首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
At the time of AI following Ovsynch protocol, a total of 51 buffaloes were randomly divided in a first group (n = 30) subjected to conventional AI into the uterine body with 20 million non-sex sorted frozen-thawed spermatozoa, while a second group (n = 21) was inseminated near the utero-tubal junction (UTJ) ipsilateral to the ovary carrying the preovulatory follicle with 2.5 million live (4 million total) sex-sorted frozen-thawed spermatozoa. The semen used for flowcytometric sorting was collected and processed on a farm in Italy, and then shipped to a laboratory in Germany. Eleven buffaloes were inseminated with X-chromosome bearing spermatozoa and 10 with Y-chromosome bearing spermatozoa. Conception rates after conventional and UTJ inseminations were 43.3% (n = 13) and 42.8% (n = 9) respectively (p = 0.97). Eight of the nine foetuses obtained after insemination with sexed spermatozoa corresponded to the sex as predicted by the cell sorting procedure (five male and four female foetuses by ultrasound vs six male and three female foetuses by cell sorting). In conclusion, for the first time buffalo semen has been successfully subjected to procedures for flowcytometric sperm sorting and freezing. Low doses of sexed spermatozoa have been deposited near the UTJ giving conception rates similar to those of conventional AI with full dose.  相似文献   

2.
The present study was performed to test fertility in single‐ovulating and superovulated dairy heifers after insemination with low dose sex‐sorted sperm under field conditions. Some parameters, including the dosage, deposition site and timing, were assessed with the pregnancy rates after artificial insemination (AI). Moreover, the use of oestrus synchronization in combination with sorted sperm was evaluated. Besides that, we also improved the embryo production efficiency in superovulated dairy heifers by optimizing the timing of inseminations and repartitioning the sexed sperm dosage among multiple inseminations. The conception rate (52.8%) in heifers after low dose (2 × 106) insemination with sorted sperm deep into the uterine horn did not differ (p > 0.05) from that (59.6%) of conventional AI (1 × 107 non‐sorted sperm) and that of deep insemination with low dose non‐sorted sperm (57.7%). There was also no difference (p > 0.05) between conception rates after single (51.7%) and double (53.8%) deep insemination with sorted semen. Heifers inseminated with sorted sperm at synchronous oestrus had a lower pregnancy rate (48.1%) than heifers at spontaneous oestrus (53.6%), but this did not reach statistical difference (p > 0.05). The average number of transferable embryos collected in vivo from heifers inseminated with sorted sperm (4.81 ± 2.04) did not differ (p > 0.05) from that obtained from heifers after insemination with non‐sorted sperm (5.36 ± 2.74). Thus, we concluded that the pregnancy rate after deep intra‐uterine insemination with low dose sorted sperm was similar to that of non‐sorted sperm, which was either also deposited at a low dose deep intra‐uterine or into the uterine body. Sychronization of oestrus can be beneficial in combination with sorted sperm to optimize the organization and management of dairy herds. The results from superovulated heifers demonstrated that our insemination regime can be used to obtain a comparable embryo production efficiency with sorted sperm than with non‐sorted sperm.  相似文献   

3.
奶牛性控冻精人工授精影响因素研究   总被引:2,自引:0,他引:2  
用分离X和Y精子的性控精液进行人工授精是控制家畜性别之最简单可行的方法.然而,低密度性控精液输精效果还不如常规人工授精,许多技术环节都有待改进.以常规冻精和稀释常规冻精为对照,研究解冻方法、输精时间和部位、不同精液来源和输精员以及育成和经产牛等因素对性控冻精人工授精妊娠率的影响.结果显示,精液解冻水浴温度和持续时间对人工授精效果有显著影响,性控精液对解冻水浴温度更敏感;性控冻精和稀释常规冻精比常规冻精对输精时间要求更严格;3种精液输精到排卵卵泡同侧子宫角基部受胎率都显著高于输精于子宫体和同侧子宫角前端;3种精液育成牛受胎率(80%)都显著高于经产牛(50%);于输精同时注射促排卵素3号明显提高性控冻精受胎率;经严格挑选、能够从事胚胎移植操作的技术熟练输精员之间性控冻精受胎率差异不显著;在所设计的不同条件下,性控冻精与稀释同样倍数的常规冻精行为相似,说明精子分离过程没有对精子造成特殊损伤.研究结果说明,精确控制人工授精各个技术环节可以实现消除性控与非性控、低密度与高密度精演之间的差别,获得高妊娠率.  相似文献   

