首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leaves of tomato and barley were inoculated with conidia of Blumeria graminis f. sp. hordei race 1 (R1) or Oidium neolycopersici (KTP-01) to observe cytological responses in search of resistance to powdery mildew. Both conidia formed appressoria at similar rates on tomato or barley leaves, indicating that no resistance was expressed during the prepenetration stage of these fungi. On R1-inoculated tomato leaves, appressoria penetrated the papillae, but subsequent haustorium formation was inhibited by hypersensitive necrosis in the invaded epidermal cells. On the other hand, KTP-01 (pathogenic to tomato leaves) successfully developed functional haustoria in epidermal cells to elongate secondary hyphae, although the hyphal elongation from some conidia was later suppressed by delayed hypersensitive necrosis in some haustorium-harboring epidermal cells. Thus, the present study indicated that the resistance of tomato to powdery mildew fungi was associated with a hypersensitive response in invaded epidermal cells but not the prevention of fungal penetration through host papilla.  相似文献   

2.
 A single conidium of tomato powdery mildew was isolated from heavily infected leaves of tomato (cv. Moneymaker) grown in the greenhouse of Kinki University, Nara Prefecture, Japan. It was successively multiplied so the morphological and taxonomic characteristics of the pathogen and its host range under high humidity conditions could be analyzed. The isolate KTP-01 of the tomato powdery mildew optimally developed infection structures at 25°C under continuous illumination of 3500 lx. More than 90% of the conidia germinated and developed moderately lobed appressoria. After forming haustoria, the pathogen elongated secondary hyphae from both appressoria and conidia. The hyphae attached to leaf surfaces by several pairs of appressoria and produced conidiophores with noncatenated conidia. In addition to its morphological similarity to Oidium neolycopersici, the phylogenetic analysis (based on the sequence of internal transcribed spacer regions of rDNA) revealed that KTP-01 could be classified into the same cluster group as O. neolycopersici. In host range studies, KTP-01 produced abundant conidia on the foliage of all tomato cultivars tested and tobacco (Nicotiana tabacum), and it developed faint colonies accompanied by necrosis on leaves of potato (Solanum tuberosum), red pepper (Capsicum annuum), petunia (Petunia × hybrida), and eggplant (S. melongena). The pathogen did not infect other plant species including Cucurubitaceae plants, which have been reported to be susceptible to some foreign isolates. Thus, the present isolate of the tomato powdery mildew was assigned as O. neolycopersici, a pathotype different from foreign isolates of the pathogen. Received: December 5, 2002 / Accepted: December 26, 2002 Acknowledgments This work was supported in part by a Grant-in-Aid (12660050) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. We express our deepest thanks to professor Dr. Y. Sato, Toyama Prefectural University, for his kind and valuable suggestion on taxonomic analysis of the powdery mildew pathogen described in the present study.  相似文献   

3.
The effects of three film-forming compounds, Ethokem, Bond and Vapor Gard, on infection of barley by the powdery mildew fungus Blumeria graminis f. sp. hordei were examined in glasshouse and field experiments. The three compounds provided significant control of powdery mildew infection when applied as pre- or post-inoculation treatments in the glasshouse. Such treatment had no effect on plant growth. Bond and Vapor Gard reduced the germination of conidia of B. graminis by 78% and 85% respectively, and reduced the subsequent formation of appressoria (73% and 85% respectively) and haustoria (75% and 79% respectively). The three compounds were less effective in field experiments, although they provided significant control of mildew infection and had no impact on plant growth and grain yield.  相似文献   

