首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The present study was conducted to investigate the effects of fenugreek seed meal (FKSM) on growth performance, blood haematological and biochemical factors, survival and stress resistance of the common carp (2.46 ± 0.06 g) fingerlings. Four practical diets containing 0 (control), 0.5%, 1% and 1.5% FKSM were used to feed fish. Fish were fed on the tested diets at a rate of 3% of body weight for 8 weeks. Results indicated that fish fed the control diet had a significantly lower weight gain, specific growth rate and condition factor compared to the other treatments (P < 0.05). Feed conversion ratio decreased significantly in fish fed diets containing FKSM. There were no significant differences in glucose levels, red blood cell count, haematocrit and haemoglobin between treatment groups and the control group (P > 0.05). Significantly lower white blood cells count was observed in fish treatment with FKSM when compared with the control group (P < 0.05). The cholesterol level in group fed supplemented diet by 1% fenugreek significantly lower than other groups (P < 0.05). Total protein levels were significantly higher in all treatments compared to the control (P < 0.05). No mortality was recorded during the feeding trial. In salinity stress experiment, highest survival rate belong to fish fed supplemented diet by 1% fenugreek. These results indicate that FKSM can be considered as a beneficial dietary supplement for improving the growth performance and blood indices of common carp fingerling.  相似文献   

2.
An 8‐week feeding trial was performed to examine the potential of total replacement of fish meal with animal by‐products with or without enzymatic components in juvenile genetically improved farmed tilapia (GIFT) diets, Oreochromis niloticus, (mean initial weight, 19.71 ± 0.28 g), reared in RAS system. Five isonitrogenous and isoenergetic diets were formulated with fish meal for the diets with total replacement of the isonitrogenous amounts of enzymatic fish meal (E‐FM), chicken liver meal (CLM), enzymatic chicken liver meal (E‐CLM), dried porcine solubles (DPS) and enzymatic dried porcine solubles (E‐DPS) respectively. The results indicated that the weight gain rate (WGR) and specific growth rate (SGR) in the FM group were significantly higher than the E‐FM and E‐CLM groups (p < .05), but the specific growth rate (SGR) in the E‐CLM group lower than the E‐FM group. The feed conversion ratio (FCR) in FM and CLM was significantly lower than the E‐FM, E‐CLM and E‐DPS groups (p < .05), and no significant difference was observed among the FM, CLM and DPS groups (p > .05). The values of the protein retention efficiency (PRE) and protein efficiency ratio (PER) in FM, CLM and DPS groups were significantly higher than the E‐CLM group (p < .05). The values of feed intake ratio (FIR) in FM and CLM groups were significantly lower than the E‐FM, E‐CLM and E‐DPS groups (p < .05). There was no significant difference in the whole body contents of moisture, crude lipid and crude ash among the FM and E‐CLM groups (p > .05). The whole body contents of crude protein in the FM group were significantly higher than the E‐FM, CLM, E‐CLM DPS and E‐DPS groups (p < .05). The apparent digestibility coefficients (ADC) of dry matter, crude protein and crude lipid in the FM, E‐FM, E‐CLM and E‐DPS groups were not significantly different (p > .05). The serum glucose(GLU), total cholesterol (TCHO) and triglycerides (TG), or the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were not affected by the different treatments (p > .05). There was no significant difference in serum total protein (TP) or albumin (ALB) and between the FM group and other groups (p > .05). There was no significant difference in the serum urea nitrogen (BUN) content in the FM, CLM, E‐CLM and DPS groups (p > .05). Fish fed with the CLM and DPS diets had significantly lower hepatic GHR1, IGF1 and IGF2 gene mRNA expression levels than in fish fed the FM diet (p < .05). The present data showed that 6% of dietary fish meal can be totally replaced by the chicken liver meal and dried porcine solubles with no effect on the growth performance of GIFT strain tilapia.  相似文献   