4.
Our aim was to investigate insemination techniques in order to improve pregnancy rates of artificial insemination (AI) using sex-sorted semen (sexed AI) in cattle in tropical and subtropical (T/ST) regions. In T/ST regions, the pregnancy rates by sexed AI are reportedly the lowest in the hottest months of the year, with less than 15% in cows and 35–40% in heifers (PMID 24048822). We compared sexed AI by depositing the semen into the uterine body (UB-AI, n = 12) versus the unilateral uterine horn (UUH-AI, n = 14) of pre-ovulation heifers. The ovary and follicle were assessed by rectal ultrasound before AI. After insemination, pregnancy was determined by ultrasound at approximately 40 days and approximately 70 days. In the present study, we demonstrated that high pregnancy rates (>70%) by sexed AI in the hottest season in a subtropical region such as Taiwan can be achieved when heifers with pre-ovulation follicles are used. The overall pregnancy rates were 54% higher in the UUH-AI (71%) group than in the UB-AI (42%) group (P = 0.06), examined on approximately 40 days post-sexed AI. Surprisingly, however, the pregnancy outcome appeared to be higher in the hot season (62%) than in the cool season (46%) although this difference was not statistically significant. Based on the present study, we recommend that cattle breeders perform UUH-AI using sex-sorted semen for heifers with pre-ovulation follicles in order to achieve satisfactory pregnancy outcome in the hot seasons in T/ST regions.  相似文献   

5.
The successful outcome of an insemination is a combination of both male and female fertility‐linked factors. We investigated the first service conception rate of cows at artificial insemination (AI) in the smallholder dairy farms in Bangladesh. Frozen straws were prepared from ejaculates of Bos indicus (n = 7) and Bos indicus × Bos taurus (n = 7) AI bulls. Fertility was determined from 6101 first services in cows that were performed by 18 technicians in four regions between April 2004 and March 2005. Pregnancy was diagnosed by rectal palpation between 60 and 90 days post‐insemination. The Asian version of Artificial Insemination Database Application (AIDA ASIA) was used for bulls‐, cows‐ and AI‐related data recording, and later retrieved for analysis. The mean ± SD number of inseminations performed from individual bulls and their conception rates were 436.0 ± 21.6 and 50.7 ± 1.9%, respectively. Logistic regression demonstrated body condition scores (BCS), heat detection signs, months of AI and their interactions had greatest effects (odds ratios: 1.24–16.65, p < 0.04–0.001) on first service conception rate in cows. Fertility differed (p < 0.02–0.001) between the regions, previous calving months, months of AI, BCS, parity and heat detection signs of cows. Inseminations based on mounting activity (n = 2352), genital discharge (n = 3263) and restlessness and/or other signs (n = 486) yielded a conception rate of 53.6%, 48.8% and 50.1%, respectively (p < 0.05). Conception rate between technicians ranged between 43.4% and 58.6% (p < 0.05). The days interval from calving to first service (overall mean ± SD = 153.4 ± 80.6) had relationship (p < 0.001) with BCS, months of previous calving and parity of the cows. Fertility at AI in smallholder farms can be improved by training farmers on nutrition and reproductive management of the cows.  相似文献   