4.
ABSTRACT Grape berries are highly susceptible to powdery mildew 1 week after bloom but acquire ontogenic resistance 2 to 3 weeks later. We recently demonstrated that germinating conidia of the grape powdery mildew pathogen (Uncinula necator) cease development before penetration of the cuticle on older resistant berries. The mechanism that halts U. necator at that particular stage was not known. Several previous studies investigated potential host barriers or cell responses to powdery mildew in berries and leaves, but none included observation of the direct effect of these factors on pathogen development. We found that cuticle thickness increased with berry age, but that ingress by the pathogen halted before formation of a visible penetration pore. Cell wall thickness remained unchanged over the first 4 weeks after bloom, the time during which berries progressed from highly susceptible to nearly immune. Autofluorescent polyphenolic compounds accumulated at a higher frequency beneath appressoria on highly susceptible berries than on highly resistant berries; and oxidation of the above phenolics, indicated by cell discoloration, developed at a significantly higher frequency on susceptible berries. Beneath the first-formed appressoria of all germinated conidia, papillae occurred at a significantly higher frequency on 2- to 5-day-old berries than on 30- to 31-day-old fruit. The relatively few papillae observed on older berries were, in most cases (82.8 to 97.3%), found beneath appressoria of conidia that had failed to produce secondary hyphae. This contrasted with the more abundantly produced papillae on younger berries, where only 35.4 to 41.0% were located beneath appressoria of conidia that had failed to produce secondary hyphae. A pathogenesis-related gene (VvPR-1) was much more highly induced in susceptible berries than in resistant berries after inoculation with U. necator. In contrast, a germin-like protein (VvGLP3) was expressed within 16 h of inoculation in resistant, but not in susceptible berries. Our results suggest that several putative barriers to infection, i.e., cuticle and cell wall thickness, antimicrobial phenolics, and two previously described pathogenesis-related proteins, are not principal causes in halting pathogen ingress on ontogenically resistant berries, but rather that infection is halted by one or more of the following: (i) a preformed physical or biochemical barrier near the cuticle surface, or (ii) the rapid synthesis of an antifungal compound in older berries during the first few hours of the infection process.  相似文献   

5.
为明确公主岭霉素在草莓生产中的防病诱抗效应,于大田采用五点取样法调查公主岭霉素对草莓白粉病的防控效果及对植株生长性状的影响,并于室内采用生测法测定其对草莓叶片防御酶活性和根际土壤酶活性的影响。结果显示,以公主岭霉素水浸提液100倍稀释液进行灌根并协同叶面喷雾对草莓白粉病的预防效果为71.90%;单独叶面喷雾对草莓白粉病的治疗效果为69.90%;灌根协同叶面喷雾预防与叶面喷雾治疗的综合防控处理对草莓白粉病的防治效果可达85.37%。公主岭霉素水浸提液100倍稀释液灌根后草莓幼苗的株高、叶柄长、叶长、叶宽、叶数、径冠等方面均优于清水对照;叶面喷施可提升叶片中多酚氧化酶和超氧化物歧化酶的活性,喷雾后1 d内即较清水对照显著提高;5 d后过氧化氢酶活性显著高于清水对照。灌根后根际土壤中蔗糖酶的活性在用药后15 d内均显著高于清水对照。表明合理施用公主岭霉素可实现对草莓白粉病的有效防控,并诱导提升草莓植株的抗病性,改善草莓生长环境,促进其生长。  相似文献   

6.
Occurrence of New Powdery Mildew on Greenhouse Tomato Cultivars   总被引:2,自引:0,他引:2  
During a year-round survey on the occurrence of powdery mildew on greenhouse-cultivated tomato plants, the disease was most severe in June and July. All tomato plants (45 commercial cultivars and 11 breeding lines) tested were infected with the pathogen but had different degrees of susceptibility. The pathogen was epiphytic and produced white, round pustules mainly on leaves of tomato plants. The pathogen produced conidia singly on conidiophores and forked appressoria on inoculated tomato leaves and seemed to be an Oidium sp. of Erysiphe polygoni type. Received 18 December 2000/ Accepted in revised form 22 July 2001  相似文献   

7.
细胞乳突的形成和小麦白粉菌成功侵染的关系   总被引:4,自引:0,他引:4  
 用一套己知抗白粉病单基因的小麦材料,研究了小麦白粉菌诱发寄主表皮细胞产生的乳突与成功侵染的关系。抗病小麦叶片上,诱发产生乳突的分生孢子占测定分生孢子数的58.8%,感病品种为63.8%。这表明抗性不同的小麦材料接种白粉菌之后,叶表皮细胞内形成乳突的百分率相近,然从在抗病材料和感病材料中形成的乳突阻止病原物发育和成功侵染的作用不相同,在抗病叶片上,诱发产生乳突的分生孢于中有88%停留在压力孢阶段,不继续发育,仅有12%能突破乳突形成吸器,使得侵染成功。与此对照,在感病叶片上只有32%诱发乳突的分生孢子不能穿透乳突,而68%则能突破乳突。成功地与寄主建立寄生关系。我们的研究表明,乳突能否成功地阻止白粉菌侵入可能与乳突形成的迟早有关。  相似文献   

