首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The rheological properties of wheat doughs prepared from different flour types, water contents, and mixing times for a total of 20 dough systems were studied. The results were compared with the results of standard baking tests with the same factors. Water and flour type had a significant effect on storage modulus (G′) or phase angle measured by an oscillatory test both in the linear viscoelastic region and as a function of stress, and on compressional force measured as a function of time. The correlation of maximum force of dough in compression and G′ of dough measured within the linear viscoelastic region was r = 0.80. Correlation between the compression and oscillation test improved when all measuring points of the G′ stress curve were included (r = 0.88). The baking performance of the different doughs varied greatly; loaf volumes ranged from 2.9 to 4.7 mL/g. Although the water content of the dough correlated with the rheological measurements, the correlation of G′measured in the linear viscoelastic region or maximum force from stress‐time curve during compression was poor for bread loaf volumes. Mixing time from 4.5 to 15.5 min did not affect the rheological measurements. No correlation was observed with the maximum force of compression or G′ of dough measured in the linear viscoelastic region and baking performance. Good correlation of rheological measurements of doughs and baking performance was obtained when all the data points from force‐time curve and whole stress sweep (G′ as a function of stress) were evaluated with multivariate partial least squares regression. Correlation of all data points with loaf volume was r = 0.81 and 0.72, respectively, in compression and shear oscillation.  相似文献   

2.
The effect of mixing time (6 and 20 min) and starch content were studied on doughs prepared with three wheat flours differing in high molecular weight subunit composition. Rheological measurements were performed in dynamic oscillation: frequency and strain sweeps, stress relaxation, and in large deformation viscosity measurements. The flours were diluted with starch to cover flour protein contents of 10–15%. Water was added to keep the starch‐water ratio constant when doughs were prepared with different protein contents. By increasing the starch content of the doughs, the rheological properties approached those of a starch‐water mixture prepared with the same starch‐water ratio as in the dough. The effect of the starch granules was reinforced by prolonged mixing. This may explain the higher values of the storage modulus and relaxation times observed after 20 min of mixing. Qualities related to gluten properties, appeared more clearly in large deformation viscosity measurements.  相似文献   

3.
Transglutaminase (TG) catalyzes the formation of nondisulfide covalent crosslinks between peptide‐bound glutaminyl residues and ∊‐amino groups of lysine residues in proteins. Crosslinks among wheat gluten proteins by TG are of particular interest because of their high glutamine content. Depolymerization of wheat gluten proteins by proteolytic enzymes associated with bug damage causes rapid deterioration of dough properties and bread quality. The aim of the present study was to investigate the possibility of using TG to regain gluten strength adversely affected by wheat bug proteases. A heavily bug‐damaged (Eurygaster spp.) wheat flour was blended with sound cv. Augusta or cv. Sharpshooter flours. Dynamic rheological measurements, involving a frequency sweep at a fixed shear stress, were performed after 0, 30, and 60 min of incubation on doughs made from sound or blended flour samples. The complex moduli (G* values) of Augusta and Sharpshooter doughs blended with 10% bug‐damaged flour decreased significantly after 30 min of incubation. These dough samples were extremely soft and sticky and impossible to handle for testing purposes after 60 min of incubation. To test the possibility of using TG to counteract the hydrolyzing effect of bug proteases on gluten proteins, TG was added to the flour blends. The G* values of TG‐treated sound Augusta or Sharpshooter doughs increased significantly after 60 min of incubation. The G* values of the Augusta or Sharpshooter doughs blended with bug‐damaged flour increased significantly rather than decreased after 30 and 60 min of incubation when TG was included in the dough formulation. This indicates that the TG enzyme substantially rebuilds structure of dough hydrolyzed by wheat bug protease enzymes.  相似文献   

4.
Extrudate expansion of cereal‐based products is largely dependent on the molecular interactions and structural transformations that proteins undergo during extrusion processing. Such changes strongly influence the characteristic rheological properties of the melt. It is possible to modify rheological properties of wheat flour during extrusion processing, in particular shear viscosity, with cysteine. The objective of this work was to further develop an understanding of the molecular interactions and structural transformations of wheat flour from dynamic oscillatory rheological measurements. Temperature and frequency sweeps were conducted in the linear viscoelastic range of the material. Changes in the storage modulus (G′), the loss modulus (G″) and the loss tangent (tan δ) of 25% moisture wheat flour disks as a function of cysteine concentration (0–0.75%) were monitored. Molecular weight between cross‐links (Mc) and the number of cross‐links (Nc) per glutenin molecule were determined from frequency sweep data. Increasing cysteine concentration broke cross‐links by decreasing G′ maximum and increasing tan δ values. Molecular weight between cross‐links increased and the number of cross‐links decreased. G′ values from temperature sweeps showed a similar trend. This information leads to a better understanding of the viscoelastic behavior of wheat flour doughs during extrusion cooking and elucidation of protein‐protein reaction mechanisms and other interactions in extruded cereal‐based snack foods.  相似文献   