6.
A new device (Chapingo device) to deposit semen at the base of the uterine horns of cattle was developed at Universidad Autonoma Chapingo, Mexico. Nine Holstein heifers were inseminated by transvaginal laparoscopy, using a laparoscope for cattle and the Chapingo device. A dose of sexed semen (2.1 × 106 spermatozoa) was deposited at the base of the uterine horn ipsilateral to the ovary where the preovulatory follicle was identified. Insemination was achieved in all the heifers, taking on average 13.7 ± 3.1 min per animal. In all cases, it was possible to see both ovaries, the base of the uterine horns and the oviducts. After the procedure, none of the heifers showed any type of complications such as haemorrhage, adhesions or trauma. On days 21 and 22 after insemination, four of the nine heifers (44.4%) returned into oestrus; on day 30 after insemination, one heifer was found to be pregnant by ultrasound. The results show the feasibility of generating pregnancies by transvaginal laparoscopy in heifers inseminated with sexed semen.  相似文献   

7.
The objective of the study was to compare the fertility after using sex-sorted or conventional semen either with oestrus detection (EST) or timed artificial insemination (TAI) in Holstein heifers. Holstein heifers were randomly assigned to one of the following treatments in a 2 × 2 factorial design. Heifers in the EST group were inseminated with sex-sorted (n = 114) or conventional semen (n = 100) after spontaneous or induced oestrus. Heifers in the TAI, subjected to the 5-day Cosynch+Progesterone protocol (GnRH+P4 insertion-5d-PGF+P4 removal-1d-PGF-2d-GnRH+TAI), were inseminated with sex-sorted (n = 113) or conventional semen (n = 88). Statistical analyses were performed using PROC GLIMMIX procedure of SAS 9.4 (SAS Institute Inc., Cary, NC). Overall P/AI was 60.7% for EST and 54.2% for TAI regardless of types of semen and 68.1% for conventional and 48.9% for sex-sorted semen regardless of insemination strategies. Fertility of heifers inseminated with either sex-sorted (53.5%; 44.2%) or conventional (69.0%; 67.0%) semen did not differ between EST and TAI respectively. Besides, the interaction between the semen type and the insemination strategy was not significant for P/AI. The embryonic loss was significantly greater with sex-sorted semen (17.1%) compared to conventional semen (1.6%). There was no sire effect with sex-sorted semen on P/AI (52.6% vs. 46.2%) and embryonic loss (16.4% vs. 18.0%). As expected, sex-sorted semen resulted in more female calves (89.8% vs. 51.6%) than conventional semen. Thus, sex-sorted semen can be used with 5-day Cosynch+Progesterone protocol to eliminate the inadequate oestrus detection and to increase female calves born in dairy heifers.  相似文献   

8.
The objective of this retrospective study was to assess the effect of receiving a single (n = 50,285) or double (n = 4392) artificial insemination (AI), 12 h apart, within a timed artificial insemination protocol on pregnancy per AI (P/AI) in nulliparous heifers (inseminated with either sex-sorted or conventional semen) and pluriparous Holstein cows in a commercial dairy herd. Also, this study aimed to investigate the relationship between temperature-humidity index (THI) and time of the first AI and fertility. Fertility of cows receiving two AI with normothermia (THI <68) was higher (p < .05) than cows receiving a single AI (42.9% vs. 36.4%). P/AI of cows receiving two AI with severe heat stress (THI >85) was higher (p < .05) than cows receiving a single AI (21.0% vs. 12.6%). Regardless of heat stress conditions, applying the first AI in the morning increased (p < .05) P/AI in cows with double AI than in cows whose first AI occurred in the afternoon (38.4 vs. 33.3%). With moderate heat stress, and sexed-sorted semen, P/AI to timed AI was higher (65.0 vs. 51.9%; p < .05) in heifers receiving double AI than those serviced once. It was concluded that double AI, 12 h apart, enhanced fertility at timed AI than herd mates with a single AI, particularly with heat stress at breeding.  相似文献   

9.

The objective of this study was to evaluate the fertility of sexed semen compared with conventional semen with regard to the puberty and breeding ages of Holstein dairy heifers subjected to double Ovsynch protocol with fixed time of artificial insemination. A total of 468 Holstein heifers were divided into two groups. The first group was 122 dairy heifers inseminated via conventional semen, while the second group was 346 heifers inseminated with sexed semen. The puberty and breeding ages of heifers were determined from the farm records. Estrus was synchronized using the double Ovsynch protocol. Numbers were estimated for pregnancy at 40 and 60 days post insemination, embryonic loss, and abortion. The results revealed that the heifers inseminated with sexed semen had a significantly lower first-service pregnancy rate (51.45%) than those inseminated with conventional semen (61.47%). Heifers achieving puberty before 350 days old had a higher pregnancy rate. Embryonic losses and abortion rates did not differ between the two types of semen. Holstein heifers subjected to Ovsynch protocol with sexed semen had an acceptable first-insemination pregnancy rate. Even the applications of sexed semen reduce the reproductive fertility and pregnancy rate in Holstein heifers.

