首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Interactions between Stagonospora nodorum and Septoria tritici were studied. Results from a detached glume experiment indicated that the interaction may be isolate-dependent, as it was shown that the interaction between the two pathogens may be beneficial or antagonistic depending on the isolate of each pathogen present. The number of spores produced by both pathogens was significantly greater when an aggressive isolate of S. tritici was mixed with a non-aggressive isolate of S. nodorum, whereas the number of spores produced by both pathogens was significantly less when two non-aggressive isolates were mixed. There was a significant reduction in disease level when S. tritici was applied prior to S. nodorum, compared to vice versa in the growth chamber. Results from growth chamber and field studies showed that S. nodorum produced significantly more spores when both pathogens were present together. It is concluded that S. tritici has a stimulatory effect on spore production by S. nodorum. However, there was a reduction of S. tritici spores observed in the dual inoculation treatments, suggesting that S. nodorum inhibits S. tritici.  相似文献   

2.
The transmission of Stagonospora nodorum from four naturally infected winter wheat seedlots was quantified in controlled environment germination chambers at 9, 13, 17, 21, and 25 °C. Seedlings were harvested when the second leaf began to emerge. Coleoptiles and first seedling leaves were examined for the presence of lesions caused by S. nodorum. First leaves were incubated on Bannon's medium for 2 weeks, after which they were examined for pycnidia of S. nodorum. Transmission to the coleoptile occurred at all temperatures, but decreased from 100% to 72% as temperature increased from 9 to 25 °C. Transmission to the first leaf was less, dropping from 37% to 2% as temperature increased from 9 to 25 °C. At least 44% of infected first leaves were symptomless at all temperatures, with 96% of infected leaves showing no symptoms at 25 °C. Transmission to seedling leaves occurred over a broad temperature range. Under the high densities at which wheat is sown, a significant number of infected seedlings per unit area may originate from relatively low initial seed infection levels and transmission efficiencies.  相似文献   

3.
Data of the annual surveys of circa 100 commerical winter wheat fields were compiled to describe epidemics ofSeptoria spp. in the Netherlands during 1974–1986. In May, during the first node stage,S. tritici was dominant whileS. nodorum was virtually absent. In July, during ripening,S. tritici on average dominated overS. nodorum, though in the most continental districts of the countryS. nodorum predominated.In May between 1974 and 1984, on average 56% of the fields showed leaf infections bySeptoria spp., while in July between 1975 and 1986, on average 83% of the fields showed leaf infections. Prevalence ofSeptoria spp. has increased during the surveys. Annual intensity ofSeptoria spp. in winter wheat crops was positively correlated with precipitation and negatively with average monthly sunshine duration during the harvest-month August of the previous growing season. The correlation with sunshine during August could indicate that ascospores play a major role in subsequent epidemics; but whether it is a causal relation remains to be answered.Present address: Center for Agrobiological Research (CABO-DLO), PO Box 14, 6700 AA Wageningen, the Netherlands  相似文献   

4.
The interaction between Stagonospora nodorum and a susceptible wheat cultivar was investigated using a range of microscopic techniques. Germination of pycnidiospores occurred approximately 3 h after making contact with the leaf surface and was followed by attempted penetration 8–12 h later. Penetration was observed through stomata and also directly through periclinal and anticlinal epidermal cell walls. Penetration down the anticlinal cell walls appeared to occur without a differentiated penetrating structure whilst structures identified as either lateral appressoria or hyphopodia were typically present when penetrating over a periclinal cell wall. Once inside the leaf, the fungus continued to grow for the next 4–5 days colonising all parts of the leaf except the vascular bundles. Only in the later phase of the infection was total host cell collapse apparent. Evidence of polyphenolic compounds was observed. The infection cycle was completed within 7 days as indicated by sporulation on the leaf surface. These results have allowed us to understand how the fungus physically interacts with the leaf and will help the overall understanding of the infection process.  相似文献   

