首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
饥饿对斜带石斑鱼肝脏和肌肉脂肪酸组成的影响   总被引:4,自引:0,他引:4  
在室外水泥池(4m×1.5m×1m)进行石斑鱼(62.3±0.6g)的饥饿实验,每池放养35尾,设3个重复,实验时间分别为0、1、2、3和4周。随着饥饿时间的延长,体重减轻,肥满度和肝体比显著降低;肌肉水分显著增加而蛋白质含量显著下降(P<0.05),脂肪含量在第1周下降后基本保持稳定。肝脏饱和脂肪酸在饥饿前3周基本保持不变,第4周显著下降。单不饱和脂肪酸在饥饿第1周保持不变,然后呈下降趋势。多不饱和脂肪酸和高不饱和脂肪酸的总和随着饥饿时间的延长,含量显著增加。与肝脏相比,肌肉中脂肪酸变化程度较小。随着饥饿时间的延长,肌肉中140减少而205增加。饥饿使肌肉中DHA/EPA比率呈下降趋势,但肝脏DHA/EPA比率显著上升;肌肉和肝脏中DHA EPA的百分比都随饥饿时间的延长而显著上升。  相似文献   

2.
This study investigated the effects of coconut oil as a dietary supplement on the growth, lipid metabolism and related gene expressions of juvenile orange‐spotted grouper Epinephelus coioides. Coconut oil at concentrations of 0, 10, 30 and 50 g/kg was used to replace dietary lipids in a basal diet containing 150 g/kg lipids. The four experimental diets were, respectively, fed to triplicate groups of juvenile groupers (initial weight: 8.53 ± 0.13 g) in a recirculating system for 8 weeks. Fish fed the diet containing 50 g/kg coconut oil exhibited lower (p < .05) weight gain than did fish fed the diet containing 30 g/kg coconut oil; however, no significant differences in weight gain were observed between fish fed diets containing 0 and 10 g/kg coconut oil. Hepatic carnitine palmitoyltransferase‐1, fatty acid synthase, fatty acid elongase, fatty acid desaturase and peroxisome proliferator‐activated receptor gamma gene expressions were all the highest in fish fed the diet containing 10 g/kg coconut oil. Fish fed the coconut oil‐free basal diet demonstrated upregulated gene expression of neuropeptide Y. The results suggest that dietary supplementation with 10 g/kg coconut oil exerted beneficial effects on lipid metabolism by E. coioides.  相似文献   

3.
ABSTRACT:   Young red-spotted grouper Epinephelus akaara with an average total length of 3.4 cm were divided into five groups in floating net-cages, and reared under satiated conditions with different feeding frequencies (0.5, 1, 2, 4 and 8 times per day) for 40 days. Total food intake increased with feeding frequency. Feeding four times per day resulted in the highest growth and food conversion efficiency. Total lipid accumulation in the muscle, liver and intraperitoneal fat body (IPF) increased with feeding frequency. Red-spotted grouper were found to contain a high proportion of docosahexaenoic acid (DHA) in the muscle. Fish fed 0.5 times per day were characterized as having a high proportion of DHA in triglycerides (TG) in muscle (80%), liver (69%) and IPF (18%). Increasing saturated fatty acids and a relative reduction of DHA were observed in the muscle TG as the feeding frequency increased. Frequent feeding accelerated the accumulation of eicosapentaenoic acid and saturated acids in the liver and IPF. Low saturated acids and a subsidiary proportional increase in DHA were the result of the low lipid reserves. A possible role for DHA and saturated acids are discussed with regard to lipid reserves.  相似文献   