  相似文献   

10.
This study compared artificial insemination pregnancy rate (AI‐PR) between 14‐day CIDR‐GnRH‐PGF2α‐GnRH and CIDR‐PGF2α‐GnRH synchronization protocol with two fixed AI times (56 or 72 hr after PGF2α). On day 0, heifers (= 1311) from nine locations assigned body condition score (BCS: 1, emaciated; 9, obese), reproductive tract score (RTS: 1, immature, acyclic; 5, mature, cyclic) and temperament score (0, calm; and 1, excited) and fitted with a controlled internal drug release (CIDR, 1.38 g of progesterone) insert for 14 days. Within herd, heifers were randomly assigned either to no‐GnRH group (= 635) or to GnRH group (= 676), and heifers in GnRH group received 100 μg of GnRH (gonadorelin hydrochloride, IM) on day 23. All heifers received 25 mg of PGF2α (dinoprost, IM) on day 30 and oestrous detection aids at the same time. Heifers were observed for oestrus thrice daily until AI. Within GnRH groups, heifers were randomly assigned to either AI‐56 or AI‐72 groups. Heifers in AI‐56 group (= 667) were inseminated at 56 hr (day 32 PM), and heifers in AI‐72 group (= 644) were inseminated at 72 hr (day 33 AM) after PGF2α administration. All heifers were given 100 μg of GnRH concurrently at the time AI. Controlling for BCS (< .05), RTS (< .05), oestrous expression (< .001), temperament (< .001) and GnRH treatment by time of insemination (< .001), the AI‐PR differed between GnRH treatment [GnRH (Yes – 60.9% (412/676) vs. No – 55.1% (350/635); < .05)] and insemination time [AI‐56 – 54.6% (364/667) vs. AI‐72 – 61.8% (398/644); (< .01)] groups. The GnRH treatment by AI time interaction influenced AI‐PR (GnRH56 – 61.0% (208/341); GnRH72 – 60.9% (204/335); No‐GnRH56 – 47.9% (156/326); No‐GnRH72 – 62.8% (194/309); < .001). In conclusion, 14‐day CIDR synchronization protocol for FTAI required inclusion of GnRH on day 23 if inseminations were to be performed at 56 hr after PGF2α in order to achieve greater AI‐PR.  相似文献   

11.
The objective of the study was to evaluate the interval from onset of oestrus to time of artificial insemination (AI) to obtain the optimum pregnancy rate with sex-sorted semen in Holstein heifers. Heifers in oestrus were detected and inseminated only by using heat–rumination neck collar comprised electronic identification tag at the age of 13–14 months. Heifers (n = 283) were randomly assigned to one of three groups according to the timing of insemination at 12–16 hr (G1, n = 97), at 16.1–20 hr (G2, n = 94) and at 20.1–24 hr (G3, n = 92) after reaching the activity threshold. The mean duration of oestrus was 18.6 ± 0.1 hr, and mean peak activity was found at 7.5 ± 0.1 hr after activity threshold. The mean interval from activity threshold to ovulation was 29.4 ± 0.4 hr. The overall pregnancy per AI (P/AI) was 53.0% at 29–35 days and 50.9% at 60–66 days after AI. There was a significant reduction between G1 (13.8 ± 1.4 hr) and G3 (7.9 ± 1.4 hr) related to the intervals from AI to ovulation time. Sex-sorted semen resulted in significantly higher P/AI at 29–35 days when heifers inseminated in G3 (60.9%) after oestrus than those inseminated in G1 (49.5%) and G2 (48.9%). In terms of fertility, when the temperature–humidity index (THI) was below the threshold value (THI ≤65) at the time of AI, there was a tendency (≤65; 57.2% vs. > 65; 47.1%) for high pregnancy rate. There was no effect of sire on P/AI. In addition, the interaction of the technician with the time of AI was found significant, and three-way interaction of technician, sire and time of AI was tended to be significant on pregnancy rate. Thus, in addition to delaying the time of insemination (between 20.1 and 24 hr) after oestrous detection, THI and experienced technician were also found to be critical factors in increasing fertility with the use of sex-sorted semen in Holstein heifers.  相似文献   