3.
The growth performance, body composition, fillet fatty acid content, serum hepatic enzymes and postprandial changes in serum lipid metabolism of hybrid sturgeon (70.8 ± 0.5 g) were investigated to determine the effects of total replacement of 80 g kg‐1 fish oil (diet A) with linseed oil (diet B) and soybean oil (diet C), respectively. No significant differences in weight gain rate and specific growth ratio were observed among all fish groups (p > .05). Diet A fish group had the highest, but diet B fish group had the lowest feed intake (p < .05). Feed efficiency of fish fed diet A was significantly lower than the other two fish groups (p < .05). Fish fed diet A had the lowest fillet and liver lipid contents (< .05). Serum lactate dehydrogenase, alanine aminotransferase and aspartate aminotransferase activities of fish fed diet A were significantly lower than those of fish fed diets B and C (< .05). The contents of linoleic acid (C18:2n6) and linolenic acid (C18:3n3) in fillets showed a significantly positive linear correlation with the diets. Serum glucose and non‐esterified fatty acid were just affected by the time point (< .05). The lipid source, time point and interaction of both factors had significant effects on serum triglyceride, high‐density lipoprotein cholesterol and low‐density lipoprotein cholesterol (< .05). Serum total cholesterol was only affected by interaction of time point and lipid source (< .05), and ketone body was not affected by lipid source, time point or interaction of both factors (> .05). In summary, total replacement of fish oil with linseed oil or soybean oil had no significant adverse effects on hybrid sturgeon growth during 84‐day period, and linoleic acid and linolenic acid in fillet were modified by dietary treatments.  相似文献   

4.
Efficacy of Thymus vulgaris essential oils was assessed on growth, immune response and disease resistance of rainbow trout (Oncorhynchus mykiss). Fish weighing 10 g were fed with dietary supplemented of the oils at 0.5, 1.0 and 2.0 ml/kg feed for 2 months. Fish fed with the oils at 0.5 ml/kg feed demonstrated a better weight gain and specific growth rate, compared to other treatments (p < .05). Fish fed with 1.0 ml the oils showed the highest up‐regulation of complement component 3 (C3) and (cluster of differentiation 4) (CD4) genes expression (p < .05), while lysozyme gene expression level significantly increased in fish fed with 2.0 ml of the oils. In addition, at the end of the experiment, the expression of C3 and CD4 genes were significantly up‐regulated in fish fed with 1.0 and 2.0 ml of the oils, while IL‐1ß and lysozyme genes expression levels were significantly decreased in fish fed 2.0 ml oils, towards the end of the trial (p < .05). There was a fluctuation in the levels of Alanine aminotransferase, Aspartate aminotransferase and Alkaline phosphatase in all treatments during the experiment. When treated fish were challenged with Aeromonas hydrophila, the highest survival rate was observed in 0.5 ml/kg treatment, followed by 2 and 1 mg/kg treatments. Overall, these findings demonstrated that dietary administration of T. vulgaris oils especially at 0.5 mg/kg feed can be considered as a potential component for enhancing of the growth, immune responses and disease resistance of trout against motile Aeromonas septicemia caused by A. hydrophila.  相似文献   

5.
A feeding trial was conducted to evaluate the results of replacing soybean meal (SBM) with other blend plant protein (BP) (rapeseed meal, cottonseed meal and peanut meal) sources on growth, fish body composition, biochemical parameters, non‐specific immune index and gene expression of growth hormone/insulin‐like growth factor‐1 in Yellow River carp Cyprinus carpio. The results showed that the 600 g/kg replacement with BP in diet did not affect the growth performance of Yellow River carp, but the 800 g/kg SBM replacement diet could depress the growth of fish (p < .05). The 800 g/kg SBM replacement diet significantly impacted the superoxide dismutase, malondialdehyde contents, lysozyme, alanine aminotransferase and aspartate aminotransferase activities (p < .05). Fish fed 800 g/kg SBM replacement diet showed lowest insulin‐like growth factor 1 and highest growth hormone level than that of other diets (p < .05). Both gene expression levels of GH and IGF‐I in hepatic showed significant difference among dietary treatments (p < .05), and the lowest GH and IGF‐I mRNA level in liver were found in fish fed 800 g/kg SBM replacement diet (p < .05). In conclusion, no more than 600 g/kg SBM could be replaced by BP in diet of Yellow River carp without adverse effects on the growth performance. However, 800 g/kg SBM replacement with BP in diet inhibited the growth performance, affected some blood parameters and immune response index, and down‐regulated GH and IGF‐1 gene expression of liver in Yellow River carp. Further, GH level in serum was negatively correlated with GH mRNA level in liver; meanwhile, serum concentrations of IGF‐I were positively correlated with hepatic IGF‐I mRNA expressions.  相似文献   