4.
5.
This study investigated the effects of levan produced by Bacillus licheniformis FRI MY‐55 on growth performance, intestinal count of viable bacteria, immune status, pathogen resistance and body composition of orange‐spotted grouper (Epinephelus coioides). Orange‐spotted grouper were fed diets supplemented with levan at concentrations of 0 (control), 5.0, 10.0, 25.0 and 50.0 g kg?1 for 12 weeks. The final weight and per cent weight gain were significantly higher in the 25.0 g kg?1 levan‐supplemented group than in the control group (< 0.05). All levan‐supplemented diets significantly decreased the count of total viable aerobic bacteria and Vibrio spp. in the intestines of groupers (< 0.05). Serum total protein levels, globulin levels, lysozyme activity and survival rate of orange‐spotted grouper after challenge with V. harveyi were significantly higher in the 25.0 g kg?1 levan‐supplemented group than in the control group (< 0.05). This study also found that the 10.0, 25.0 and 50.0 g kg?1 levan‐supplemented diets significantly increased the crude protein level in the body composition of orange‐spotted grouper. Overall, the results of this study indicate that dietary levan (25.0 g kg?1) could be an effective method for enhancing the growth performance and disease resistance in orange‐spotted grouper.  相似文献   

6.
7.
A growth trial was conducted to investigate the effects of fish oil and corn oil on the growth and non‐specific immune responses of juvenile grouper, Epinephelus malabaricus. Five semi‐purified diets were supplemented with 40 g kg−1 of either fish oil (F4), corn oil (C4) or blend of fish oil with corn oil at ratio of 3 : 1 (F3C1); 1 : 1 (F2C2) and 1 : 3 (F1C3). Each diet was fed to triplicate groups of grouper (mean initial weight: 10.26 ± 0.14 g) in a recirculating rearing system for 8 weeks. Weight gain and feed efficiency of fish fed the F4, F3C1 and F2C2 diets were the highest (P < 0.05), followed by fish fed the F1C3 diet, and the lowest in fish fed the C4 diet. Fish fed the C4 diet had a lower survival rate than fish on other dietary treatments. Fatty acid composition of liver and muscle in fish generally reflected the composition of the diet. Leukocyte superoxide anion (O2) production ratio was the highest in fish fed the F3C1 and F2C2 diets, followed by fish fed the F4 and F1C3 diets, and the lowest in fish fed the C4 diet. Fish fed the F3C1 and F2C2 diets had higher plasma lysozyme activities than fish fed the F4 and C4 diets. Plasma alternative complement activity was higher in fish fed the F3C1, F2C2 and F1C3 diets than fish fed the F4 and C4 diets. These results suggest that grouper fed diets with 3 : 1 or 1 : 1 of fish oil to corn oil ratio had similar growth to the fish fed diet with fish oil. Blend of fish oil with corn oil in diet significantly enhanced non‐specific immune responses of grouper when the fed diet contained fish oil as the only lipid source.  相似文献   

8.
Pharmacokinetics and elimination of florfenicol and florfenicol amine in grouper held in sea water at 23.3 ± 0.8 °C were studied using HPLC method after they were given a single peroral dose of florfenicol at 24 mg kg?1 body weight. Florfenicol was rapidly absorbed from intestine and distributed extensively to all the tissues examined. The maximum concentrations (Cmax, μg g?1 or μg mL?1) in plasma and tissues were observed at 2–6 h (the time to reach maximum concentration, Tmax) except for bile (Tmax = 24 h) and were in the order of intestine (52.02 ± 25.07) > bile (49.41 ± 28.16) > gill (45.12 ± 11.10) > plasma (28.28 ± 5.43) > liver (21.97 ± 12.08) > muscle (21.63 ± 6.12) > kidney (20.88 ± 11.28) > skin (19.10 ± 5.88). The drug distribution level was higher in plasma than in extravascular tissues except for bile, based on the ratios of the area under concentration–time curve between tissue and plasma (AUCtissue/plasma). The elimination of florfenicol was rapid in fish, and the corresponding half‐lives (T1/2β) in the order of magnitude were bile (13.92 h) > muscle or liver (12.31 h) > skin (11.77 h) > plasma (11.57) > gill (11.04 h) > intestine (10.55 h) > kidney (10.05 h). The delayed Tmax, lower Cmax and longer T1/2β for florfenicol amine compared with florfenicol were measured in grouper.  相似文献   

