首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigenetic abnormalities in cloned animals are caused by incomplete reprogramming of the donor nucleus during the nuclear transfer step (first reprogramming). However, during the second reprogramming step that occurs only in the germline cells, epigenetic errors not corrected during the first step are repaired. Consequently, epigenetic abnormalities in the somatic cells of cloned animals should be erased in their spermatozoa or oocytes. This is supported by the fact that offspring from cloned animals do not exhibit defects at birth or during postnatal development. To test this hypothesis in cloned cattle, we compared the DNA methylation level of two imprinted genes (H19 and PEG3) and three non‐imprinted genes (XIST, OCT4 and NANOG) and two repetitive elements (Satellite I and Satellite II) in blood and sperm DNAs from cloned and non‐cloned bulls. We found no differences between cloned and non‐cloned bulls. We also analyzed the DNA methylation levels of four repetitive elements (Satellite I, Satellite II, Alpha‐satellite and Art2) in oocytes recovered from cloned and non‐cloned cows. Again, no significant differences were observed between clones and non‐clones. These results suggested that imprinted and non‐imprinted genes and repetitive elements were properly reprogramed during gametogenesis in cloned cattle; therefore, they contributed to the soundness of cloned cattle offspring.  相似文献   

2.
The DNA methylation of imprinted genes is an important way to regulate epigenetic reprogramming of donor cells in somatic cell nuclear transfer (SCNT). However, the effects of sexual distinction on the DNA methylation of imprinted genes in cloned animals have seldom been reported. In this study, we analysed the DNA methylation status of three imprinted genes (Xist, IGF2 and H19) from liveborn cloned buffaloes (L group, three female and three male), stillborn cloned buffaloes (S group, three female and three male) and natural reproduction buffaloes (N group, three female and three male), using bisulphite sequencing polymerase chain reaction (BS‐PCR). The expression levels of these imprinted genes were also investigated by quantitative real‐time PCR (QRT‐PCR). The DNA methylation levels of H19 were not significantly different among the groups. However, the Xist in female and IGF2 in male of the S group were found to be significantly hypomethylated in comparison with the same sexual buffaloes in L group and N group (< .05). Furthermore, the expression levels of Xist, IGF2 and H19 in the stillborn female cloned buffaloes of S group were significantly higher than that of the female buffaloes in the L group and N group (< .05). The expression levels of IGF2 and H19 in the stillborn male cloned buffaloes in the S group were significantly higher than that of the male buffaloes in the L group and N group (< .05). These results indicate that Xist may be associated with the viability of female cloned buffaloes, and IGF2 may also be related to the viability of male cloned buffaloes.  相似文献   

3.
Many observations have been made on cloned embryos and on adult clones by somatic cell nuclear transfer (SCNT), but it is still unclear whether the progeny of cloned animals is presenting normal epigenetic status. Here, in order to accumulate the information for evaluating the normality of cloned cattle, we analyzed the DNA methylation status on satellite I region in blastocysts obtained from cloned cattle. Embryos were produced by artificial insemination (AI) to non‐cloned or cloned dams using semen from non‐cloned or cloned sires. After 7 days of AI, embryos at blastocyst stage were collected by uterine flushing. The DNA methylation levels in embryos obtained by using semen and/or oocytes from cloned cattle were similar to those in in vivo embryos from non‐cloned cattle. In contrast, the DNA methylation levels in SCNT embryos were significantly higher (P < 0.01) than those in in vivo embryos from non‐cloned and cloned cattle, approximately similar to those in somatic cells used as donor cells. Thus, this study provides useful information that epigenetic status may be normal in the progeny of cloned cattle, suggesting the normality of germline cells in cloned cattle.  相似文献   