8.
为明确海南省苦瓜白粉病的病原菌、生理小种及苦瓜对白粉病的抗性遗传规律,结合形态学鉴定和分子鉴定解析白粉病菌及生理小种种类,通过显微镜观察白粉病菌侵染过程,并应用主基因+多基因混合遗传模型分析法探讨苦瓜对白粉病的主要抗性遗传规律。结果表明:采集自海南省6个市(县)的苦瓜白粉病病原菌均为单囊壳白粉菌Sphaerotheca fuliginea,属生理小种2F,该菌在侵染苦瓜叶片时有4个关键时期:接种后4 h为分生孢子萌发高峰期,8 h为附着孢形成高峰期,16~24 h为次生菌丝形成高峰期,5 d为分生孢子梗形成高峰期。将其接种于苦瓜抗、感品系,对白粉病的抗性符合2对加性-显性-上位性主基因+加性-显性多基因模型,主基因和多基因共同控制苦瓜对白粉病的抗性,其中以主基因遗传为主,且会受到环境变异的影响。根据苦瓜抗性遗传规律,F2代主基因遗传率最高,受环境影响最小,在苦瓜的白粉病抗性育种中,以早期世代F2代作为有效选择世代。研究表明白粉病菌侵染叶片的前2 d是白粉病防治的最佳时期,所以在白粉病易发的物候期,可将防治时间提前1~2 d。  相似文献   

9.
A comparison of rates of germination and appressorium formation by an isolate of Colletotrichum gloeosporioides on mango leaves, fruit surfaces and cellophane membranes showed that behaviour was broadly similar on all three substrates. Frequency of appressorium formation was slightly higher on cellophane membranes, and both hyaline and melanized appressoria were formed. Only melanized appressoria were formed on mango surfaces. In vitro experiments on membranes showed comparative differences in physiological behaviour with temperature for two Philippine isolates of C. gloeosporioides . The most stimulatory temperature for production of appressoria differed in isolates I-2 and I-4 (25 and 20°C, respectively). At 30°C more appressoria became melanized than at lower temperatures, but the frequency of formation of penetration pegs was highest at 25°C. Conidia of C. gloeosporioides germinated on cellophane membranes at relative humidities as low as 95%, but the percentage of conidia germinating and forming appressoria increased as the RH approached 100%. Approximately 18% of conidia of C. gloeosporioides I-2 held at 62 and 86% RH for 4 weeks retained viability, and some were capable of forming appressoria when placed at 100% RH. These results have implications for epidemiological models for disease control.  相似文献   

10.
小麦的种和品种对白粉病抗性的初步研究   总被引:1,自引:0,他引:1  
 在对白粉病具不同抗性的11个小麦的种和品种上进行的按种试验表明,在接种后8小时内,分生孢子达到最高萌发率(约为60%),并形成附着孢。在抗病的和感病的小麦叶片上,分生孢子的萌发率和萌发速度没有差异。接种后12小时,在感病的材料上,发现真菌侵入寄主,但在抗病的材料上,发现最早侵入时间,至少要比在感病材料上约晚4小时。接种后36小时,在高感的材料上,萌发的分生孢子有83%已侵入寄主,其中约有70~80%已形成吸胞。在感病、抗病和高抗材料上的侵入率,分别为70,45,27%。形成或开始形成吸胞的分别为55~61,14~27,4~8%。在抗病材料的表皮细胞内,真菌形成的吸胞较小,并有点畸形。在抗病材料的叶面上,真菌的菌丛稀薄,产孢也很少。  相似文献   