9.
The present experiment was aimed at studying the conditioning, maturation and natural spawning of orange‐spotted grouper, Epinephelus coioides, in a recirculatory aquaculture system (RAS). Thirty fish (n = 30; 3.35 ± 0.05 kg) were stocked in a circular tank of 125 m3 capacity fitted with an RAS for conditioning and broodstock development. After 15 days, 15 fish were implanted with 17 α methyl testosterone and letrozole at the rate of 5 mg and 0.2 mg/kg body weight, respectively, for conversion from female to male. The gonadal development started after 1 month, and by 90th day, 63.53 ± 3.78% and 2.07 ± 0.84% of the oocytes attained a size of 400–500 μm and 500–600 μm respectively. Natural spawning commenced in the RAS from 4th month onward after stocking and spawning continued round the year. The spawning pair showed courtship behaviour with a typical vertical burst of swimming just before release of gametes. The total number of eggs spawned during 1 year was 47.23 million with spawning frequency varying form 5 to 13 times per month. The association of spawning events with new moon day (lunar cycle) weakened as time progressed. The mean monthly fertilization and hatching rates varied from 77.80 ± 3.34% to 83.70 ± 1.76% and 82.80 ± 4.21% to 88.33 ± 1.39% respectively. The study proved that RAS is an efficient system that provides a stable, controllable and conducive environment for year‐round natural breeding of orange‐spotted grouper.  相似文献   

10.
An 8‐week feeding trial was conducted to investigate the effects of dietary carbohydrate‐to‐lipid (CHO:L) ratios on growth, liver and muscle glycogen content, haematological indices, and liver and intestinal enzyme activity of juvenile grouper (Epinephelus coioides). Five isonitrogenous (496.0 g/kg protein) and isoenergetic (21.6 KJ/g gross energy) diets with varying CHO:L ratios of 0.65 (D1), 1.31 (D2), 2.33 (D3), 4.24 (D4) and 8.51 (D5), respectively, were fed to triplicate groups of 20 fish (average 10.02 ± 0.1 g) for 8 weeks. Results showed that the weight gain rate, specific growth rate and protein efficiency ratio (PER) of juvenile grouper increased first and then decreased with the increase in CHO:L ratio, reaching a maximum value in the D4 (CHO:L = 4.24) diet. The trend for the feed conversion ratio was opposite to the PER. Along with the diet CHO:L ratios, the apparent digestibility coefficients (ADC) of crude lipid and energy for the juvenile groupers decreased gradually, while the ADC of dry matter, liver and muscle glycogen level increased gradually. Total protein, triglycerides and cholesterol in serum were all maximized in the D4 diet and glucose in the D5 (CHO:L = 8.51) diet. Digestive enzyme activity in the intestine was significantly affected by dietary CHO:L ratio. Liver hexokinase, phosphofructokinase and glucose‐6‐phosphate dehydrogenase activity increased significantly as CHO:L ratio increased. Liver lysozyme and acid phosphatase activity in the groupers fed the D3 (CHO:L = 2.33) diet was significantly higher than that of other diets. Liver fructose‐1,6‐bisphosphatase and alkaline phosphatase activity reached a maximum value in the D4 diet and was significantly higher than that in the D1 diet. Taking the above results together, it can be concluded that an optimal dietary CHO:L ratio of 2.33 is suitable for grouper culture concerning growth performance and health.  相似文献   

11.
An experiment was conducted to investigate the effect of dietary iron supplement on growth, haematology and microelements of juvenile grouper, Epinephelus coioides. Casein–gelatine‐based diets supplemented with 0, 50, 100, 150, 200 and 250 mg kg−1 iron from ferrous sulphate were fed to grouper (mean initial weight: 21.0 ± 0.2 g) for 8 weeks. Weight gain was highest in fish fed the diet supplemented with 100 mg kg−1 iron, intermediate in fish fed diets with 50, 150, 200 and 250 mg kg−1 iron and lowest in fish fed the basal diet. Feed efficiency followed a similar trend except that the lowest value was in fish fed the basal diet and the diet supplemented with 250 mg kg−1 iron. Hepatic iron was highest in fish fed diets supplemented with iron ≥100 mg kg−1, followed by fish fed diet with 50 mg kg−1 iron and lowest in fish fed the basal diet. The whole‐body iron was lowest in fish fed the basal diet but not significantly different from other groups, as judged by anova . Iron supplement to the basal diet had no significant effect on haematological parameters (red blood cell count, haematocrit and haemoglobin), hepatic copper concentration or manganese, zinc concentration in liver and whole body. Broken‐line analysis of hepatic iron indicated that iron supplementation of 100 mg kg−1 satisfied the hepatic iron storage and that further supplementation did not expand the iron status.  相似文献   