6.
A basal practical diet for juvenile tench (Tinca tinca) was formulated and elaborated to test several protein contents and substitution possibilities of fish meal (FM) by soybean meal (SBM) in a 90‐day trial with 5‐month‐old juveniles (30.54 mm TL, 0.30 g W). A factorial design included nine feeding treatments: three protein contents (50%, 40% or 30%) and three levels of replacement (0%, 25% or 45%) of FM protein by SBM protein. In addition, a commercial carp feed was used as reference. Final survival ranged from 98.2% to 99.4%. The 50% dietary protein with 0% or 25% replacement and 40% dietary protein with 25% replacement diets enabled higher growth (P < 0.05) and lower FCR (P < 0.05) than the rest of practical diets. Fish fed 50% dietary protein had similar growth than those fed carp feed (63.8% protein). Deformed fish averaged 1% for the practical diets and 87.6% for the carp feed. The basal practical diet has showed to be feasible and levels of 40–50% dietary protein with 25% replacement of FM protein by SBM protein can be recommended for juvenile tench aged 5–8 months.  相似文献   

7.
Oxygen consumption and ammonia excretion of black carp (Mylopharyngdon piceus Richardson) (4.6 ± 0.3 g) and allogynogenetic crucian carp (Carassius auratus gibelio ♀ × Cyprinus carpio ♂) (5.7 ± 0.5 g) were examined when fish fed two types of carbohydrate (dextrin and glucose) at two levels (20 and 40%) each. The diets were isonitrogenous (40% dry matter) and isocaloric at 18.5 kJ g−1 (dry matter) by adjusting the oil content to 10.1 and 1.5%, respectively. In black carp, the interactions between the carbohydrate type and level were found in oxygen consumption at 3 and 6 h and in ammonia excretion at 6 h after feeding. At 20% carbohydrate, no significant difference was observed between dextrin and glucose in oxygen consumption. However, at 40% carbohydrate, oxygen consumption in fish fed glucose was significantly higher than that in fish fed dextrin at 3 and 6 h after feeding. Within the dextrin diets, no significant differences in both oxygen consumption and ammonia excretion were detected between the two carbohydrate levels. Within the glucose diets, however, fish fed 40% glucose showed significantly higher oxygen consumption than those fed 20% glucose at 3 and 6 h after feeding. Ammonia excretion in black carp fed 40% glucose was higher than that in black carp fed 40% dextrin at 6 h and also found higher than those in the other three treatments at 24 h after feeding. The postprandial oxygen consumption and the ammonia excretion in crucian carp fed 40% glucose were the highest, but no significant differences were observed. Our data indicate that the escalation of glucose to 40% in a fish diet results in high oxygen consumption and ammonia excretion in black carp, suggesting that the efficiency of glucose as an energy source for this fish is compromised by the high metabolic expenditure after feeding. Crucian carp, on the other hand, have a better ability to cope with dietary carbohydrates.  相似文献   

8.
This study was conducted to investigate the effects of dietary supplementation of enzymatic hydrolysates of defatted silkworm pupa (EHDSP) on growth performance, body composition and non‐specific immunity of juvenile mirror carp (Cyprinus carpio var. specularis). The control diet (EHDSP0) was produced using fish meal (FM) as the main protein source and the other four diets were formulated by substitution of 25% (EHDSP25), 50% (EHDSP50), 75% (EHDSP75) and 100% (EHDSP100) FM with EHDSP. Five groups containing 270 juvenile mirror carp (14.51 ± 0.03 g) were fed to apparent satiation for 8 weeks. The results indicated that the special growth rate, weight gain, protein efficiency ratio and feed conversion rate of experimental fish in EHDSP25 and EHDSP50 groups were not significantly different from EHDSP0 group (p > .05). The spleen index of experimental fish in EHDSP25 group was significantly higher than that of EHDSP0 group (< .05). The muscle protein content of experimental fish in EHDSP25 and EHDSP50 groups was significantly higher than that of EHDSP0 group (< .05). Serum alanine aminotransferase and total cholesterol of experimental fish fed with the EHDSP were significantly lower than that of control (< .05). The activity of serum superoxide dismutase of experimental fish in EHDSP25, EHDSP50 groups was significantly higher than that of EHDSP0 group (< .05). Intestinal trypsin activity of EHDSP25 group was significantly higher than that of EHDSP0 (p < .05). In conclusion, EHDSP can be included into diet to replace 50% FM of juvenile mirror carp without negative effect on growth, furthermore, it can improve the non‐specific immunity and function of intestinal tract.  相似文献   