12.
This study aimed at comparing the effect of ram semen preserved at 5°C on two milk‐based extenders (UHT skim milk or INRA‐96®, 5% egg yolk) supplemented with 2% glycerol, and the preservation time (24 and 48 h) on conception rates after cervical AI of ewes. In two field trials, 1198 Merino ewes were cervical AI in spontaneous oestrus. In Experiment 1, pooled semen (6 rams) was extended in UHT‐base (fresh, control) or chilled for 24 h in UHT5Y (UHT‐base 5% egg yolk), INRA5Y (INRA‐96® 5% egg yolk), UHT5Y2G (UHT5Y 2% glycerol) or INRA5Y2G (INRA5Y 2% glycerol). In Experiment 2, AI was performed with pooled semen (7 rams) used fresh (extended in UHT‐base or UHT5Y2G, control groups) or chilled (extended in UHT5Y2G) for 24 or 48 h. Conception rate was determined by ultrasound 40 days after AI. INRA‐96®– had similar conception as UHT‐preserved semen (56.7 vs 55.4%, p > 0.05). Addition of 2% glycerol did not modify the results (56.8 vs 55.2%, p > 0.05). Fresh semen extended in UHT‐base, and UHT5Y2G yielded similar conception rates (60 vs 64%, p > 0.05). Preservation for 24 or 48 h in UHT5Y2G gave similar results (49 vs 47%; p > 0.05). In conclusion, ram semen chilled for 24 h in UHT‐ or INRA‐96®‐based extenders yielded similar results, and glycerol addition did not have a detrimental effect. UHT5Y2G might be used to extend ram semen for fresh AI, or to preserve it for 24 or 48 h with acceptable results.  相似文献   

13.
Blood samples were collected from 211 dairy heifers at the time of field insemination [artificial insemination (AI)]. Heifers were defined as either first‐service heifers (n = 91) or third to eigth‐service heifers [presumed (third AI, n = 60)] or well‐defined repeat breeders (greater than the fourth AI, n = 60). Plasma progesterone concentrations at AI were evaluated in relation to oestrous behaviour at AI and conception rates post‐AI. Conception rates after third AI were good, but conception rates decreased markedly after fourth AI and onwards. Those heifers that did not become pregnant after AI had significantly higher basal progesterone concentrations (>0.5 nmol/l) at AI, so‐called suprabasal concentrations, compared with those which conceived after AI (irrespective of the number of AI practised). Relative risk for repeat breeding was 58% after AI performed at suprabasal progesterone concentrations, while it was 42% at basal (0.5) progesterone concentrations. Results from this field study confirm results obtained in earlier controlled studies of repeat‐breeder heifers (RBH), indicating that the current definition of repeat breeding should be retained. Analysis of suprabasal progesterone concentrations could be considered as a tool for identification of RBH, provided that heat detection and AI timing are optimal. Besides considering the direct costs involved in repeat breeding, it remains to be determined whether it would be economically beneficial to identify and exclude RBH from the breeding population.  相似文献   