12.
The present study was designed to assess the effects of fish oil with different oxidation degree on growth performance, serum biochemistry parameters and expressive abundance of oxidative stress and fat metabolism genes of orange spotted grouper Epinephelus coioides. The oxidized fish oil was conducted as follows: storage temperature: 4°C, ambient temperature (AT, [31.5 ± 3.5]°C); storage time: 45, 90, 135 days; antioxidant contents: 30 mg/kg (ethoxyquin [EQ]), 300 mg/kg Higher EQ (HEQ). According to the different treated conditions, 14 kinds of fish oil with different oxidation degree were obtained: TF+EQ [positive control (fresh oil + EQ)], TF (negative control [fresh oil]), T4°C+45d+EQ, T4°C+45d+HEQ, T4°C+90d+EQ, T4°C+90d+HEQ, T4°C+135d+EQ, T4°C+135d+HEQ, TAT+45d+EQ, TAT+45d+HEQ, TAT+90d+EQ, TAT+90d+HEQ, TAT+135d+EQ, TAT+135d+HEQ. Groupers were fed isonitrogenous and isolipidic diets containing 14 kinds of fish oil for 8 weeks, respectively. The results showed that survival, weight gain rate and thermal growth coefficient decreased as oxidation degree of dietary fish oil increased (p < 0.05). Higher serum total protein, triglyceride and glucose were observed with ascending oxidation degree of fish oil (p < 0.05). The genes expression levels of catalase, superoxide dismutase and glutathione peroxidase were up‐regulated with dietary oxidized level increasing (p < 0.05). In addition, the similar status also appeared in expression of peroxisome proliferator‐activated receptor gamma (PPARγ), hormone‐sensitive lipase (HSL) and fatty acid synthase (FAS) genes. In conclusion, the fish oil would show negative influence on the fish health until peroxide value and p‐anisidine value in oil exceed 12.96 meq/kg and 20.89. The best storage condition for fish oil is 4°C, 45 days and 30 mg/kg EQ which could keep fish oil available property to grouper.  相似文献   

13.
The number of 360 individuals with an average initial weight of 87.8 ± 0.04 g was fed six diets containing graded levels of choline at 8.1 (control group), 602.5, 1119.0, 1511.5, 1970.0 and 4029.0 mg choline kg?1 diet, respectively, to investigate the effects of dietary choline on growth performance, lipid deposition and hepatic lipid transport for grouper, Epinephelus coioides. Dietary methionine was estimated to be 10.02 g kg?1, less than the requirement (13.10 g kg?1). The results of 10‐week study period indicated that the best values of specific growth rate (SGR), feed conversion rate (FCR) and protein efficiency rate (PER) all occurred in 1119.0 mg choline kg?1 diet (< 0.05). The survival range increased from 8.1 to 1511.5 mg choline kg?1 diet and then plateaued. Dietary choline supplementation significantly decreased the liver lipid content of grouper (< 0.05), but the lipid content of the muscle tended to be increased firstly and then decreased (< 0.05). Liver choline concentration reached a plateau in 1511.5 mg choline kg?1 diet and then levelled off (< 0.05). Serum high density lipoprotein‐cholesterol (HDL‐C) and total cholesterol (TCHO) levels were firstly decreased and then increased with dietary choline supplementation. A reversed tendency, however, was found in triglyceride. Broken‐line regression analysis of SGR and liver choline content indicated that choline requirement of grouper was 1093.7 and 1579.7 mg kg?1 diet, respectively.  相似文献   