11.
Shomari  & Kennedy 《Plant pathology》1999,48(4):505-513
During March and April of 1993 and 1994, surveys on the incidence and severity of cashew powdery mildew ( Oidium anacardii ) were conducted in the Newala, Mtwara, Nachingwea and Tunduru areas of southern Tanzania to determine the variation in perennation between localities. Only immature cashew shoots, panicles and fruit can be infected by O. anacardii conidia. Cashew trees at sites in each district were assessed for shoot and panicle production and cashew powdery mildew. Survival of O. anacardii between seasons, in any area, was determined by the degree of production of shoots that were within the canopy and by the incidence of infection. Immature shoots produced from the main branches within the tree canopy were the main source of active powdery mildew in all districts; trees in the Newala district had the highest numbers of infected immature shoots in comparison with survey sites in the other areas. During the 1994 cashew-growing season (June–August), powdery mildew developed more rapidly and affected more shoots on the inside of the tree canopy than on the outside. Germination of conidia was reduced after aqueous suspension for 3 h. Germination on cashew leaves submerged under 2 mm of water was not affected. Appressorial and hyphal formation by germinating conidia on leaves decreased with increasing duration under water. Germination of conidia on glass slides at 100% r.h. was higher at 25 and 30°C than at 15°C and there was no germination at 35°C.  相似文献   

12.
Foliar and root applications of different silicon (Si)-based formulations were evaluated for their effects in reducing powdery mildew and promoting growth of wheat plants. X-ray microanalyses of treated plants revealed that root applications resulted in consistent deposition of Si in the leaves. In terms of powdery mildew control, root applications at 1.7 mM Si gave consistently the best results, reducing disease severity by as much as 80%, regardless of the product used. Although less effective than root applications, foliar treatments with both Si and nutrient salt solutions led to a significant reduction of powdery mildew on wheat plants. This suggests a direct effect of the products on powdery mildew rather than one mediated by the plant as in the case of root amendments. In our experiments, Si amendment, either through the roots or the leaves, did not increase plant growth. These results lead to the conclusion that Si is primarily, if not exclusively, absorbed by the root system and that such absorption by the roots is necessary for an optimal prophylactic effect.  相似文献   

13.
ABSTRACT Grape berries become resistant to powdery mildew early in development and are nearly immune to infection within 4 weeks after bloom. In this study, ontogenic resistance did not reduce attachment, germination, or appressorium formation of Uncinula necator on 3- to 4-week-old berries of Vitis vinifera 'Chardonnay' or 3-week-old berries of V. labruscana 'Concord'. Pathogen ingress halted at the cuticle before formation of a penetration pore. As berries aged, hyphal elongation and colony growth slowed until finally no secondary hyphae formed on fully resistant berries. More appressoria formed per unit of hyphal length as berries aged, indicating that failure to penetrate older berries led to increased attempts to penetrate resistant fruit. Additionally, hyphae within the colonies began to die as berries aged. Finally, the number of degree-hours between germination and sporulation of the colony (latent period) increased and sporophore density decreased with berry age at time of inoculation. Thus, ontogenic resistance both slows, and eventually halts disease development on grape berries, and limits the likelihood of spread by reducing absolute supply of conidia and delaying their formation. It furthermore has a consistent, stable, and predictable impact on grape powdery mildew and operates in a similar fashion and to a similar degree in both V. labruscana and V. vinifera, although at a slightly earlier phenological stage in V. labruscana.  相似文献   

14.
为明确宁夏回族自治区温室瓜菜白粉病菌的分类地位,对采自该地区温室的南瓜、黄瓜和甜瓜上的白粉病菌基于ITS序列分析进行分子鉴定;利用孢子捕捉器对温室中甜瓜白粉病菌的孢子量进行监测,分析环境因子、孢子量和病情指数之间的关系,并采用逐步回归分析法构建温室甜瓜白粉病的流行预测模型。结果表明,基于ITS序列的分子鉴定结果,3种瓜菜白粉病的病原菌均为单囊壳白粉菌Podosphaera xanthii。发病期间,每日温室中甜瓜白粉病菌的孢子量在12:00—16:00时段最多,占24 h内总孢子量的34%~81%,20:00—08:00时段最少;白粉病菌孢子的释放与光照强度有关,相关系数为0.602。第t天的病情指数与标准累积温度、标准累积湿度、t-4 d前08:00—12:00时段的累积孢子量、第t-4天16:00—20:00时段的孢子量均具有显著的相关性,相关系数分别为0.935、0.938、0.956和0.921。以标准累积湿度和第t-4天16:00—20:00时段的孢子量为预测变量构建了温室甜瓜白粉病流行预测模型,决定系数为0.962,表明该模型具有较好的实际应用价值。  相似文献   