9.
An experiment was conducted to determine the effect of dietary wheat starch on grass carp (Ctenopharyngodon idella) in terms of growth performance, feed efficiency and digestibility. Five isoproteic (23.5%) and isolipidic (5.7%) diets with five supplemented levels of wheat starch (D20, D26, D33, D40 and D47 with 20, 26, 33, 40 and 47%, respectively) were fed to triplicate groups of grass carp (mean initial wet weight 6.9 ± 0.1 g) for 8 weeks. Results showed that weight gain (WG, %), feed efficiency (FE, %) and protein efficiency ratio (PER) in D20, D26 and D33 treatments were significantly higher than those in D40 and D47 treatments (P < 0.05). Digestibility of carbohydrate and protein was significantly higher in D20, D26 and D33. No significant differences were found in serum glucose and triglyceride contents between treatments. Serum lipase activity of fish fed D40 and D47 was significantly higher than that of fish fed other diets. Whole-body, muscle and liver lipid contents increased with dietary starch level as did mesenteric fat index, hepatosomatic index and viscerosomatic index. In conclusion, when dietary protein level was 23%, the level of dietary wheat starch should maximum be 33% to support normal growth of grass carp. Fish growth was hampered by higher wheat starch (>33%) despite fish ate increasing levels of dietary digestible energy. Furthermore, excess digestible carbohydrate was to some extent converted to lipid that was deposited in various tissues. Most importantly, grass carp could endure high levels of cellulose without any negative effect on growth and digestibilities of dietary protein and carbohydrate.  相似文献   

10.
An experiment was conducted to investigate the effect of dietary chromium picolinate supplement on growth and haematology parameters of grass carp, Ctenopharyngodon idellus. Six diets with increasing dietary chromium picolinate levels 0, 0.2, 0.4, 0.8, 1.6 and 3.2 mg kg−1 were fed to triplicate groups of 20 fish (initial weight of 12.78 ± 1.16 g, mean ± SD) in a flow water system for 10 weeks. Fish fed the diet supplemented with 0.8 mg Cr kg−1 had significantly improved weight gain (WG), feed efficiency ratio (FER), protein efficiency ratio (PER) and protein retention (PR). Fish fed high-chromium diets exhibited lower whole-body crude lipid contents than fish fed low-chromium diets. Liver glycogen concentrations for fish fed the diet with 0.2 mg Cr kg−1 was the highest (77.67 mg g−1). Fish fed the diet supplemented with 1.6 and 3.2 mg Cr kg−1 had significantly lower liver glycogen concentrations than other groups (P < 0.05). The highest serum insulin concentrations were observed in fish fed the diet supplemented with 0.8 mg Cr kg−1, but serum insulin concentrations decreased (P < 0.05) when dietary supplementation of chromium was higher than 0.8 mg Cr kg−1. Cholesterol concentrations decreased in direct proportion to dietary chromium level and achieved the lowest level when the fish were fed the 0.8 mg Cr kg−1 diet, but increased when the fish were fed the diet with more than 0.8 mg Cr kg−1 (P < 0.05). Fish fed the diet supplemented with 0.8 mg Cr kg−1 had higher triglyceride and high-density lipoprotein cholesterol (HDL-C) concentrations compared to other treatments. The results of the present study suggested that chromium picolinate could modify serum carbohydrate and lipid metabolism profile, and that the optimal dietary chromium level was 0.8 mg kg−1 for grass carp according to growth.  相似文献   