5.
Yellow or tan spot (caused by Pyrenophora tritici-repentis) and septoria nodorum blotch (caused by Phaeosphaeria nodorum) occur together and are a constraint to wheat yields in Australia. Recently, higher crop yields and lower fungicide costs have made fungicides an attractive management tool against these diseases. Yield-loss under different rates of progress of yellow spot and septoria nodorum blotch was examined in four experiments over three years to define the relationship between disease severity and yield. In these experiments, differences in disease were first promoted by inoculations either with P. tritici-repentis-infected stubble or aqueous spore suspensions of P. nodorum. Disease progress was further manipulated with foliar application of fungicide. The pattern of disease development varied in each year under the influence of different rainfall patterns. The inoculation and fungicide treatments produced differences in disease levels after flag leaf emergence. The infection of yellow spot or septoria nodorum blotch caused similar losses in grain yield, ranging from 18% to 31%. The infection by either disease on the flag or penultimate leaf provided a good indication of yield-loss. Disease severity on flag leaves during the milk stage of the crop or an integration of disease as area under the disease progress curve on the flag leaves based on thermal time explained more than 80% variance in yield in a simple regression model. The data provided information towards the development of disease management strategies for the control of septoria nodorum blotch and yellow spot.  相似文献   

6.
Pseudothecia ofMycosphaerella graminicola, the teleomorph ofSeptoria tritici, were observed on leaves of winter wheat (Triticum aestivum L.) in Slovakia for the first time in 2004. The samples of this pyrenomycetous ascomycete were compared with previously published data by micrometric characteristics using light microscope observations of morphological characteristics. http://www.phytoparasitica.org posting July 18, 2005.  相似文献   

7.
Disease–weather relationships influencing Septoria leaf blotch (SLB) preceding growth stage (GS) 31 were identified using data from 12 sites in the UK covering 8 years. Based on these relationships, an early-warning predictive model for SLB on winter wheat was formulated to predict the occurrence of a damaging epidemic (defined as disease severity of 5% or > 5% on the top three leaf layers). The final model was based on accumulated rain > 3 mm in the 80-day period preceding GS 31 (roughly from early-February to the end of April) and accumulated minimum temperature with a 0°C base in the 50-day period starting from 120 days preceding GS 31 (approximately January and February). The model was validated on an independent data set on which the prediction accuracy was influenced by cultivar resistance. Over all observations, the model had a true positive proportion of 0.61, a true negative proportion of 0.73, a sensitivity of 0.83, and a specificity of 0.18. True negative proportion increased to 0.85 for resistant cultivars and decreased to 0.50 for susceptible cultivars. Potential fungicide savings are most likely to be made with resistant cultivars, but such benefits would need to be identified with an in-depth evaluation.  相似文献   

8.
Almost 50% of the variation in leaf wetness duration can be explained by maximum and minimum temperatures, rainfall and hours with relative humidity above 90% on a daily basis. All of these parameters can be estimated from a standard weather station. If variables related to wind are added the level of explanation increases to 69–76%. Leaf wetness duration explained up to 42% of the rate of disease increase (RDI) forS. nodorum. Leaf wetness duration was accumulated over a 5-day window period and correlated with rate of disease increase after a 7-day lag period. Standard weather variables could explain 20–34% of the disease increase. The relevance of these statistical models to disease prediction is discussed.  相似文献   

9.
The current study examined the variability in the pathogenicity of populations of Drechslera teres f. teres and D. teres f. maculata (the net and spot forms of D. teres) from Ireland and northern Europe. A population of progeny isolates from a mating of net and spot forms was also examined. Significant variation in virulence was found both between and among net form and spot form isolates (p<0.001). In the Irish population, significant differences were found between the net and spot forms, with the spot form isolates more virulent (p<0.05). Progeny isolates were significantly more virulent than net form or spot form populations (p<0.001). Significant differences were found in cultivar reactions, with cv. Botnia most susceptible to both forms of the pathogen (p<0.001). Cultivar Boreal 94145, although quantitatively resistant, was found to be very susceptible to both forms of the pathogen and to progeny isolates. Cultivars CI 5791, CI 2330 and CI 9819 were all less susceptible to infection by both forms, but were more susceptible to spot form isolates. Significant correlations were found between whole plants and detached leaf experiments for the net form isolates only (p<0.001). This study illustrates the importance of including both net form and spot form isolates in resistance studies and the need for a clearer understanding for the genetic basis of resistance to the net and spot forms. It also highlights the limitations of using a detached leaf assay for screening of net blotch of barley.  相似文献   

