD、GMD和R0.25增幅最高,分别增加了12.5%~112.5%、25.0%~65.7%、20.0%~65.0%。施用生物炭显著提高了土壤各粒级水稳性团聚体有机碳含量,与不施生物炭处理相比,> 2 mm、1~2 mm、0.5~1 mm 和0.25~0.5 mm粒级团聚体有机碳含量增幅分别为6.3%~30.5%、0.2%~28.2%、0.2%~41.6%和4.6%~39.1%。与0—10 cm土层相比,10—20 cm土层氮肥减量降低了土壤团聚体的稳定性,而施用生物炭10000 kg/hm2(B3NH) 可改善土壤团聚体的稳定性,改变有机碳分布。在10—20 cm土层,与B0NT处理相比,B0NH处理土壤水稳性团聚体的R0.25、MWD、GMD显著下降,三者分别降低了79.2%、25.7%、30.0%,而B3NH与B3NT处理之间无显著差异。与B0NT相比,B0NH处理 < 0.25 mm粒级微团聚体对土壤有机碳分配比例显著增加了17.4%,而B3NH处理与B3NT相比,< 0.25 mm粒级微团聚体对土壤有机碳分配比例无显著差异。此外,施用生物炭显著提高作物总产量,B2NT、B3NT和B3NH处理下两季作物总产量较高,分别较B0NT提高了27.0%、23.6%、27.9%,且三个处理之间无显著差异。从各指标相关分析可知,水稳定大团聚体的GMD与土壤全土有机碳以及两季作物总产量之间有着显著的正相关关系。【结论】生物炭配施氮肥显著提高了土壤水稳性大团聚体含量和团聚体稳定性,且提高小麦—玉米两季作物总产量。减施氮肥有利于有机碳向大团聚体中分配,供试条件下,生物炭10000 kg/hm2配施氮肥240 kg/hm2对提高土耕层团聚体稳定性、土壤有机碳及两季作物总产量效果最佳。  相似文献   

15.
长期施肥棕壤团聚体分布及其碳氮含量变化   总被引:7,自引:0,他引:7  
【目的】探究玉米-玉米-大豆轮作体系不同施肥处理对土壤团聚体分布及其有机碳、全氮的影响,以期深入了解施肥对土壤培肥、改善土壤结构的机制。【方法】选取不施肥(CK),化肥(NPK),低量有机肥(M1),低量有机肥与化肥配施(M1NPK),高量有机肥(M2),高量有机肥与化肥配施(M2NPK)6个处理。采集棕壤37年长期定位试验微区不同施肥处理的0-20 cm和20-40 cm土样,分析其水稳性团聚体( 1 mm、1~0.5 mm、0.5~0.25 mm、0.25~0.053 mm及 0.053 mm)分布及其有机碳、全氮分配特征。【结果】棕壤长期施肥对团聚体分布及其碳氮的影响0-20 cm大于20-40 cm,随土层深度的增加,有机碳(SOC)、全氮(TN)含量减少。各处理团聚体及碳、氮在团聚体中的分配主要在黏粉粒中(40%以上)。与CK相比,NPK处理显著提高了黏粉粒的含量,降低大团聚体与微团聚体含量,显著增加黏粉粒储碳比例;M1、M2处理显著增加 1 mm团聚体数量及其SOC含量,显著增加 0.25 mm各粒级团聚体的储碳比例,且M2处理显著高于M1处理;M1NPK、M2NPK处理也显著增加 1 mm团聚体数量及其SOC含量,M1NPK与M2NPK处理在NPK处理的基础上依次增加0.5~0.25 mm(M1NPK)、1~0.5 mm及 1 mm团聚体的储碳比例,M2NPK处理 0.25 mm团聚体储碳比例最高,土壤团聚体全氮的变化趋势与有机碳类似。【结论】棕壤连续有机无机配合施用可显著增加土壤大团聚体数量、SOC、TN含量及其储碳、氮比例,是提高土壤质量、改善土壤结构的有效施肥措施。  相似文献   

16.

Purpose

Wet meadows formed on alluvial deposits potentially store large amounts of soil carbon (C) but its stability is subject to the impacts of management practices. The objective of this study was to quantify and characterize soil organic carbon (SOC) and nitrogen (N) in mountain wet meadows across ranges of meadow hydrology and livestock utilization.

Materials and methods

Eighteen wetlands in the southern Sierra Nevada Mountains representing a range of wetness and livestock utilization levels were selected for soil sampling. In each wetland meadow, whole-solum soil cores delineated by horizon were analyzed for total and dissolved organic C (DOC) total (TN) and mineral nitrogen and soil water content (SWC). Multiple regression and GIS analysis was used to estimate the role of wet meadows in C storage across the study area landscape.

Results and discussion

Average solum SOC contents by wetland ranged from 130 to 805 Mg ha?1. All SOC and TN components were highly correlated with SWC. Regression analyses indicated subtle impacts of forage utilization level on SOC and TN concentrations, but not on whole-solum, mass-per-area stocks of SOC and TN. Proportions of DOC and TN under seasonally wet meadows increased with increasing utilization. GIS analysis indicated that the montane landscape contains about 54.3 Mg SOC ha?1, with wet meadows covering about 1.7% of the area and containing about 12.3% of the SOC.