15.
BACKGROUND: Management of strawberry powdery mildew, Podopshaera aphanis (Wallr.), requires numerous fungicide treatments. Limiting epidemics is heavily dependent on sterol demethylation inhibitors (DMIs) such as myclobutanil or penconazole. Recently, a noticeable reduction in the efficacy of these triazole fungicides was reported by strawberry growers in France. The goal of this study was to investigate the state of DMI sensitivity of French P. aphanis and provide tools for improved pest management. RESULTS: Using leaf disc sporulation assays, sensitivity to myclobutanil and penconazole of 23 isolates of P. aphanis was monitored. Myclobutanil EC50 ranged from less than 0.1 to 14.67 mg L?1 and for penconazole from 0.04 to 4.2 mg L?1. A cross‐analysis and a Venn diagram showed that there was reduced sensitivity and a positive correlation between the less sensitive myclobutanil and penconazole isolates; 73.9% of isolates were less sensitive to a DMI and 47.8% exhibited less sensitivity to both fungicides. CONCLUSION: The results show that sensitivity to myclobutanil and, to a lesser extent, penconazole has become less efficient in strawberry powdery mildew in France. Therefore, urgent action is required in order to document its appearance and optimise methods of control. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
<正>小麦白粉病是我国小麦生产上的重要病害之一,由专性寄生真菌Blumeria graminis f.sp.tritici引起。此病害是典型的气传病害,病菌分生孢子可借助高空气流远距离传播为害~([1]),高空传播距离与病菌的分生孢子存活时间有直接关系,而温度是  相似文献   

17.
The effects of silicon (Si) supplied in the form of potassium silicate (PS) were evaluated on epidemic components of powdery mildew of melon under greenhouse conditions. The PS was applied to the roots or to leaves. In the first experiment, epidemic components were evaluated after inoculation with Podosphaera xanthii. In the second experiment, the disease progress rate was evaluated on plants subjected to natural infection. The area under the disease progress curve was reduced by 65% and 73% in the foliar and root treatments, respectively, compared to control plants, as a consequence of reductions in infection efficiency, colony expansion rate, colony area, conidial production and disease progress rate. However, root application of PS was more effective than foliar application in reducing most of the epidemic components, except for infection efficiency. This can be explained by the high Si concentration in leaf tissues with root application, in contrast to the foliar treatment where Si was only deposited on the external leaf surfaces. The effects of PS reported in this study demonstrated that powdery mildew of melon can be controlled, and that the best results can be achieved when PS is supplied to the roots.  相似文献   

18.
The effects of temperature, relative humidity (RH), leaf wetness and leaf age on conidium germination were investigated for Spilocaea oleagina, the causal organism of olive leaf spot. Detached leaves of five ages (2, 4, 6, 8 and 10 weeks after emergence), six different temperatures (5, 10, 15, 20, 25 and 30°C), eight wetness periods (0, 6, 9, 12, 18, 24, 36 and 48 h), and three RH levels (60, 80 and 100%) were tested. Results showed that percentage germination decreased linearly in proportion to leaf age (P < 0.001), being 58% at 2 weeks and 35% at 10 weeks. A polynomial equation with linear term of leaf age was developed to describe the effect of leaf age on conidium germination. Temperature significantly (P < 0.001) affected frequencies of conidium germination on wet leaves held at 100% RH, with the effective range being 5 to 25°C. The percent germination was 16.1, 23.9, 38.8, 47.8 and 35.5% germination at 5, 10, 15, 20 and 25°C, respectively, after 24 h. Polynomial models adequately described the frequencies of conidium germination at these conditions over the wetness periods. The rate of germ tube elongation followed a similar trend, except that the optimum was 15°C, with final mean lengths of 175, 228, 248, 215 and 135 μm at 5, 10, 15, 20 and 25°C, respectively after 168 h. Polynomial models satisfactorily described the relationships between temperature and germ tube elongation. Formation of appressoria, when found, occurred 6 h after the first signs of germination. The percentage of germlings with appressoria increased with increasing temperature to a maximum of 43% at 15°C, with no appressoria formed at 25°C after 48 h of incubation. Increasing wetness duration caused increasing numbers of conidia to germinate at all temperatures tested (5–25°C). The minimum leaf wetness periods required for germination at 5, 10, 15, 20 and 25°C were 24, 12, 9, 9 and 12 h, respectively. At 20°C, a shorter wetness period (6 h) was sufficient if germinating conidia were then placed in 100% RH, but not at 80 or 60%. However, no conidia germinated without free water even after 48 h of incubation at 20°C and 100% RH. The models developed in this study should be validated under field conditions. They could be developed into a forecasting component of an integrated system for the control of olive leaf spot.  相似文献   

