首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Aquaculture of barramundi or Asian seabass (Lates calcarifer) is growing in both Australia and Southeast Asia and there is substantial interest to improve production efficiency through selective breeding. The establishment of a large and genetically diverse base population is a prerequisite for a sustainable and long‐term productive breeding program. Before selective breeding programs can begin for Australian barramundi it is important to assess the overall genetic diversity of current captive broodstock populations. To address this question, 407 captive barramundi broodstock from eight separate Australian broodstock populations were genotyped using 16 polymorphic microsatellite DNA markers. A Bayesian STRUCTURE analysis indicated that captive Australian broodstock are broadly divided into two genetic stocks. Multivariate analysis between broodstock individuals and pairwise FST between broodstock populations also supported the existence of two stocks. Comparisons with data obtained from natural stocks suggested that hatchery individuals were either sourced from the two stocks or represented an admixture between them. Genetic diversity was low within each broodstock population (allelic richness ranged from 2.67 to 3.42 and heterozygosity ranged from 0.453 to 0.537) and relatedness estimates within hatcheries were generally low (average r was equal to 0.141). We recommend sourcing captive individuals according to high levels of neutral genetic diversity and low levels of relatedness for the establishment of a base population. We also make recommendations about including genetically diverse wild individuals.  相似文献   

2.
Genetic variation in seven reared stocks of gilthead sea bream Sparus aurata, originating from Greek commercial farms, was assessed using five polymorphic microsatellite markers and was compared with that of two natural populations from the Ionian and the Adriatic Seas. The total number of alleles per marker ranged from 11 to 19 alleles, and hatchery samples showed the same levels of observed heterozygosity with samples from the wild but substantially smaller allelic diversity and expected heterozygosity. The global genetic differentiation for the cultivated samples was significant as indicated by Fst analysis, which might indicate random genetic drift and inbreeding events operating in the hatcheries. On the contrary, no significant difference was found between the two wild populations. Population pairwise tests between farmed and wild stocks were also significant, with the exception of one hatchery sample, the Central Greece 1, which was not significantly different from the two wild samples perhaps due to its recent use in aquaculture from wild‐caught animals. The UPGMA tree topology grouped the wild samples together with the Central Greece 1 stock, and showed a clear division between wild and farmed sample sets for the six remaining hatchery samples. Knowledge of the genetic variation in S. aurata cultured populations compared with that in the wild ones is essential for setting up appropriate guidelines for the proper monitoring and management of the stocks either under traditional practices or for the implementation of selective breeding programmes.  相似文献   

3.
The Japanese population of the cyprinid minnow Aphyocypris chinensis is nearing extinction in the wild. The genetic diversity of three microsatellite loci in five captive populations was investigated, and an effective breeding strategy to reduce inbreeding from pairwise relatedness (R xy ) between each captive line is discussed. The average number of alleles ranged 2.33–4.67 and the average heterozygosity ranged 0.283–0.602. The pairwise relatedness observed in most combinations showed a significant decrease between the populations. It is suggested that exchange of individuals between different breeding lines should effectively stop inbreeding. Studies show that the effective population size (N e ) estimated from the number of parental individuals was 8.54 in one captive population, which is insufficient to maintain genetic diversity. It is recommended that more parental individuals should be used, and to exchange fish in a rotating mating mode between institutions participating in captive breeding of A. chinensis.  相似文献   

4.
Farming of the sea cucumber Apostichopus japonicus (Selenka) started 20 years ago and is still in rapid expansion in China. In order to assess the genetic status of both wild and cultivated stocks of this species, we used eight microsatellite markers to estimate the level of genetic diversity within five hatchery stocks and two wild populations of A. japonicus, and compared the degree of genetic differentiation between them. High levels of polymorphism were observed over all loci. The mean alleles and expected heterozygosities over the seven stocks were 10.4–12.3 and 0.735–0.783 respectively. The results of the microsatellite survey provide no evidence to show that hatchery practice of the sea cucumber in China to date has significantly affected the genetic variability of the cultured stocks. Significant differentiation was found between most pairs of the hatchery stocks and wild populations (Fst range: 0.008–0.036), and no obvious difference was detected between the wild populations (Fst=0.008). The information on the genetic variation and differentiation obtained in this study can be applied for future genetic monitoring of A. japonicus aquaculture stocks and will be useful for future genetic improvement by selective breeding, and for designing suitable management guidelines for these genetic materials.  相似文献   