Conclusions

Results indicate that soil organic C and N content of meadows we sampled are resilient to current light to moderate levels of grazing. In seasonally wet meadows, higher proportions of DOC and N with increasing utilization indicate vulnerability to loss. Partial drying of the wettest and seasonally wet meadows could result in losses of over five % of landscape SOC.  相似文献   

17.
The quantification of phosphorus(P) in bulk soil and P distribution in different size fractions of water-stable aggregates(WSAs)are important for assessing potential P loss through runoff. We evaluated available and total P distribution within WSAs of a sitty clay to clay soil in a long-term fertility experiment of a rice-wheat cropping system in India. Surface soil samples were collected from seven plots amended with NPK fertilizers in combination with or without organic amendments, farmyard manure(FYM), green manure(GM), and paddy straw(PS). The plot with no NPK fertilizers or organic amendments was set as a control. The soil samples were separated by wet sieving into four soil aggregate size fractions: large macroaggregates( 2.0 mm), small macroaggregates(0.25–2.0 mm), fine microaggregates(0.05–0.25 mm), and a silt + clay-sized fraction( 0.05 mm). Structural indices were higher in the soil receiving organic amendments than in the soil receiving inorganic fertilizer alone. Organically amended soil had a higher proportion of stable macroaggregates than the control and the soil receiving inorganic fertilizer alone, which were rich in microaggregates. Total and available P contents within WSAs were inversely related to the aggregate size, irrespective of treatment. The distribution of available and total P in the soil aggregate size fraction was as follows: silt + clay-size fraction small macroaggregates fine microaggregates large macroaggregates. Within a size class, aggregate-associated available and total P contents in the organically amended soil were in the following order: FYM PS ≥ GM. The available P content of the microaggregates( 0.25 mm) was 8-to 10-times higher than that of the macroaggregates( 0.25 mm), and the total P content of the microaggregates was 4-to 5-times higher than that of the macroaggregates. Cultivation without organic amendments resulted in more microaggregates that could be checked by the application of organic amendments such as FYM and GM, which increased the proportion of water-stable macroaggregates by consolidating microaggregates into macroaggregates.  相似文献   

18.
有机物料与化肥配施提高黄泥田水稻产量和土壤肥力   总被引:14,自引:1,他引:13  
农业有机物料具有资源化再利用的特点,与化肥配施既可以保证作物产量,也可以提升地力。为了建立最适宜的南方低产黄泥田培肥模式,该文在浙江金衢盆地开展3年田间试验研究化肥与不同有机物料(菇渣、紫云英、牛粪和秸秆)配施对水稻产量和土壤肥力的影响。结果表明:1)有机物料与化肥配施可以显著提高水稻产量,化肥+菇渣、化肥+紫云英、化肥+牛粪和化肥+秸秆处理下,水稻三年的平均产量分别比单施化肥提高了9.7%、9.5%、12.3%和9.5%;2)有机物料与化肥配合施用,土壤有机质、土壤养分(全氮、有效磷、速效钾和CEC)及土壤容重较单施化肥处理有一定程度的改善,其中,化肥+牛粪效果最明显,有机质质量分数提高了12.5%,土壤有效磷质量分数提高了37.7%,CEC提高了16.1%;3)与单施化肥相比,化肥+菇渣、化肥+牛粪处理下5 mm机械稳定性大团聚体分别提高了10.4%和6.7%,各配施处理均显著降低了团聚体破坏率。总得来讲,连续三年有机物料与化肥配施较单施化肥处理提高了水稻产量、改善了土壤肥力状况、增加了土壤团聚体稳定性,其中又以牛粪与化肥配合施用效果最佳。  相似文献   

19.
The effects of cattle manure and inorganic N‐fertilizer application on soil organic carbon (SOC), bulk density, macro‐aggregate stability and aggregate protected carbon were determined on clay and sandy soils of the Murewa smallholder farming area, Zimbabwe. Maize was grown in four fields termed homefields (HFs) and outfields (OFs) because of spatial variability induced by management practices and with the following fertility treatments: control (no fertility amelioration), 5, 15 and 25 t/ha cattle manure + 100 kg/ha N applied annually for seven consecutive years. The addition of cattle manure resulted in significant (P < 0.01) increases in SOC, macro‐aggregate stability and aggregate protected carbon in clay soils from at least the 5 t/ha cattle manure rate and was comparable between HFs and OFs on clay soils. Aggregate protected carbon in clay soils was significantly higher from the 15 and 25 t/ha cattle manure rates compared to the 5 t/ha cattle manure treatment. In contrast, only SOC was significantly (P < 0.05) increased with the addition of cattle manure on the sandy soils, while bulk density, macro‐aggregate stability and aggregate protected carbon were not significantly changed. Bulk density was also not significantly (P > 0.05) different on the clay soils. A significant and positive linear relationship (r2 = 0.85) was found between SOC and macro‐aggregate stability, while an r2 value of 0.82 was obtained between SOC and aggregate protected carbon on the clay soils. However, no regressions were performed on data from the sandy soils because of the lack of significant changes in soil physical properties. Application of cattle manure and inorganic N‐fertilizer significantly increased (P < 0.05) maize grain yield on both soil types. Results show that inorganic N‐fertilizer combined with cattle manure at 5–15 t/ha per yr is necessary to increase maize yields and SOC on sandy soils in Murewa, while at least 15 t/ha per yr cattle manure is required on the clay soils to improve physical properties in addition to maize yields and SOC.  相似文献   

20.
以松嫩平原碱化草甸土为研究对象,通过长期施用有机肥,对不同种植年限碱化草甸土水稳性团聚体及有机碳的粒径分布特征进行了研究。结果表明,随着种植年限的增加,土壤较大粒级水稳性团聚体(>1mm)含量减少,而0.25~0.5mm粒级水稳性团聚体含量明显增加随种植年限的增加,各粒级碱化草甸土有机碳平均含量呈增加趋势。2~5mm粒级土壤有机碳平均含量最高,随粒级的减小,有机碳含量逐渐减少,0.25~0.5mm粒级水稳性团聚体含量与有机碳含量呈现显著正相关关系种植4a后,碱化草甸土土壤水稳性团聚体及有机碳含量开始呈现稳中有升的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号