4.
Discovery of epigenetic modifications associated with feed efficiency or other economically important traits would increase our understanding of the molecular mechanisms underlying these traits. In combination with known genetic markers, this would provide opportunity to improve genomic selection accuracy in cattle breeding programs. It would also allow cattle to be managed to improve favorable gene expression. The objective of this study was to identify variation in DNA methylation between beef cattle of differential pre-natal nutrition and divergent genetic potential for residual feed intake (RFI). Purebred Angus offspring with the genetic potential for either high (HRFI) or low (LRFI) RFI were prenatally exposed to either a restricted maternal diet of 0.5 kg/d average daily gain (ADG) or a moderate maternal diet of 0.7 kg/d ADG from 30 to 150 d of gestation. We performed DNA methylation analysis of differentially methylated regions (DMR) of imprinted genes (Insulin-like growth factor 2 (IGF2) DMR2, IGF2/H19 imprinting control region (ICR) and IGF2 receptor (IGF2R) DMR2) using post-natal samples of longissimus dorsi (LD) muscle taken from male and female calves at birth and weaning, and of LD muscle, semimembranosus (SM) muscle, and liver samples collected from steers at slaughter (17 months of age). Interestingly, for all three DMR investigated in liver, LRFI steers had higher levels of methylation than HRFI steers. In LD muscle, IGF2/H19 ICR methylation differences for heifers at birth were due to pre-natal diet, while for steers at birth they were mostly the result of genetic potential for RFI with LRFI steers again having higher levels of methylation than HRFI steers. While results from repeated measures analysis of DNA methylation in steers grouped by RFI revealed few differences, in steers grouped by diet, we found higher methylation levels of IGF2 DMR2 and IGF2R DMR2 in LD muscle of restricted diet steers at weaning and slaughter than at birth, as well as increased methylation in LD muscle of restricted diet steers compared with moderate diet steers at weaning and/or slaughter. Our results suggest that differential pre-natal nutrition, and divergent genetic potential for RFI, induces tissue- and sex-specific alterations in post-natal IGF2 and IGF2R methylation patterns and that these patterns can vary with age in Angus beef cattle.  相似文献   

5.
用苏丹Ⅳ和苏丹黑B 2种染色方法,对体外培养的延边黄牛各发育阶段卵母细胞和体细胞克隆胚胎内脂滴变化进行研究,并对2种染色方法进行了比较。结果表明,随着细胞发育阶段的不同,脂滴的含量也随之变化,从未经成熟培养的卵母细胞到8细胞期胚胎内脂滴不断增多,脂滴直径不断增大;而从8细胞期到囊胚期胚胎内脂滴不断减少,脂滴直径也不断减小。也显示苏丹IV染色效果较好,可作为测定活体细胞中脂滴的检测方法。  相似文献   

6.
为了探求新生克隆猪可能的死亡原因以及是否存在不完全的DNA甲基化重编程,本试验运用亚硫酸氢盐测序法分别检测了H19基因和IGF2R基因差异甲基化区(DMR)在新生死亡克隆猪和同期正常猪心脏、肝脏、脾脏、肺脏和肾脏中的甲基化状态。结果发现,H19基因DMR在克隆猪肺脏中表现为超甲基化,极显著高于正常猪(95.20%VS46.80%P〈0.01),且10个测序克隆中存在2处连续的全甲基化CpG位点(4-9位、12-S17位),而在其他组织中甲基化差异不显著(P〉0.05);IGF2R基因DMR在肝脏中处于超甲基化状态,显著高于正常猪(80.00%V839.41%P〈0.05),而在肺脏中为去甲基化状态,板显著低于正常猪(14.71%VS66.47%P〈0.01),在其他组织差异不显著(P〉0.05)。结果说明,在死亡克隆猪中,H19基因DMR在肺脏和IGF2R基因在肝脏与肺脏中存在不完全的DNA甲基化重编程,这可能是导致克隆动物死亡的因素之一。  相似文献   

7.
8.
The generation of reactive oxygen species (ROS) and subsequent mitochondrial and DNA damage in bovine somatic cell nuclear transfer (SCNT) embryos were examined. Bovine enucleated oocytes were electrofused with donor cells and then activated by a combination of Ca-ionophore and 6-dimethylaminopurine culture. The H2O2 and ˙OH radical levels, mitochondrial morphology and membrane potential (ΔΨ), and DNA fragmentation of SCNT and in vitro fertilized (IVF) embryos at the zygote stage were analyzed. The H2O2 (35.6 ± 1.1 pixels/embryo) and ˙OH radical levels (44.6 ± 1.2 pixels/embryo) of SCNT embryos were significantly higher than those of IVF embryos (19.2 ± 1.5 and 23.8 ± 1.8 pixels/embryo, respectively, p < 0.05). The mitochondria morphology of SCNT embryos was diffused within the cytoplasm. The ΔΨ of SCNT embryos was significantly lower (p < 0.05) than that of IVF embryos (0.95 ± 0.04 vs. 1.21 ± 0.06, red/green). Moreover, the comet tail length of SCNT embryos was longer than that of IVF embryos (515.5 ± 26.4 µm vs. 425.6 ± 25.0 µm, p < 0.05). These results indicate that mitochondrial and DNA damage increased in bovine SCNT embryos, which may have been induced by increased ROS levels.  相似文献   