19.
Treatment of barley ( Hordeum vulgare ) with 3 m m saccharin, applied as a foliar treatment to the first leaf or as a soil drench, provided significant control of powdery mildew ( Blumeria graminis f.sp. hordei ) on first and second leaves. This was unlikely to be the result of a direct effect of saccharin on the fungus, as application of the chemical to first leaves 2 h before inoculation did not affect conidial germination or formation of appressoria. Saccharin treatment had no significant effect on plant growth, except for a reduction in total leaf area in plants treated with a saccharin drench 14 days before inoculation with mildew. Phenylalanine ammonia-lyase activity was reduced significantly in second leaves 18 and 48 h after inoculation in plants treated with saccharin 14 days earlier. Peroxidase activity increased significantly in plants challenged with mildew within 6 days of saccharin application, although changes were not apparent until 48 h after pathogen challenge. On these occasions, treatment with saccharin resulted in a 33% increase in peroxidase activity compared with controls. In plants inoculated 10 or 14 days after saccharin application, cinnamyl alcohol dehydrogenase (CAD) activity increased prior to, and 18, 24 and 48 h after, inoculation of the barley plants with mildew. CAD activity increased approximately twofold compared with controls. However, in contrast to peroxidase, CAD activity was significantly higher in saccharin-treated plants prior to and after inoculation with powdery mildew, suggesting that saccharin primes CAD activity prior to pathogen challenge.  相似文献   

20.
Two cucumber ( Cucumis sativus ) cultivars differing in their resistance to powdery mildew, Ningfeng No. 3 (susceptible) and Jinchun No. 4 (resistant), were used to study the effects of foliar- and root-applied silicon on resistance to infection by Podosphaera xanthii (syn. Sphaerotheca fuliginea ) and the production of pathogenesis-related proteins (PRs). The results indicated that inoculation with P. xanthii significantly suppressed subsequent infection by powdery mildew compared with noninoculation, regardless of Si application. Root-applied Si significantly suppressed powdery mildew, the disease index being lower in Si-supplied than in Si-deprived plants, regardless of inoculation treatment. The resistant cultivar had a more constant lower disease index than the susceptible cultivar, irrespective of inoculation or Si treatment. Moreover, with root-applied Si, activities of PRs (for example peroxidase, polyphenoloxidase and chitinase) were significantly enhanced in inoculated lower leaves or noninoculated upper leaves in inoculated plants of both cultivars. Root-applied Si significantly decreased the activity of phenylalanine ammonia-lyase in inoculated leaves, but increased it in noninoculated upper leaves. However, Si treatment failed to change significantly the activity of PRs in plants without fungal attack. Compared to the control (no Si), foliar-applied Si had no effects either on the suppression of subsequent infection by P. xanthii or on the activity of PRs, irrespective of inoculation. Based on the findings in this study and previous reports, it was concluded that foliar-applied Si can effectively control infections by P. xanthii only via the physical barrier of Si deposited on leaf surfaces, and/or osmotic effect of the silicate applied, but cannot enhance systemic acquired resistance induced by inoculation, while continuously root-applied Si can enhance defence resistance in response to infection by P. xanthii in cucumber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号