5.
After more than 20 years of hatchery production of Asian seabass in Thailand, genetic information is still lacking for effective genetic management and a selective breeding programme. This study aimed to evaluate genetic status of existing hatchery populations and genetic consequences of a selective breeding attempt. We examined genetic relatedness in seven hatchery samples, including a selectively bred population (RACF‐F1), compared with three wild samples using 11 microsatellite loci. Genetic diversity and relatedness values within most hatchery samples, except for RACF‐F1, did not differ from those of wild populations (> 0.05). RACF‐F1 had the lowest allelic diversity and effective population size (Ar = 6.99; Ne = 7.8) and highest relatedness values (mean rxy = 0.075–0.204). Pairwise ΦST values, principal component analysis and model‐based cluster analyses revealed three genetically distinct hatchery groups: Eastern Thailand (CHN, RACF, NSCF and SKCF), Southern Thailand (NICA) and the Andaman Sea (STCF). Results suggest that exiting domestic populations capture reasonable amount of genetic variation and can be useful for a base population for genetic improvement programmes. In addition, given the rapid increase in relatedness that we observed in one selectively bred population, we recommend using selection methods and hatchery practices that reduce variability in family contribution in the subsequent generations.  相似文献   

6.
Abstract Stocking has had a considerable effect on wild brown trout, Salmo trutta L., populations throughout Europe. To elucidate this impact and to outline further management strategies, the genetic structure of 25 wild populations and five hatchery stocks from Czech Republic and Slovakia were analysed using mitochondrial (control region) and nuclear DNA (microsatellites, LDH‐C1*) markers. Stocking practices have caused massive hybridisation between the Atlantic and Danube brown trout strains in the central Danube basin and have lead to a loss of among‐population divergence in Slovakia and the eastern part of Czech Republic. Comparison with studies from neighbouring countries revealed substantial differences in haplotype, allele frequencies and genetic diversity across Central Europe. Differences in stocking management and origin of breeding stocks appear to be crucial factors for the spatial variability of the genetic structure of brown trout.  相似文献   

7.
Salmo trutta abanticus is a non‐anadromous trout species native to Lake Abant and Seven Lakes in Turkey. A restocking programme by captive breeding was initiated in 1999 to support S. trutta abanticus population. Reared 2‐year‐old juveniles from randomly caught wild parental individuals in Maçka breeding farm were introduced into Lake Abant. We aimed to compare genetic and morphological divergences between wild‐ and captive‐bred populations using seven microsatellite loci and geometric morphometric measurements. A significant genetic and morphological divergences were detected between all population in Fst and canonical variate analysis based on geometric morphometric with 10 homolog landmark. Eighty‐six microsatellites alleles were recorded across loci. Number of private alleles, observed alleles and observed heterozygosity are statistically significant higher in Maçka captive‐bred population than Lake Abant and Seven Lakes populations. Of 42 tests, three departures from Hardy–Weinberg equilibrium were detected in all populations after Bonferroni correction. Two pairs of loci (Ssa85 – Str73 and Str73‐Str543) in Maçka, one pairs of loci (Ssa85‐Str73) in Abant and two pairs of loci (Ssa85‐Str60 and Str73‐Str543) in Seven Lakes populations show linkage disequilibrium. Population structure analysed with Structure software showed three genetic groups (?K = 3) in our studied populations. Relatedness estimates show higher mean relatedness values (r = 0.220 ± 0.230) for Maçka captive‐breed population than wild populations of Abant Lake and Seven Lakes (r = 0.140 ± 0.210 and r = 0.170 ± 0.200 respectively).  相似文献   