11.
The potential of three different protein resources (pea protein isolate, PPI; pea protein concentrate, PPC; enzyme treated poultry protein, ETPP) as fish meal (FM) alternative protein in diets for juvenile black sea bream, Acanthopagrus schlegelii. (initial average weight 7.90 ± 0.13 g) was evaluated. Seven isonitrogenous and isoenergetic diets were formulated to replace FM at 0% (T0, control diet), 8% (designated as T1‐T3) and 16% (designated as T4‐T6) using PPI, PPC and ETPP respectively. Each diet was randomly assigned to triplicate groups of 25 juvenile fish for 8 weeks. At the end of the feeding period, survival rate was not significantly affected by dietary treatments. Growth performance in T6 (16% ETPP) group was significantly inferior to T0 group, however, weight gain and specific growth rate in other treatments showed no significant differences (> 0.05). Mean feed intake, feed efficiency ratio and protein efficiency ratio were also poorer in fish fed in T6 than those of fish fed with the control diet respectively. Apparent digestibility coefficients (ADCs) of dry matter and crude protein for fish fed ETPP diets were significant lower than those of fish fed with the control diet, whereas ADCs of lipid were unaffected by dietary treatments. ADC's of dietary Leu, Ile, His and Lys was also significantly influenced. There were no marked variations in proximate compositions of dorsal muscle. With regard to plasma characteristics, significant difference was observed in triacylglycerol content. Ammonia concentration in plasma tended to increase in alternative protein diets as substitution level increased. There were significant differences in aspartate aminotransferase activities among groups, but alanine aminotransferase levels were unaffected by treatments. In conclusion, the present study demonstrated that PPI and PPC were potential protein sources for using in juvenile black sea bream diet. However, the substitution level of FM by ETPP should be limited within 16%.  相似文献   

12.
An 84‐day growth trial was designed to investigate effects of dietary replacements fish oil with pork lard (PL) or rapeseed oil (RO) on growth and quality of gibel carp (Carassius auratus gibelio var. CAS III) (initial body weight: 158.2 ± 0.2 g), and responses of the fish refed fish oil (FO) diet. Three isonitrogenous (crude protein: 30%) and isolipid (crude lipid: 10%) diets were formulated containing 7.73% FO, PL or RO. Five experimental treatments including FO group (FO), PL group (PL), RO group (RO), group fed PL for 42 days and refed FO for 42 days (PL+rFO), RO and refed FO group (RO+rFO) was tested. At the end of first 42 days, the fish fed PL and RO had higher mortality than that of the control (P > 0.05). At the end of whole experiment, fish fed PL and RO showed higher plasma cortisol than FO fish (P < 0.05). RO+rFO fish showed higher lysozyme activity than RO fish (P < 0.05). Fish growth and feed utilization, composition of whole body and muscle, free amino acids, texture, off‐flavour substances or sensory attributes were not affected by dietary treatments (P > 0.05). PL and RO diet decreased muscle EPA, DHA and n‐3/n‐6 ratio (P < 0.05), while FO‐refeeding had recovery effect. It can be concluded that the replacement of FO by PL and RO does not affect the growth, feed utilization or fish tasting quality in gibel carp. Fish muscle fatty acids modified by dietary PL and RO can be recovered by refeeding with FO diet.  相似文献   

13.
The present study was conducted to investigate the changes in mineralization and morphology in response to graded levels of dietary phosphorus in Indian major carp, Catla (Catla catla) fingerlings (av. wt. 4.23 ± 0.87 g). The experimental system constituted of 24 150-L capacity plastic tanks (eight treatments, three replicates) stocked with 20 fingerlings each. Eight isonitrogenous and isocaloric semi-purified diets (crude protein 35%, crude lipid 8.5%) were formulated with graded levels of phosphorus (0%-control; 0.1; 0.3; 0.5; 0.7; 0.9; 1.1; 1.3; 1.5%) using KH2PO4. The fish were fed twice daily with the respective feeds for a period of 120 days. The percentage of ash content in whole body, vertebrae and opercular bones was found to be significantly (P < 0.05) lower in fish fed low levels of dietary phosphorus (T1, T2) in comparison with other treatments. The concentration of phosphorus and calcium was found to be significantly (P < 0.05) lower in whole body, vertebrae and opercula of fish fed low phosphorus diets (T1, T2) relative to treatments with higher levels of dietary phosphorus supplementation. The concentration of magnesium in opercular and vertebral tissues of T1 group was significantly (P < 0.05) lower than all other groups. The X-ray radiographs did not reveal any skeletal deformities in any of the treatments. Truss analysis showed absence of significant morphological variations between fish of different treatments. The deficiency of dietary phosphorus in catla led to significantly lower mineralization of whole body and bone tissues, but the deficiency was not severe enough to cause skeletal deformities and morphological changes in the fish.  相似文献   