14.
Ocean acidification, resulted from high level of carbon dioxide (CO2) dissolved in seawater, may disturb the physiology of fish in many ways. However, it is unclear how acidification may impact the growth rate and/or growth hormones of marine fish. In this study, we exposed juvenile orange‐spotted groupers (Epinephelus coioides) to seawater of different levels of acidification: a condition predicted by the Intergovernmental Panel on Climate Change (pH 7.8–8.0), and a more extreme condition (pH 7.4–7.6) that may occur in coastal waters in the near future. After 6 weeks of exposure, the growth rates of fish in pH 7.4–7.6 were less than those raised in control water (pH 8.1–8.3). Furthermore, exposure at pH 7.4–7.6 increased blood pCO2 and HCO3? significantly; exposure at pH 7.8–8.0, meanwhile, did not affect acid–base chemistry. Moreover, exposure to pH 7.4–7.6 resulted in lower levels of hepatic igf1 (insulin‐like growth factor I) mRNA, but did not affect levels of pituitary gh (growth hormone) or hypothalamus psst2 and psst3 (prepro‐somatostatin II and III). The results show that highly acidified seawater suppresses growth of juvenile grouper, which may be a consequence of reduced levels of IGF‐1, but not due to diminished growth hormone release.  相似文献   

15.
The gut microbiota plays key roles in the health and general welfare of fish larvae, the present study characterized the bacterial communities associated with grouper Epinephelus coioides larvae during a period of 22 days post hatch (DPH) in an intensive hatchery using both cultivation‐based and cultivation‐independent approaches. Both approaches confirmed that bacteria were present in the gut of larvae before and after the onset of exogenous feeding, and the number of cultiviable bacteria increased gradually from 2 DPH to 22 DPH. A more complex bacterial profile was present in larvae fed fertilizer oyster eggs for 4 days (8 DPH), probably as a result of the onset of exogenous feeding. Interestingly, similar internal microbiota were observed in larvae fed fertilized oyster eggs for 4 days (8 DPH) and rotifers for 2 weeks (22 DPH), although different microbial communities were present in the two feeds. This might suggest that the gut environment of E. coioides larvae selects for a common microbiota, which is more closely related with the rearing water than the two feeds. Therefore, bacterial community of the rearing water may play a critical role in the establishment of gut microbiota of fish larvae and more attention should be paid to its practical modulation by using probiotics. In addition, some potentially beneficial bacteria, such as Lactococcus spp., were the major components of the microbiota associated with fertilized oyster eggs, while these bacteria were not detected in larvae samples.  相似文献   

16.
17.
The potential of Bacillus subtilis E20‐fermented soybean meal (FSBM) as a partial alternative component of fish meal (FM) in fed diets of orange‐spotted grouper (Epinephelus coioides) was evaluated in this study. An FM‐based diet and seven diets containing 10%, 20% and 30% and 10%, 20%, 30% and 40% of FM replaced by soybean meal (SBM) and FSBM, respectively, were fed to grouper for 84 days to evaluate possible substitution levels of FM by tracking growth performance, digestive enzyme activity and morphological changes in the liver and distal intestine. No significant differences in survival and muscle composition of grouper were found between controls and treatments. Growth performance and feed efficiency of fish fed diets with FM replaced by FSBM up to 30% were not significantly different from controls, whereas significantly decreased growth performance and feed efficiency occurred with diets containing >20% of SBM. Based on the feed efficiency, the maximum substituted levels of FM by SBM and FSBM in grouper diets were 18.36% and 29.32%, respectively, based on broken‐line analyses. Histopathological changes in the liver and distal intestine, and significantly lower activity levels of digestive enzymes, including pepsin in the stomach and trypsin, chymotrypsin, amylase and lipase in the distal intestine, were found in fish fed a diet containing 30% of FM replaced by SBM. However, these parameters were improved by the substitution of FSBM. It is therefore believed that FSBM has great potential to be used as a protein source in grouper diets in partial replacement of FM.  相似文献   