8.
9.
Tambaqui, Colossoma macropomum (CUVIER, 1818), is the most farmed fish in Brazil. Endemic to the Amazonas and Orinoco basins, it is currently raised in all Brazillian regions. The lack of basic genetic information on tambaqui broodstock has been one of the problems of improvement programs in the species. The goal of this study is to provide information on the genetic basis of tambaqui broodstock from six fish farms located in three different regions of Brazil for application in improvement programs. Thus, genetic analyses were conducted using 15 microsatellite loci. We observed that the broodstock of Biofish (NortB), Prosperidade (NortP), and Tajá (NortT) presented loss of genetic variability. However, their genetic diversity values are higher when compared with the broodstock from the AquaBrasil (improved, NortA) project, Brumado (SoutB), and Departamento Nacional de Obras Contra a Seca (DNOCS) (NorthD), respectively. Furthermore, the broodstock of DNOCS needs to be renovated or increased, and the AquaBrasil individuals need to be better evaluated to verify the improvement achieved in the improvement program. Thus, aimed at the improvement of tambaqui production in the fish farms analyzed, we recommend increasing the population size of the broodstock to avoid inbreeding.  相似文献   

10.
草鱼野生与选育群体遗传变异微卫星分析   总被引:2,自引:1,他引:2  
为探究经过2个选育世代后选育群体遗传多样性和遗传结构的变化,实验采用多重PCR技术对4个野生草鱼群体(邗江、九江、石首、吴江)和2个选育群体(F1和F2)进行了微卫星序列遗传变异分析。结果显示,6个草鱼群体遗传多样性水平较高,2个选育群体除了平均等位基因数外,其他遗传多样性参数均小于4个野生群体。哈迪—温伯格平衡(Hardy-Weinberg equilibrium)检测显示,在120个群体—位点组合中有62个位点显著偏离哈迪—温伯格平衡,62个群体—位点组合中只有11个组合其近交系数值为负值,其余的51个组合的Fis均为正值。6个草鱼群体AMOVA分析结果显示,3.75%的变异来自于群体间,96.25%的变异来自于群体内,整体的遗传分化指数值为0.038。进一步分析各个群体间Fst,只有石首群体与F1、F2群体之间的Fst大于0.05,处于中等分化,其余群体间分化程度较低,且F2群体与4个野生群体之间Fst比F1群体与4个野生群体之间的Fst大。奈氏标准遗传距离分析结果显示,2个选育群体与野生群体之间的遗传距离大于野生群体之间的遗传距离。基于Dn建立的UPGMA系统发育树得出了相同的结果,即2个选育群体与野生群体之间的亲缘关系比4个野生群体之间的亲缘关系要远。研究表明,经过2个世代选育后,相比4个野生群体,2个选育群体遗传多样性虽有部分下降,但仍处于较高的水平,2个选育群体的遗传结构已发生变化,但其遗传分化程度尚不明显。本研究结果为制定出更加完善有效的选育方案提供了重要参考。  相似文献   

11.
Supportive breeding of Atlantic salmon (Salmo salar) is commonly employed to maintain numbers of fish where the species has become locally endangered. Increasingly, one of the main aims of population management is the preservation of natural genetic diversity. If the stocks employed in supportive breeding exhibit reduced variation they can alter the natural pattern of genetic variation observed in wild populations. In northern Spain, wild adult salmon are caught every year from local rivers and artificially crossed in order to create supportive stocks. The offspring are hatchery reared until the juvenile stage, then released into the same river where their parents were caught. In the current study, our findings demonstrate that although adult broodstock exhibit a pattern of variation similar to the wild populations, variability at microsatellite loci was drastically reduced in the juveniles released into one of three rivers analyzed. The contribution of broodstock to this juvenile stock was examined by pedigree analysis. A restricted number of females contributing to the hatchery stock was identified as the main cause of loss in genetic variation, possibly due to overmaturity of some multi-sea-winter females. We suggest that better monitoring and control of parental contribution will help in solving the problem of loss of genetic diversity in hatchery populations.  相似文献   