14.
A 20‐week feeding trial was conducted to measure growth, nutrient utilization and faecal/gut bacterial counts in triplicate groups of red hybrid tilapia, Oreochromis sp., when fed diets supplemented with 0.5% organic acids blend (OAB), 1.0% OAB, 0.5% oxytetracycline (OTC) or a control diet (no additives). At the end of the feeding trial, tilapia were challenged with Streptococcus agalactiae for 22 days. Fish fed the OTC diet had significantly higher (P < 0.05) growth than the control treatment, while growth between fish fed the OTC or OAB diets was not significantly different (P > 0.05). Phosphorus, dry matter and ash digestibility were significantly higher in the 1.0% OAB diet than the control diet. Fish fed the OAB diets had significantly lower colony‐forming units of adherent gut bacteria compared to the control or OTC treatments while those fed the 1.0% OAB diet had the lowest total faecal bacterial counts. Tilapia fed the 0.5% OTC or OAB diet had significantly higher resistance to S. agalactiae than those fed the control diet. This study indicates that dietary organic acids can potentially replace OTC as a growth promoter and antimicrobial in tilapia feeds.  相似文献   

15.
16.
Six practical extruded diets were formulated to investigate the effect of graded levels of starch (17, 22, and 26%) associated with either 30 or 34% protein level on growth, feed utilization, body composition, and hepatic transaminases of juvenile grass carp, Ctenopharyngodon idella. Over an 8‐wk growth trial, survival rates (99–100%) were not significantly affected (P > 0.05) by dietary treatments. Independent of dietary starch level, weight gain (WG, %), specific growth rate (SGR, %/d), and feed efficiency ratio (FER) showed significant better response (P < 0.05) of fish fed 34% protein diet than those of fish fed 30% protein diet. Protein productive value (PPV) was only affected by dietary protein level, with higher values in the 34% protein level than their 30% counterparts. Irrespective of dietary protein level, lipid productive value (LPV), energy productive value (EPV), viscerosomatic index (VSI, %), intraperitoneal fat ratio (IPF, %), and whole body, liver, and muscle lipid level increased with increasing starch supply. At the same protein level, plasma triacylglycerol (TG), cholesterol (CHO), and low density lipoprotein‐cholesterol (LDL‐C) increased when dietary starch level increased from 17 to 26%. Neither dietary protein level nor starch level affected activities of hepatic alanine aminotransferase (ALAT) and aspartate transferase (ASAT). The overall results in this study suggested that the higher 34% protein was superior for juvenile grass carp and an increase in dietary starch level did not improve growth or protein utilization but enhanced whole‐body lipid deposition and liver, viscera and muscle lipid level. The diet containing 34% protein and 17% starch was optimal for practical production of juvenile grass carp.  相似文献   

17.
Two experiments were conducted for red sea bream (Pagrus major). In experiment 1, the optimum level of glutamic acid and natural feeding stimulants to enhance feed intake were determined and found that glutamic acid level of 0.5% and fish meat hydrolysate (FMH) were effective. In experiment 2, fish were fed with soy protein concentrate (SPC)‐based diet with synthetic feeding stimulants (Basal diet), the Basal diet with FMH (FMH diet), the FMH diet with glutamic acid (FMHG diet) and with fish meal diet (FM diet) as a control until satiation for 8 weeks. Feed intake of FMHG‐fed fish was significantly higher than others (p < 0.05). Specific growth rate and the feed conversion ratio of FMHG were comparable to those of FM‐fed fish (p > 0.05). Relative visceral fat ratio and crude lipid content of any SPC‐based diet‐fed fish tended to be lower than those of FM diet‐fed fish. There were no significant differences in trypsin and lipase activities hepatopancreas among treatments. SPC can be utilized as a sole protein source in a diet for red sea bream. The lower growth performance in SPC‐based diet‐ fed fish was not due to poor digestive enzyme secretion but could be associated with lipid utilization disorder.  相似文献   