18.
The replacement of dietary marine fish oil with vegetable oils was examined in fingerling humpback grouper, Cromileptes altivelis, over the course of an 8‐week growth trial. Five isolipidic (10%) and isoproteic (50%) fish meal‐based practical diets were formulated to contain iso‐ingredients but with different sources of lipids [crude palm oil (CPO), refined, bleached and deodorized, palm olein (RBDPO), soybean oil (SBO) or canola oil (CNO)], and their performance was compared with the control diet, which contained cod liver oil (CLO) as the added lipid source. The experimental diets were fed close to apparent satiation twice a day to triplicate groups of fish (10.6 ± 2.2 g). The grouper fingerlings were randomly distributed into groups of 12 fish in cylindrical cages (61 cm depth and 43 cm diameter) that were placed in a 150 tonne polyethylene seawater tank. There were no significant differences (P>0.05) in terms of growth, survival, feed conversion ratio, protein efficiency ratio, net protein utilization, hepatosomatic index and condition factor among fish fed the various dietary treatments. Similarly, the dietary lipid source did not significantly affect the whole body proximate composition of the fish. Muscle and liver fatty acid composition of fish was influenced by the experimental diets. Replacement of dietary CLO with CPO, RBDPO, SBO or CNO produced fish with lower n‐3 highly unsaturated fatty acids and increased levels of 18:2n‐6 in the muscle and liver. The n‐3:n‐6 fatty acid ratio in the muscle of fish fed the CLO‐based diet was 3.0 compared with 0.5–0.8 in the muscle of fish fed the various vegetable oil‐based diets. The present study demonstrated that various vegetable oils can be used in fish meal‐based dietary formulations for humpback grouper without compromising growth or feed utilization efficiency.  相似文献   

19.
An 8‐week feeding trial was conducted to assess dietary protein and lipid levels on growth performance, feed utilization and body composition of juvenile red‐spotted grouper (7.85 ± 0.03 g fish?1). Nine semi‐purified diets were formulated containing varying protein levels (440–520 g kg?1, dry matter) and lipid levels (60–120 g kg?1, dry matter). The weight gain of juvenile Epinephelus akaara was affected by dietary protein (= .005) and its interaction with dietary lipid (= .020). Viscerosomatic index, intraperitoneal fat ratio and whole‐body lipid level increased with increasing dietary lipid level (p < .001). Nitrogen retention was not affected by dietary protein and lipid, while lipid retention decreased with increasing dietary lipid level (p < .001). The plasma blood urea nitrogen increased with increasing dietary protein level (= .003). This study showed that diet with 520 g kg?1 protein and 60 g kg?1 lipid with 30.58 mg kJ?1 P:E provided a maximal growth for this species. Moreover, an increase in dietary lipid levels (from 60 to 90 g kg?1) could reduce the protein requirement (from 520 to 480 g kg?1) without affecting the growth performance, while higher fat deposition was observed in fish fed high‐lipid diets.  相似文献   

20.
ABSTRACT: A series of experiments were conducted to examine the effects of salinity, aeration and light intensity on oil globule absorption, feeding incidence, and growth and survival of early-stage Epinephelus coioides larvae. Newly hatched larvae were transferred to 40-L aquaria at a density of 1500 individuals/aquarium. Larvae were exposed to different levels of aeration (0 mL/min per L, 0.62 mL/min per L, 1.25 mL/min per L, 2.50 mL/min per L, or 3.75 mL/min per L); salinity (8 ppt, 16 ppt, 24 ppt, 32 ppt, or 40 ppt); and light intensity (0 lx, 120 lx, 230 lx, 500 lx, or 700 lx) for 4–6 days. Twenty larvae were sampled daily at 11:00 hours to measure for total length (TL), oil globule volume, and feeding incidence. Survival rates were determined by counting the total number of larvae remaining in each aquarium at the end of the experiment. Significantly higher survival rates ( P   <  0.05) were observed at aeration levels of 0.62 mL/min per L and 1.25 mL/min per L, at salinity levels of 16 ppt and 24 ppt, and at light intensities of 500 lx and 700 lx. The influence of aeration level, salinity and light intensity on oil globule absorption, feeding incidence, and growth and survival of early-stage grouper larvae are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号