12.
Genetic diversity between three farmed and four wild populations of Atlantic salmon from Ireland and Norway were analysed using 15 microsatellite markers. High levels of polymorphism were observed over all populations with the average number of alleles and average heterozygosity at 17.8 and 0.70, respectively. Farmed salmon showed less genetic variability than wild salmon in terms of allelic diversity but not necessarily in terms of overall heterozygosity. Between farmed populations significant differences were observed in expected heterozygosity suggesting that more intensive breeding practices may have resulted in a further erosion of genetic variability. Phylogenetic analysis using either populations or individuals as nodes show a clustering of populations into two groups, farmed and wild. This suggests that founder effects and subsequent selection have had more effect on the genetic differentiation between these strains than geographical separation. This technology has great potential for use in aquaculture situation where levels of genetic variation could be monitored and inbreeding controlled in a commercial breeding progra.  相似文献   

13.
ABSTRACT:   The Japanese bitterling Tanakia tanago (Cyprinidae) is on the verge of extinction in the wild, placing great importance on captive breeding programs for current conservation of the species. However, the loss of genetic diversity during captive breeding is an ongoing matter of concern. Since some captive populations have been almost monomorphic in mitochondrial DNA (mtDNA), this hampers assessments of their genetic diversity during captive breeding. To more accurately assess their genetic diversity, one wild and three captive populations were examined using amplified fragment length polymorphism (AFLP) markers. Estimates of average heterozygosity and nucleotide diversity ranged 0.0479–0.1920 and 0.0023–0.0088, respectively, enabling comparison of genetic diversity among the wild and captive populations, and among year-classes of captive populations. Significant differences in numbers of amplified fragments and proportions of polymorphic fragments were observed among year-classes of all populations. The indices of genetic diversity calculated from AFLP seemed to be, however, less sensitive to weak bottlenecks. No continuous decrease in genetic diversity in nuclear DNA was detected in presently captive populations. This supports the possibility of re-introduction of the captive populations into the original habitats, although survival and reproductive ability in the wild must be taken into consideration.  相似文献   

14.
微卫星标记分析乌龟养殖群体的遗传多样性   总被引:1,自引:0,他引:1  
章芸  俞丹娜  杜卫国  郑荣泉  杨光 《水产学报》2010,34(11):1636-1644
利用8个微卫星标记对7个乌龟养殖群体进行了遗传多样性和遗传结构的检测。结果显示,7个养殖群体都表现出较高的多态性,8个位点共检测出130个等位基因,范围在9~26,平均16.25;其多态信息含量(PIC)范围为0.57~0.92,平均值为0.71;观测杂合度(HO)和期望杂合度(HE)分别为0.30~0.87和0.60~0.93。分子变异方差分析(AMOVA)结果表明,遗传变异5.91%来自群体间,84.29%来自群体内部,两两群体间FST值在0.0143~0.1127,其中57.14%的两两群体间无分化,42.86%的两两群体间出现了中等程度的分化。哈迪-温伯格平衡检测表明,8个位点中有5个位点显著或极显著的偏离了哈迪-温伯格平衡,推测各群体中出现了近交繁殖的现象。7群体间遗传距离为0.1066~0.6468,UPGMA聚类分析表明,湖北荆州群体单独聚为一支,其余6个群体聚为另一支。另外,7个群体都存在特有等位基因,提示群体间等位基因扩散受到一定程度的限制,同时在育种上,可以作为亲本选育的一个重要参考指标。  相似文献   