10.
The damage relation of powdery mildew in winter wheat was studied in field experiments in 1981 and 1983, in the Netherlands. No firm conclusion was obtained on the effect of nitrogen supply (175 and 235 kg ha–1 N totally) on the damage relation. The relation was not affected by cultivars (four) and did not differ significantly between both years. The measured relation averaged 0.0125 kg are–1 damage per pustule-day mildew per leaf, at yields of 70–90 kg are–1. The effect of the fungicide triadimefon on yield could be ascribed to its effect on diseases. The vertical distribution of mildew in the crop was described.Samenvatting In 1981 en 1983 werd in veldproeven met wintertarwe de relatie tussen schade (in kg are–1) en meeldauw onderzocht. Of de relatie onafhankelijk is van de stikstofbemesting (175 en 235 kg ha–1 N totaal), kon niet met zekerheid worden vastgesteld. De schaderelatie werd niet significant beïnvloed door de vier getoetste rassen. In de twee jaren werd een vergelijkbare schade van gemiddeld 0.0125 kg are–1 per puistdag meeldauw per blad gemeten, bij een opbrengstniveau van 70–90 kg are–1. Tevens werd de locatie van meeldauw in het gewas beschreven.  相似文献   

11.
Seven four-way bread wheat mixtures were compared to their components (individual cultivars and two-way mixtures) for septoria tritici blotch severity, grain protein content, and grain yield. Four-way mixtures and two-way mixtures performed better than the average of individual pure line components. Disease severity and protein content were most influenced by mixtures, with mixture efficiencies being greater in the four-way than in the two-way mixtures. Performances of four-way mixtures in terms of diseased leaf area reduction, grain yield, 1000-grain weight, and grain protein content were better predicted by performances of two-way mixtures than by those of pure lines. Our results suggest that two-way mixtures should be screened to remove unfavourable cultivar pairs and those binary mixtures that show complementarity should be selected in order to construct four-way mixtures.  相似文献   

12.
ABSTRACT A toxin, designated SnTox1, was partially purified from culture filtrates of isolate Sn2000 of Stagonospora nodorum, the causal agent of wheat leaf and glume blotch. The toxin showed selective action on several different wheat genotypes, indicating that it is a host-selective toxin (HST). The toxic activity was reduced when incubated at 50 degrees C and activity was eliminated when treated with proteinase K, suggesting that the HST is a protein. The synthetic hexaploid wheat W-7984 and hard red spring wheat Opata 85, the parents of the International Triticeae Mapping Initiative (ITMI) mapping population, were found to be sensitive and insensitive, respectively, to SnTox1. The ITMI mapping population was evaluated for toxin reaction and used to map the gene conditioning sensitivity. This gene, designated Snn1, mapped to the distal end of the short arm of chromosome 1B. The wheat cv. Chinese Spring (CS) and all CS nullisomic-tetrasomic lines were sensitive to the toxin, with the exception of N1BT1D. Insensitivity also was observed when the 1B chromosome of CS was substituted with the 1B chromosome of an insensitive accession of Triticum dicoccoides. In addition, a series of 1BS chromosome deletion lines were used to physically localize the sensitivity gene. Physical mapping indicated that Snn1 lies within a major gene-rich region on 1BS. This is the first report identifying a putative proteinaceous HST from S. nodorum and the chromosomal location of a host gene conferring sensitivity.  相似文献   

13.
A multiplex Polymerase Chain Reaction (PCR) assay was developed to detect and quantify four fungal foliar pathogens in wheat. For Septoria tritici (leaf blotch) and Stagonospora nodorum (leaf and glume blotch), the -tubulin gene was used as the target region. Diagnostic targets for Puccinia striiformis (stripe or yellow rust) and P. recondita (brown rust) were obtained from PCR products amplified with -tubulin primer sequences. Final primer sets were designed and selected after being tested against several fungi, and against DNA of infected and healthy wheat leaves. For detection of the four pathogens, PCR products of different sizes were amplified simultaneously, whereas no products were generated from wheat DNA or other non-target fungi tested. The presence of each of the diseases was wheat tissue- and cultivar specific. Using real-time PCR measurements with the fluorescent dye SYBR Green I, PCR-amplified products could be quantified individually, by reference to a standard curve generated by adding known amounts of target DNA. Infection levels for each of the diseases were measured in the flag leaf of 19 cultivars at Growth Stage (GS) 60–64 in both 1998 and 1999. The infection levels for the cultivars were ranked, and showed, with a few exceptions, a good correlation with the NIAB Recommended List for winter wheat, which is based on visual assessment of symptoms. With PCR, the presence of the different pathogens was accurately diagnosed and quantification of pre-symptomatic infection levels was possible. Although sampling and DNA detection methods need further optimisation, the results show that multiplex PCR and quantitative real-time PCR assays can be used in resistance screening to measure the interaction between different pathogens and their hosts at different growth stages, and in specific tissues. This should enable an earlier identification of specific resistance mechanisms in both early-stage breeding material and field trials.  相似文献   