14.
The objectives were (i) to evaluate the effect of temperament, determined by modified 2‐point chute exit and gait score, on artificial insemination (AI) pregnancy rates in beef heifers following fixed time AI and (ii) to determine the effect of temperament on cortisol, substance‐P, prolactin and progesterone at initiation of synchronization and at the time of AI. Angus beef heifers (n = 967) at eight locations were included in this study. At the initiation of synchronization (Day 0 = initiation of synchronization), all heifers received a body condition score (BCS), and temperament score (0 = calm; slow exit and walk or 1 = excitable; fast exit or jump or trot or run). Blood samples were collected from a sub‐population of heifers (n = 86) at both synchronization initiation and the time of AI to determine the differences in serum progesterone, cortisol, prolactin and substance‐P concentrations between temperament groups. Heifers were synchronized with 5‐day CO‐Synch+ controlled internal drug release (CIDR) protocol and were inseminated at 56 h after CIDR removal. Heifers were examined for pregnancy by ultrasound 70 days after AI to determine AI pregnancy. Controlling for synchronization treatment (p = 0.03), facility design (p = 0.05), and cattle handling facility design by temperament score interaction (p = 0.02), the AI pregnancy differed between heifers with excitable and calm temperament (51.9% vs 60.3%; p = 0.01). The alley‐way with acute bends and turns, and long straight alley‐way had lower AI pregnancy rate than did the semicircular alley‐way (53.5%, 56.3% and 67.0% respectively; p = 0.05). The serum hormone concentrations differed significantly between different types of cattle handling facility (p < 0.05). The cattle handling facility design by temperament group interactions significantly influenced progesterone (p = 0.01), cortisol (p = 0.01), prolactin (p = 0.02) and substance‐P (p = 0.04) both at the initiation of synchronization and at the time of AI. Inter‐ and intra‐rater agreement for temperament scoring were moderate and good (Kappa = 0.596 ± 0.07 and 0.797 ± 0.11) respectively. The predictive value for calm and pregnant to AI was 0.87, and excited and non‐pregnant to AI was 0.76. In conclusion, the modified 2‐point temperament scoring method can be used to identify heifers with excitable temperament. Heifers with excitable temperament had lower AI pregnancy. Further, cattle handling facility design influenced the temperament and AI pregnancy.  相似文献   

15.
Oxytocin (OXT) contained in boar semen is known to produce uterine contraction; therefore, we hypothesized that the co‐injection of OXT with sperm would improve artificial insemination (AI) using liquid or frozen‐thawed boar sperm. We initially examined whether OXT added to semen extender improved sperm transport to the oviduct. Although the addition of OXT did not affect the fresh or frozen‐thawed sperm motility or acrosomal integrity, it significantly increased the number of sperm in the oviduct at 6 h after AI injection with OXT, as compared with the control (P < 0.05). Moreover, some sperm were observed in the sperm reservoir of the isthmus in the OXT treatment group, whereas few sperm were observed in the control. When OXT was added to the semen extender immediately prior to AI, the conception rates were significantly higher in both fresh semen and frozen‐thawed semen than in the control group (P < 0.05: liquid, 87.5% vs. 70.5%; frozen‐thawed, 89.8% vs. 75.0%). From these results, we concluded that the addition of OXT to the semen extender assisted in sperm transportation from the uterus to the oviduct, which resulted in improved reproductive performance.  相似文献   

16.
The primary objective of this study was to determine whether a single measurement of intravaginal electrical resistance (VER), using the commercially available Ovatec® probe, can discriminate between dioestrus and oestrus in Bos indicus females, which had been treated to synchronize oestrus. Santa Gertrudis heifers (n = 226) received one of three oestrous synchronization treatments: double PGF 10 days apart, 8‐day controlled internal drug release (CIDR) treatment or CIDR pre‐synchronization + PGF 10 days after CIDR removal. The heifers were inseminated within 12 h following observed oestrus, or, if not observed, at a fixed time approximately 80 h, following the last synchronization treatment. They were palpated per rectum for signs of pregnancy 9 weeks after artificial insemination (AI). Vaginal electrical resistance measurements were taken at the completion of synchronization treatments (presumed dioestrus), immediately prior to AI (oestrus), and then at 3 and 9 weeks post‐AI. Mean VER differed between presumed dioestrus and oestrus (113.7 vs 87.4, p < 0.001). The area under the receiver operating characteristics (ROC) curve was 0.925, indicating that VER was highly discriminatory between dioestrus and oestrus. Vaginal electrical resistance at time of AI was negatively associated with odds of conception when all inseminations were included in the analyses [odds ratio (OR) = 0.97; 95% CI 0.95–1.00; p = 0.018], but not when fixed time AIs were excluded (OR = 1.00; 95% CI 0.97–1.03; p = 0.982). Mean VER readings differed between pregnant and non‐pregnant animals at both 3 weeks (120.5 vs 96.7, p < 0.001) and 9 weeks (124.0 vs 100.3, p < 0.001) post‐AI. However, 3‐ and 9‐week VER measurements were not highly discriminatory between pregnancy and non‐pregnancy (area under ROC curve = 0.791 and 0.736, respectively). Mean VER at time of AI for animals diagnosed in oestrus differed between each of the oestrous synchronization treatments (84.7, 73.6 and 78.9, groups 1–3 respectively, p < 0.001). These findings suggest that measurement of VER may improve accuracy of oestrus diagnoses when selecting cattle for AI following oestrous synchronization programmes involving tropically adapted cattle.  相似文献   