9.
Cutaneous mast cell tumours (MCT) are the most common skin tumour in dogs, and to our knowledge, there are no previous studies regarding the global methylation of these tumours. DNA hypomethylation and hypermethylation have been described in several tumours and both mechanisms can lead to carcinogenesis. The purpose of this study was to evaluate the global DNA methylation in canine MCT. A total of 48 MCT samples were classified in grades 1, 2 and 3 or high‐grade or low‐grade. Monoclonal antibodies were used for the immunohistochemical detection of the 5‐methylcytosine. The immunostained nuclei were classified in strong, weak or negative pattern, and these were quantified in five distinct microscopic fields (40× objective) in each slide. The results showed that global DNA hypomethylation was predominant in grade 3, high‐grade, less differentiated MCT. These epigenetic changes in neoplastic mast cells warrant further detailed investigation aiming the establishment of tumour epigenetic therapies.  相似文献   

10.
由于在核移植试验中,所用的水和化学物质都不可避免的会被一些金属离子轻微污染,造成胚胎内抗氧化物和过氧化物之间难以保持平衡,从而导致胚胎发育率降低,本试验以此为出发点,探讨了在延边黄牛体细胞核移植重组胚早期培养液中添加乙二胺四乙酸钠(EDTA-Na)和柠檬酸钠(sodium citrate)2种金属螯合剂类抗氧化剂,对其后续发育的影响,以期筛选出最佳的体外培养条件。结果表明:适合延边黄牛体细胞核移植重组胚后期发育的EDTA-Na和柠檬酸钠的最佳浓度分别为50μmol/L和0.6mmol/L。  相似文献   

11.
To assess the performance of boars derived by somatic cell cloning, we analyzed various aspects of their reproductive characteristics and the expression of two imprinted genes. Cloned boars (cloned Duroc × Jinhua) were analyzed for birth weight, growth rate, age at first ejaculation, semen characteristics and fertility, in comparison with naturally bred control boars of the same strain. The expression of imprinted genes was analyzed using the microsatellite marker SWC9 for the paternally expressed gene insulin‐like growth factor ‐2 (IGF2) and with single nucleotide polymorphisms (SNPs) for the gene maternally expressed 3 (MEG3). The cloned boars had high production of semen and were nearly equal in level of fertility to conventional pigs; they showed similar characteristics as naturally bred boars of the same strains. The expression of IGF2 was partially disturbed, but this disturbed expression was not linked to a change in developmental fate or reproductive performance. These results indicate that use of cloned boars could be highly effective for proliferation of pigs with desirable characteristics, preservation of genetic resources and risk reduction against epidemic diseases, such as foot‐and‐mouth disease, through storage of somatic cells as a precautionary measure for use in regenerating pig populations after a future pandemic.  相似文献   

12.
Until now, the efficiency of animal cloning by somatic cell nuclear transfer (SCNT) has remained low. Efforts to improve cloning efficiency have demonstrated a positive role of trichostatin A (TSA), an inhibitor of deacetylases, on the development of nuclear transfer (NT) embryos in many species. Here, we report the effects of TSA on pre‐implantation development of porcine NT embryos. Our results showed that treatment of reconstructed porcine embryos with 50 nmol/L TSA for 24 h after activation significantly improved the production of blastocysts (P < 0.05), while treating donor cells with the same solution resulted in increases in cleavage rates and blastomere numbers (P < 0.05). However, TSA treatment of both donor cells and SCNT embryos did not improve blastocyst production, nor did it increase blastomere numbers. Using indirect immunofluorescence, we found that TSA treatment of NT embryos could improve the reprogramming of histone acetylation at lysine 9 of histone 3 (H3K9) and affect nuclear swelling of transferred nuclei. However, no apparent effect of TSA treatment on H3K9 dimethylation (H3K9me2) was observed. These findings suggest a positive effect of TSA treatment (either treating NT embryos or donor cells) on the development of porcine NT embryos, which is achieved by improving epigenetic reprogramming.  相似文献   