15.
For the first generation of a selective breeding programme, it is important to minimize the possibility of inbreeding. This mostly occurs by mating between closely related individuals, while proper mating can provide an opportunity to establish the base families with wide genetic variation from which selection for subsequent generations can be more effective. Genotyping with microsatellite‐based DNA markers can help us determine the genetic distances between the base populations. The genetic markers further facilitate the identification of the correct parents of the offspring (parentage assignments) reared together with many other families after hatching. We established a genetic analysis system with microsatellite DNA markers and analysed the genetic distances of three farmed stocks and a group of fish collected from wild populations using eight microsatellite markers. The averaged heterozygosity of the farming stocks was 0.826 and that of the wild population was 0.868. The hatchery strains had an average of 8.6 alleles per marker, which was less than a wild population that carried an average of 14.3 alleles per marker. Significant Hardy–Weinberg disequilibrium (HWDE) was observed in two farming stocks (P<0.05). Despite relatively low inbreeding coefficiency of the hatchery populations, the frequency of a few alleles was highly represented over others. It suggests that the hatchery stocks to some extent have experienced inbreeding or they originated from closely related individuals. We will develop a selective program using the DNA markers and will widen the usage of the DNA‐based genetic analysis system to other fish species.  相似文献   

16.

The objective of the present work was to develop species-specific microsatellite markers for P. scalare and to analyze the diversity and genetic structure of a wild population, from the Amazon River, and three commercial stocks (common, marble, and clown morphological variants), from farmers in Vieras-Minas Gerais. Through microsatellite-enriched genetic libraries, 11 microsatellite markers with adequate amplification patterns were characterized. Population genetic analysis identified eight polymorphic loci that generated 66 alleles ranging from two alleles (PSCA1B3) to nine (PSCA2H1). The polymorphic information content ranged from 0.031 to 0.827. High genetic differentiation was observed between the wild population and the stocks, and moderate differentiation between the three stocks. Deviation in the Hardy-Weinberg equilibrium was observed in one locus in the wild population, in five loci in the common morphological variant, in two in the marble, and in two in the clown morphological variant. Bayesian analysis of genetic structure revealed the existence of two clusters, one represented by the natural population and the other by the stocks. The developed microsatellite markers serve as a tool for the analysis of diversity and genetic structure and conservation studies of P. scalare.

  相似文献   

17.
Macrobrachium rosenbergii, known as the giant freshwater prawn or Malaysian prawn, is the sixth largest aquaculture species in Asia. Knowledge of genetic diversity of M. rosenbergii is important to support management and conservation programmes, which will subsequently help in sustainable production of this economically important species. This study aimed to analyse the genetic diversity and population structure of five M. rosenbergii populations using 11 microsatellite loci. In analysing 240 samples, the number of alleles, observed heterozygosity (HO) and expected heterozygosity (HE) ranged from 3 to 20, from 0.250 to 0.978 and from 0.556 to 0.944 respectively. The five stocks of M. rosenbergii displayed high level of genetic diversity. Both the FST and amova analyses showed that there was significant genetic differentiation among all populations. The UPGMA dendrogram based on Nei's genetic distance matrix revealed that the Narmada and Mahi populations were in one cluster and Mahanadi and Subarnarekha populations in another single major branch, whereas the Kerala population clearly showed a separate cluster. This information on genetic variation will be useful for genetic improvement and conservation of Indian populations of giant freshwater prawn M. rosenbergii.  相似文献   