17.
The objective of this study was to determine whether administration of hCG approximately 5 d after AI would increase plasma progesterone concentrations and conception rates in beef heifers. Heifers from two locations (Location 1: n = 347, BW = 367 +/- 1.72 kg; Location 2: n = 246, BW = 408 +/- 2.35 kg) received melengestrol acetate (0.5 mg.heifer(-1).d(-1)) for 14 d and an injection of PGF2alpha (25 mg i.m.) 19 d later. Heifers were observed for estrus continuously during daylight from d 0 to 4.5 after PGF2alpha and artificially inseminated approximately 12 h after the onset of estrus. Half of the heifers inseminated at Location 1 were assigned randomly to receive an injection of hCG (3,333 IU i.m.) 8 d after PGF2alpha, and a blood sample was collected from all heifers 14 d after PGF2alpha for progesterone analysis. Half of the heifers inseminated at Location 2 were administered hCG on d 9 after PGF2alpha, and a blood sample was collected from all heifers 17 d after PGF2alpha. Heifers at Location 1 had a 94% synchronization rate, exhibited estrus 2.45 +/- 0.03 d after PGF2alpha, and received hCG 5.55 +/- 0.03 d after AI. Heifers at Location 2 had an 85% synchronization rate, exhibited estrus 2.69 +/- 0.03 d after PGF2alpha, and received hCG 6.31 +/- 0.03 d after AI. Progesterone concentrations were greater (P < 0.01) for hCG-treated heifers than for controls at both locations (8.6 vs. 4.6 ng/mL for treatment vs. control at Location 1, and 11.2 vs. 5.6 ng/mL for treatment vs. control at Location 2). Pregnancy status was determined by ultrasound approximately 50 d after AI. Conception rates (65 vs. 70% for treatment vs. control, respectively) did not differ at Location 1. Conception rates tended (P = 0.10) to be increased with hCG treatment at Location 2 (61 vs. 50% for treatment vs. control, respectively). A second experiment was conducted with 180 heifers at a third location to determine the effects of hCG administration 6 d after timed insemination at approximately 60 h after PGF2alpha in heifers synchronized as in Exp. 1. Pregnancy rate to timed AI did not differ between hCG-treated (62%) and control heifers (59%). Final pregnancy rate after timed AI and bull exposure (92%) was not affected by treatment. In summary, administration of hCG 5 to 6 d after AI did not improve conception or pregnancy rates at two out of three locations evaluated, suggesting insufficient progesterone is not a major factor contributing to early pregnancy failure in beef heifers.  相似文献   