13.
To obtain data concerning the survival of embryos and calves derived from somatic cell nuclear transfer (SCNT) in Japan, a nationwide survey was carried out in April, 2009. As a result, data concerning 3264 embryo transfers (ETs) with SCNT embryos which produced 301 calves were accumulated and their survival was analyzed. The present survey revealed that survival rates of transferred bovine embryos and produced calves derived from SCNT had not improved over a decade (1998–2007). A remarkable feature of the pregnancies with SCNT embryos was a high incidence of spontaneous abortions. When the decade was divided by the occurrence of bovine spongiform encephalopathy (BSE) in 2001, significant decreases in the ‘after BSE’ period (2002–2007) were observed in the percentages of calves born (P < 0.01), calves living at birth (P < 0.05), calves living for 24 h (P < 0.05) and 6 months (P < 0.01). Abortions that occurred during 61–99 days after ETs were significantly increased (P < 0.01) in the ‘after BSE’ period. Certain kinds of regeneration that occurred in oocytes during the 15–20 h of storage of bovine ovaries at 10–15°C as a part of BSE inspection might have had some negative effects on SCNT embryos when these oocytes were used as recipients of SCNT.  相似文献   

14.
Since the first somatic cell cloned calves were born in Japan in 1998, more than 500 cloned cattle have been produced by somatic cell nuclear transfer and many studies concerning cloned cattle and their offspring have been conducted in this country. However, most of the results have been published in Japanese; thus, the data produced in this country is not well utilized by researchers throughout the world. This article reviews the 65 reports produced by Japanese researchers (62 written in Japanese and 3 written in English), which employed 171 clones and 32 offspring, and categorizes them according to the following 7 categories: (1) genetic similarities and muzzle prints, (2) hematology and clinical chemistry findings, (3) pathology, (4) growth performance, (5) reproductive performance, (6) meat production performance and (7) milk production performance. No remarkable differences in health status or reproductive performance were found among conventionally bred cattle, somatic cell cloned cattle surviving to adulthood and offspring of somatic cell cloned cattle. Similarities in growth performance and meat quality were observed between nuclear donor cattle and their clones. The growth curves of the offspring resembled those of their full siblings.  相似文献   

15.
DNA methylation patterns at the IGF2‐H19 locus were investigated in sperm DNA from Swiss Landrace (SL) and Swiss Large White (LW) boars. The putative IGF2 differentially methylated regions (DMR) 0, 1 and 2, a quantitative trait nucleotide (QTN) region in the intron 3 and a CpG island in the intron 4 of the IGF2 gene as well as three regions around porcine CTCF binding sites within the H19 differentially methylated domain (DMD) were selected for the DNA methylation analysis. In both breeds putative IGF2 DMR0, 1, 2 and H19 DMD were hypermethylated. Significant differences in DNA methylation content were found between the two breeds in the two DMD regions proximal to the H19 gene. The IGF2 QTN region and the CpG island in the IGF2 intron 4 were hypomethylated in sperm DNA of both breeds. The methylation analysis revealed significantly more methylated CpG sites in the intron 4 of sperm from the LW breed than in that from SL. No difference was found in global DNA methylation between the two breeds. These results indicate differences in DNA methylation patterns between breeds and it remains to be established whether variation in DNA methylation patterns impacts on phenotypic traits.  相似文献   

16.
Tumours shows aberrant DNA methylation patterns, being hypermethylated or hypomethylated compared with normal tissues. In human acute myeloid leukaemia (hAML) mutations in DNA methyltransferase (DNMT3A) are associated to a more aggressive tumour behaviour. As AML is lethal in dogs, we defined global DNA methylation content, and screened the C‐terminal domain of DNMT3 family of genes for sequence variants in 39 canine acute myeloid leukaemia (cAML) cases. A heterogeneous pattern of DNA methylation was found among cAML samples, with subsets of cases being hypermethylated or hypomethylated compared with healthy controls; four recurrent single nucleotide variations (SNVs) were found in DNMT3L gene. Although SNVs were not directly correlated to whole genome DNA methylation levels, all hypomethylated cAML cases were homozygous for the deleterious mutation at p.Arg222Trp. This study contributes to understand genetic modifications of cAML, leading up to studies that will elucidate the role of methylome alterations in the pathogenesis of AML in dogs.  相似文献   