18.
This study investigated the lipid metabolism responses of common carp (Cyprinus carpio L.) to mulberry leaf meal (MLM) replacing of some fish meal in diet. Six iso‐nitrogenous and iso‐energetic diets containing different levels of MLM (0%, 6.3%, 12.6%, 18.9%, 25.2% and 31.5%) were prepared and fed to common carps in tanks for 56 days. Analysis showed that serum total protein, albumin contents and glutamic‐pyruvic transaminase, glutamic oxalacetic transaminase activities were not significantly different among treatments, blood glucose, cholesterol, high‐density lipoprotein and low‐density lipoprotein but triglyceride concentration depicted a declining trend in MLM supplementation groups compared with control. Liver and muscle lipid content decreased with increased supplementation of MLM in the diet. Hepatic lpl showed an up‐regulated trend in the MLM groups, apo‐a1 was up‐regulated in common carp fed 31.5% MLM diet, pparα was up‐regulated in 18.9% and 25.2% MLM groups, while apo‐a4, pparβ and pparγ were down‐regulated in all the MLM‐treated groups compared with control, fabp1 was down‐regulated in fish fed high‐MLM diets (≥25.2%). The results revealed that half of fish meal in common carp diet could be replaced by MLM with no hepatotoxicity; MLM promoted the reversal of cholesterol transport thereby reducing the cholesterol in blood; MLM elevated the ability of fatty acid oxidation of the common carp, but did not activated the activity of lipoprotein lipase fully, and the suppressed transportation of fatty acid affected the degradation of triglyceride in blood together; MLM reduced liver lipid contents might through suppressing the isolation and proliferation of adipocytes.  相似文献   

19.
Six diets were formulated to investigate the success of fish meal (FM) replacement by plant proteins; diet 1 reflected a commercial feed (8% FM), diet 3 contained 4% FM, and diet 5 was devoid of FM. Whereas, diet 2, diet 4, and diet 6 reflected diet 1, diet 3, diet 5, respectively, and supplemented with essential amino acid (EAA). At the end of 8‐week trial, there was no significant difference in survival rate. Significantly higher final weight, weight gain rate, and specific growth rate were recorded in the group fed diet 2 compared with the other treatments (except diet 4) (p < 0.05). Feed conversion ratio of fish fed diet 2 was significantly lower than those fed diets 1, 3, and 5 (p < 0.05). The lowest feed intake and highest protein efficiency rate were found in fish fed diet 2 (p < 0.05). There was no significant difference in whole body compositions between treatments. Plasma aspartate transaminases, alanine aminotransferase, and glucose were significantly affected by dietary treatments (p < 0.05), while plasma protein and albumin contents were not influenced by the treatments. The relative expression of target of rapamycin (TOR) and phosphatidylinositol 3‐kinase, regulatory subunit 1 (alpha) (PIK3R1) in fish fed diet 3 (4% FM) were significantly down‐regulated compared with those fed diet 6 for TOR and diets 4 and 6 for PIK3R1 (p < 0.05). Insulin receptor substrate 1 (IRS‐1) and janus kinase 3 (JAK3) expressions were fluctuated, with the higher levels in fish fed diets 4 and 6. In conclusion, the findings of this study indicate that plant protein mixture supplemented with EAA could be used to substitute FM in practical diet for Megalobrama amblycephala.  相似文献   

20.
In the present study, protective effects of dietary eucalyptol were investigated against copper toxicity in common carp (Cyprinus carpio). The fish were fed with diets supplemented with 0 (control), 0.5% and 1% eucalyptol for 14 days before exposure to 0.25 mg/L ambient copper for 7 days. Blood samples were taken from the fish before and 1, 3 and 7 days after copper challenge. Before copper challenge, eucalyptol significantly decrease serum aspartate aminotransferase (AST) activity, but increase blood WBC, RBC, hematocrit and haemoglobin, serum lysozyme, total immunoglobulin (Ig) compared with the control. Copper exposure led to stress, tissue damage and immunosuppression. After the copper challenge, significant elevation in serum cortisol, glucose, alanine aminotransferase (ALT) and AST, but decrease in blood RBC and WBC, and serum lysozyme, complement (ACH50) and total immunoglobulin (Ig) was observed. Eucalyptol administration significantly mitigated the increase in serum cortisol, glucose, ALT and AST, and decrease in WBC, ACH50, lysozyme and total Ig. Dietary 1% eucalyptol had significantly higher protective effects than 0.5% in the case of serum AST, lysozyme, total Ig and ACH50. In conclusion, eucalyptol has beneficial health effects on common carp and enables to mitigate copper‐induced stress, tissue damage, and immunosuppression. Eucalyptol at the dietary 1% level is recommended to protect common carp against adverse effects of copper toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号