18.
The objective was to compare pregnancy per artificial insemination (P/AI) with conventional (CS) or sex‐sorted semen (SS) in dairy cows subjected to one of the three timed AI protocols. Cows (n = 356) were randomly assigned to synchronization with Ovsynch (OVS), Presynch–Ovsynch (PO) or Double‐Ovsynch (DO) and inseminated on Day 77 ± 3 postpartum with either frozen‐thawed SS (n = 182) or CS (n = 184) of the same bull. More cows were cyclic at the beginning of breeding Ovsynch increased (p < 0.01) with presynchronization and it was greater for DO than PO (OVS = 78.5%, PO = 85.1%, DO = 95.6%). Overall, P/AI for SS and CS increased with presynchronization (p < 0.05) on Days 31 (OVS = 35.5%, PO = 47.1%, DO = 48.3%) and 62 (OVS = 30.1%, PO = 43.8%, DO = 43.9%). Regardless of synchronization treatments, insemination with SS reduced P/AI (p < 0.02) on Days 31 (38.1% vs. 50.6%) and 62 (34.5% vs. 45.6%) compared with CS. No interaction was observed between synchronization treatment and type of semen for P/AI, although in cows receiving CS, P/AI was numerically greatest for PO (OVS = 42.0%, PO = 59.3%, DO = 49.0%), and in cows receiving SS, it was numerically greatest for those inseminated following DO (OVS = 27.9%, PO = 35.5%, DO = 47.6%). Thus, presynchronization improved P/AI in cows inseminated with sex‐sorted or conventional semen.  相似文献   

19.
Washaya  S.  Tavirimirwa  B.  Dube  S.  Sisito  G.  Tambo  G.  Ncube  S.  Zhakata  X. 《Tropical animal health and production》2019,51(7):1963-1968

A study was conducted to compare conception rates in 71 Tuli and 86 Afrikander beef cattle bred using either artificial insemination (AI) or the bull. Animals were bred using either artificial insemination or natural service at Matopos Research Station. Animals were grouped into three groups of heifers (parity 0; P0), second calvers (parity 1; P1) and mature cows (parity 2; P2) before being randomly assigned to one of the two breeding methods. A binary logistic regression was used for statistical analysis where breeding method (AI vs natural service) was the treatment factor and conception rate was the measured response while breed, parity and last calving date were non-treatment factors. No significant differences were observed in conception rates between breeds (P > 0.05). However, the method of breeding animals, parity and calving interval affected (P < 0.05) conception rates. The breeding method, parity and calving interval had a positive Kendall’s tau-b correlation coefficients to conception. More animals were pregnant when AI (77.6%) was used compared with natural mating (56.79%). Conception rates were significantly lower (P < 0.05) in C1 compared with C2 cattle. The odds ratio for breeding method and parity are positive and significant (P < 0.05). In conclusion, the study confirms that artificial inseminated animals had similar conception rates to naturally serviced animals for both Tuli and Afrikander breeds. As such, artificial insemination technology can be used to complement or substitute natural service in indigenous cattle’s of Zimbabwe.

  相似文献   

20.
The main objective of this study was to assess the effect of month of breeding on reproduction performance of Holstein heifers and cows inseminated with sex-sorted or conventional semen in a hot environment. Pregnancy per artificial insemination (P/AI; 64,666 services over an 8-year period) both in heifers (n?=?22,313) and cows (n?=?42,353) from a large dairy herd in northern Mexico (26°N) were evaluated with the GENMOD procedure of SAS, with respect to month of AI. Overall, P/AI with sex-sorted semen was greater (P?<?0.01) in heifers (41.6 %) than cows (17.3 %). P/AI for cows serviced with conventional semen was 10 % points higher (P?<?0.01) in January and December (31 vs. 21 %) than cows serviced with sex-sorted semen. While there was no difference in P/AI between the sex-sorted sperm and conventional semen in cows inseminated in July (16 and 18 %, respectively), P/AI plummeted for both groups of cows during the summer and fall (more severe heat stress). P/AI was not different between heifers serviced with sex-sorted or conventional semen during the hottest months of the year (July to October). However, during the coldest month of the year (January and February), P/AI was 10 percentage points greater (P?<?0.01) in heifers serviced with conventional than sex-sorted semen. It was concluded that in this hot climate cow and heifer fertility declined in the summer and fall when inseminated with conventional semen. However, the use of sex-sorted semen during summer and fall did not compromise the breeding success in heifers. Thus, this data suggest that sex-sorted semen promotes some embryonic thermoprotective mechanism, which leads to a marginal summer and fall fertility depression with this type of semen in this particular hot environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号