17.
《中国兽医学报》2016,(12):2154-2159
为了分析PEG11基因在体细胞核移植(somatic cell nuclear transfer,SCNT)牛中的印记以及重编程状态,本研究应用RT-PCR产物直接测序法对PEG11基因在自然繁殖牛和新生死亡SCNT牛7个组织(心、肝、脾、肺、肾、肌肉和脂肪)中的表达进行了分析。结果发现PEG11基因在自然繁殖牛的7个组织中均为单等位基因表达,表明PEG11基因在牛中是印记的;在SCNT牛肺脏中PEG11基因为双等位基因表达,而在其余6个组织中为单等位基因表达。进而用亚硫酸氢盐测序法分析自然繁殖牛和SCNT牛肺脏PEG11基因中54CpGs位点的甲基化状态,发现PEG11基因在SCNT牛肺脏中呈现与自然繁殖牛相似的高甲基化状态(97.26%),推测PEG11基因在新生死亡SCNT牛肺脏中印记紊乱可能是导致SCNT牛肺脏发育缺陷的原因之一,PEG11基因内部CGIs的甲基化不参与调控PEG11基因的基因组印记。  相似文献   

18.
DNA甲基化(DNA methylation)是一种动态、可逆并可以遗传的表观遗传修饰模式,主要发生在哺乳动物原始生殖细胞和早期胚胎发育过程中,能够通过高动态和协同的核酶网络附着在DNA的CpG区域,同时还通过改变调控区域的功能状态进而调控基因表达且不影响DNA序列所携带的遗传信息。DNA甲基化主要涉及基因组印迹、转座元件沉默、X染色体失活和衰老等多种关键生理过程,在哺乳动物卵母细胞和胚胎发育中发挥着重要作用。本文介绍了DNA甲基化的建立与去除机制及其生物学功能,重点阐述了DNA甲基化在哺乳动物卵母细胞和胚胎发育过程中精准生成、维持、读取和删除等动态变化过程,为进一步研究哺乳动物表观遗传调控提供参考依据。  相似文献   

19.
Somatic cell nuclear transfer (SCNT) is considered to be a critical tool for propagating valuable animals. To determine the productivity calves resulting from embryos derived with different culture media, enucleated oocytes matured in vitro were reconstructed with fetal fibroblasts, fused, and activated. The cloned embryos were cultured in modified synthetic oviduct fluid (mSOF) or a chemically defined medium (CDM) and developmental competence was monitored. After 7 days of culturing, the blastocysts were transferred into the uterine horn of estrus-synchronized recipients. SCNT embryos that were cultured in mSOF or CDM developed to the blastocysts stages at similar rates (26.6% vs. 22.5%, respectively). A total of 67 preimplantational stage embryos were transferred into 34 recipients and six cloned calves were born by caesarean section, or assisted or natural delivery. Survival of transferred blastocysts to live cloned calves in the mSOF and the CDM was 18.5% (to recipients), 9.6% (to blastocysts) and 42.9% (to recipients), 20.0% (to blastocysts), respectively. DNA analysis showed that all cloned calves were genetically identical to the donor cells. These results demonstrate that SCNT embryos cultured in CDM showed higher viability as judged by survival of the calves that came to term compared to blastocysts derived from mSOF cultures.  相似文献   

20.
To obtain the data concerning death losses due to stillbirth, neonatal death and diseases in cloned cattle derived from somatic cell nuclear transfer (SCNT) and their progeny produced by Japanese institutions, a nationwide survey was carried out in July-August, 2006. As a result, lifetime data concerning 482 SCNT cattle (97.5% of cattle produced in the country at that time) and 202 progeny of SCNT cattle were accumulated and the death loss of these cattle was analyzed. Although 1/3 of delivered SCNT calves died during the perinatal period due to stillbirth and neonatal death, incidence of death loss due to diseases in SCNT cattle surviving more than 200 days after birth seems to be the same as these in conventionally bred cattle. In contrast, progeny of SCNT cattle showed the same level in death loss as observed in conventionally bred cattle throughout their lifetime. These results suggest that robust health would be expected in SCNT cattle surviving to adulthood and their progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号