14.
Aphid honeydew on wheat leaves can affect host physiology directly and can stimulate infection by necrotrophic pathogens. The role of naturally occurring saprophytes on wheat flag leaves in removing aphid honeydew was examined in five field experiments at different locations in the Netherlands in 1987 and 1988. Aphid populations, saprophyte populations and aphid honeydew were measured weekly. Diseases were monitored at 1–4 week intervals.In the control treatment, sprayed with water, the naturally occurring saprophytes consumed the honeydew almost completely, except in one experiment in which the aphid population increased very rapidly. In the treatments in which the saprophytes were reduced by the broad-spectrum fungicide maneb in 1987 and with maneb alternated with anilazin in 1988, honeydew accumulated. The observed honeydew consumption by the naturally occurring saprophytic population is ascribed mainly to pink and white yeasts (Sporobolomyces spp. andCryptococcus spp., respectively).Additional treatments showed, that in the presence of the naturally occurring saprophytes the yield loss per aphid-infestation-day was lower than when the saprophytes were inhibited by fungicides, showing that yeasts can reduce the detrimental effect of aphid honeydew in wheat.  相似文献   

15.
Sixty isolates of saprophytic microorganisms were screened for their ability to reduce the severity of grey mould (Botrytis cinerea) infection and sporulation. Isolates of the bacteriaXanthomonas maltophilia, Bacillus pumilus, Lactobacillus sp., andPseudomonas sp. and the fungusGliocladium catenulatum reduced germination of conidia of the pathogen and controlled disease on bean and tomato plants. Their activity under growth room conditions was good, consistent, and similar to the activity of the known biocontrol agent,Trichoderma harzianum T39 (non-formulated). Although the tested isolates may for nutrients with the germinating conidia ofB. cinerea, resistance induced in the host by live or dead cells were also found to be involved. Inhibitory compounds were not detected on treated leaves. Sporulation ofB. cinerea after its establishment on leaves was also reduced by the above mentioned isolates and byPenicillium sp.,Arthrinium montagnei, Ar. phaeospermum, Sesquicillium candelabrum, Chaetomium globosum, Alternaria alternata, Ulocladium atrum, andT. viride. These sporulation-inhibiting fungi did not reduce the infection of leaves byB. cinerea. Most of these selected fungi and bacteria were capable of reducing lesion expansion.  相似文献   

16.
为明确樟树枝叶提取物对葡萄霜霉病的防治效果,采用混合液滴显微镜观察法研究了樟树枝叶提取物及其活性成分对病原菌孢子囊萌发的抑制作用,利用高效液相色谱法鉴定了枝叶乙酸乙酯萃取物的化学成分,测定了其活性成分对葡萄霜霉病的室内和田间防治效果。结果表明,浓度为0.1 g/mL以上的樟树枝叶提取物对孢子囊萌发均有很好的抑制效果,抑制率达100.0%;樟树枝叶提取物经不同极性有机溶剂萃取后,分别获得正己烷、乙酸乙酯、正丁醇和水相分离物,浓度为1.0%时各分离物对孢子囊萌发的抑制率分别为58.4%、92.4%、32.5%和58.7%,乙酸乙酯相富集了主要抑菌活性成分,经液相色谱分析并与色谱库数据比对,确定其活性成分中含有芦丁和槲皮素;浓度为1.0%的芦丁和槲皮素对孢子囊具有抑制作用;田间试验显示,浓度为0.3 g/mL以上的枝叶提取物对葡萄霜霉病预防效果显著,治疗效果在60.0%以上。研究表明,樟树枝叶提取物可以有效控制葡萄霜霉病,提取物的活性成分芦丁和槲皮素可以作为植物源药剂。  相似文献   

17.
A gene encoding an endoxylanase from the phytopathogenic fungus Helminthosporium turcicum Pass. was cloned and sequenced. The entire nucleotide sequence of a 1991 bp genomic fragment containing an endoxylanase gene was determined. The xylanase gene of 795 bp, interrupted by two introns of 52 and 62 bp, encoded a protein of 227 amino acids showing up to 95% amino acid homology with other fungal xylanases. The precise splicing site of the introns was identified by sequencing the corresponding cDNA. A northern blot showed that the gene is expressed when the fungus is grown in a medium containing xylan as a sole carbon source. The cloned xylanase gene was expressed in maize plants during infection.  相似文献   