18.
Freshwater prawn (Macrobrachium rosenbergii) culture in the Western Hemisphere is primarily, if not entirely, derived from 36 individual prawns originally introduced to Hawaii from Malaysia in 1965 and 1966. Little information is available regarding genetic variation within and among cultured prawn stocks worldwide. The goal of the current study was to characterize genetic diversity in various prawn populations with emphasis on those cultured in North America. Five microsatellite loci were screened to estimate genetic diversity in two wild (Myanmar and India‐wild) and seven cultured (Hawaii‐1, Hawaii‐2, India‐cultured, Israel, Kentucky, Mississippi and Texas) populations. Average allelic richness ranged from 3.96 (Israel) to 20.45 (Myanmar). Average expected heterozygosity ranged from 0.580 (Israel) to 0.935 (Myanmar). Many of the cultured populations exhibited reduced genetic diversity when compared with the Myanmar and the India‐cultured populations. Significant deficiency in heterozygotes was detected in the India‐cultured, Mississippi and Kentucky populations (overall Fis estimated of 0.053, 0.067 and 0.108 respectively) reflecting moderate levels of inbreeding. Overall estimate of fixation index (Fst = 0.1569) revealed moderately high levels of differentiation among the populations. Outcome of this study provide a baseline assessment of genetic diversity in some available strains that will be useful for the development of breeding programmes.  相似文献   

19.
To examine the present population genetic diversity and variability of Japanese flounder, a 394‐bp hypervariable fragment of mtDNA control region was sequenced. A total of 215 individuals from two wild and eight cultured populations were analyzed. The 91 variable sites defined 61 haplotypes and 12 of them were shared. Six single base pair insertion/deletions were detected. The haplotype diversity (h), the nucleotide diversity (π), and mean number of pairwise differences (k) in cultured populations (h = 0.443–0.844; π = 0.010–0.030; k = 3.745–11.838) were obviously lower than those in the wild populations (h = 0.987–0.988; π = 0.032; k = 12.443–12.718). Fixation index (Fst) and analysis of molecular variance (AMOVA) revealed that significant genetic differentiation mainly existed among cultured populations. The results of the exact test of population differentiation (nondifferentiation exact P values) rejected a panmictic mtDNA gene pool in all cultured populations. The results of this study indicated that genetic diversity of cultured Japanese flounder populations in China had significantly declined due to farm propagation and an increase in broodstock number should increase genetic diversity in cultured Japanese flounder base on the genetic theory.  相似文献   

20.
唐首杰  杨洁  赵金良  王成辉  李思发 《水产学报》2016,40(12):1850-1865
人工驯养和选育是家养动物适应性进化的主要动力之一,中国大陆尼罗罗非鱼引进群体经历了长期的人工驯养和选育,是研究鱼类在驯养、选育条件下适应性进化的良好材料。本实验以尼罗罗非鱼1个埃及土著群体为对照组,以中国大陆具有代表性的尼罗罗非鱼5个驯养群体和4个选育群体为实验组,采用12个多态性微卫星位点分析了驯养群体和选育群体的遗传多样性和瓶颈效应。结果显示,土著群体、驯养群体和选育群体平均每个位点的有效等位基因数(AE)分别为5.433、5.113~6.515和3.239~6.734,期望杂合度(HE)分别为0.812、0.796~0.859和0.657~0.858,多态信息含量(PIC)分别为0.768、0.753~0.819和0.601~0.818,近交系数(FIS)分别为0.323、0.166~0.342和0.249~0.314。LSDt检验结果显示,受人工选择的群体(驯养群体、选育群体)与土著群体间遗传多样性水平(AE和HE)无差异,3个驯养群体(EGY群体、WY群体和GD群体)的遗传多样性水平(HE)显著高于1个选育群体(XJF群体)。瓶颈效应分析显示,尼罗罗非鱼土著群体、驯养群体和选育群体在历史上都曾发生过群体缩小的现象。其中,土著群体、2个驯养群体(WY、EGY)、2个选育群体(JNM、XJF)在近期可能经历过遗传瓶颈,其他群体在新的突变和基因流的作用下,群体规模可能已恢复。有效群体大小分析显示,土著群体、驯养群体和选育群体的有效群体数量分别为177、29~117(平均值为57.4)和84~123(平均值为102.8)。本研究结果不仅为尼罗罗非鱼驯养群体的持续利用和选育群体的进一步遗传改良提供了有价值的信息,而且为鱼类在驯养和选育条件下群体遗传结构和种群动态研究提供了新的参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号