18.
Microbial control agents generally kill insects more slowly than chemical pesticides, and fast-moving migratory pests may not at first sight appear to offer the most promising targets for microbial control. Operators responsible for control may need to have recourse to chemical control agents. Nevertheless, there are many occasions when pests breed and feed outside the crop and a microbial control agent can be used. Similarly, immature stages may cause little damage and early treatment in the crop can avoid damage. Microbial control agents are particularly likely to be favoured if the pest breeds in a conservation area, and if a publicly-accountable agency is responsible for control.Other key points of importance are the IPM context, in particular detection, planning and forecasting of outbreaks and the role of natural enemies.With these points in mind, we identify several locust and grasshopper systems where microbial control is becoming established; additionally, Sunn pest of wheat and Armyworm are identified as promising situations forbreak microbials.  相似文献   

19.
为评价41.7%氟吡菌酰胺悬浮剂防治水稻拟禾本科根结线虫Meloidogyne graminicola的应用潜力,将氟吡菌酰胺与吡虫啉种衣剂混合后采用种子包衣法及喷洒法研究其对水稻拟禾本科根结线虫的田间防效,并测定了不同施药方法对水稻生长和产量的影响。结果表明,氟吡菌酰胺4.2、8.3、12.5 g(a.i.)/kg种子与吡虫啉18.0 g(a.i.)/kg种子混合包衣处理,播种后35 d其根结抑制率和防效分别为41.0%~51.8%和47.4%~58.6%,土壤中2龄幼虫减退率为38.6%~40.4%,显著高于单施吡虫啉18.0 g(a.i.)/kg种子处理。水稻播种后连续3次以氟吡菌酰胺250.2、375.3、500.4 g(a.i.)/hm2进行土壤喷洒,最后1次施药后7 d,其根结抑制率和防效分别为81.0%~89.9%和65.9%~74.3%,土壤中2龄幼虫减退率为65.4%~73.4%,均显著高于对照药剂克百威1 800.0 g(a.i.)/hm2处理。氟吡菌酰胺各处理对水稻苗期生长均有较好的保护作用,能显著提高千粒重和有效穗数,产量比空白对照增加50.0%~61.2%,保产效果显著。水稻播种后35 d采用氟吡菌酰胺对稻田进行1次喷洒,对水稻具有一定的保护作用,保产效果不明显。表明采用氟吡菌酰胺与吡虫啉混合包衣种子处理及在水稻苗期进行喷洒处理对水稻拟禾本科根结线虫防效显著,具有显著的保产效果。  相似文献   

20.
Large-scale cDNA-AFLP profiling identified numerous genes with increased expression during the resistance response of wheat to the Septoria tritici blotch fungus, Mycosphaerella graminicola. To test whether these genes were associated with resistance responses, primers were designed for the 14 that were most strongly up-regulated, and their levels of expression were measured at 12 time points from 0 to 27 days after inoculation (DAI) in two resistant and two susceptible cultivars of wheat by real-time quantitative polymerase chain reaction. None of these genes was expressed constitutively in the resistant wheat cultivars. Instead, infection of wheat by M. graminicola induced changes in expression of each gene in both resistant and susceptible cultivars over time. The four genes chitinase, phenylalanine ammonia lyase, pathogenesis-related protein PR-1, and peroxidase were induced from about 10- to 60-fold at early stages (3 h–1 DAI) during the incompatible interactions but were not expressed at later time points. Nine other genes (ATPase, brassinosteroid-6-oxidase, peptidylprolyl isomerase, peroxidase 2, 40S ribosomal protein, ADP-glucose pyrophosphorylase, putative protease inhibitor, methionine sulfoxide reductase, and an RNase S-like protein precursor) had bimodal patterns with both early (1–3 DAI) and late (12–24 DAI) peaks of expression in at least one of the resistant cultivars, but low if any induction in the two susceptible cultivars. The remaining gene (a serine carboxypeptidase) had a trimodal pattern of expression in the resistant cultivar Tadinia. These results indicate that the resistance response of wheat to M. graminicola is not completed during the first 24 h after contact with the pathogen, as thought previously, but instead can extend into the period from 18 to 24 DAI when fungal growth increases dramatically in compatible interactions. Many of these genes have a possible function in signal transduction or possibly as regulatory elements. Expression of the PR-1 gene at 12 h after inoculation was much higher in resistant compared to susceptible recombinant-inbred lines (RILs) segregating for the Stb4 and Stb8 genes for resistance. Therefore, analysis of gene expression could provide a faster method for separating resistant from susceptible lines in research programs. Significant differential expression patterns of the defense-related genes between the resistant and susceptible wheat cultivars and RILs after inoculation with M. graminicola suggest that these genes may play a major role in the resistance mechanisms of wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号