5.
The effect of mixing time on gluten formation was studied for four commercial flour mixtures. The gluten phase was separated from dough using a nondestructive ultracentrifugation method. Small deformation dynamic rheological measurements and light and scanning electron microscopy were used. The recovered gluten was relatively pure with a small amount of starch granules embedded. The protein matrix observed by microscopy became smoother with prolonged mixing. No effect of overmixing was observed on the storage modulus (G′) of gluten for any of the flours. The amount of water in gluten increased from optimum to over‐mixing for most of the flours. Increased water content during prolonged mixing was not related to an effect on G′. The Standard flour resulted in the highest water content of gluten, which increased considerably with mixing time. The Strong flour had the lowest G′ of dough, a high G′ of gluten, and no increase in gluten water content from optimum to over‐mixing. The Durum flour did not show gluten development and breakdown similar to the other flours. The differences in gluten protein network formation during dough mixing are genetically determined and depend on the flour type.  相似文献   

6.
Frozen storage increased the amount of liquid phase and decreased the storage modulus of water-flour mixtures. The liquid phase was studied by ultracentrifugation. The most significant change occurred during the first week of storage. The negative effects of ice crystals could be controlled by reducing the water content, which was seen as smaller amounts of liquid phase and higher dough rigidity after frozen storage (G′ values). Reduced water content also prevented an increase in the self-diffusion coefficient during frozen storage (1H NMR studies). Prefermented frozen doughs were examined under different conditions: with and without Skimo (additive from Puratos, Belgium), prefermentation time of 25 or 40 min, and reduced water content. The results obtained with autoradiographic method correlated best with the baking results and showed that S-kimo and shorter prefermentation time improve the water distribution of frozen prefermented doughs. Doughs contained small ice crystals after frozen storage and there were no large water patches in thawed doughs. Reduced water content and exclusion of S-kimo decreased the liquid phase of fermented doughs and increased dough rigidity. The baking properties of frozen prefermented doughs were better predicted by large deformation rheology (expansion potential of samples during oscillation). In general, flour quality had an obvious effect on the parameters. There was no correlation between the rheological properties and the values of liquid phase, but in most cases a high correlation between the total water content and rheological properties was observed.  相似文献   

7.
Empirical and fundamental rheology measurements were made on fresh and frozen dough to investigate the effects of freezing, frozen storage, and additives. These results were compared with results of a standard baking test. Four formulations were tested: a control dough, and doughs with additions of 100 ppm of ascorbic acid (AA), 0.5% sodium stearoyl lactylate (SSL), and 0.5% diacetyl tartaric acid esters of monoglycerides (DATEM). Rheological and baking tests were performed on fresh doughs and on doughs after two, five, and eight weeks of frozen storage. Resistance to extension was higher for doughs with additives in fresh and frozen doughs. There was a decrease in resistance to extension due to freezing. Complex modulus in fresh doughs was highest for doughs with SSL. There was a decrease complex modulus after freezing and thawing. In frozen doughs at 10 Hz, doughs with additives had higher complex modulus values and lower phase angle values when compared to the control. The additives used all had a positive effect on proof time, loaf volume, and crumb firmness, and all formulations deteriorated in quality during frozen storage. Resistance to extension and complex modulus were positively correlated with loaf volume (r = 0.86 and r = 0.64, P < 0.01). Phase angle was negatively correlated with loaf volume (r = -0.74, P < 0.01).  相似文献   

8.
Cookie diameter is a function of spread rate and set time during baking. Dough viscosity appears to control cookie spread rate and, thus, will affect final cookie diameter. The technique of lubricated uniaxial compression was used to measure the elongational viscosity of cookie dough. Full-formula cookie doughs made with a commercial hard wheat flour had a significantly higher elongational viscosity (5.88 × 106 ± 9.17 × 104 Pa·S) than cookie doughs made with a commercial soft wheat flour (2.17 × 106 ± 1.05 × 104 Pa·S). Elongational viscosity correlated significantly (P < 0.05) with the diameter (r = -0.796) of cookies made with flours from various soft wheat cultivars. Using a simplified cookie formula decreased the testing time without greatly changing the correlation coefficient (r = -0.738). Thus, lubricated uniaxial compression appears to be an appropriate technique to measure the viscosity of cookie doughs and may be useful for predicting the cookie baking quality of soft wheat flours.  相似文献   

9.
Characterization of the rheological properties of wheat flour dough during mixing and baking without modifying its structure or mechanical properties is not easy. In this work, the effect of dough setting pre‐orientation and strain orientation during characterization are assessed for differently structured wheat flour doughs (various water contents and addition of glucose oxydase). Rheological properties were measured in dynamic shear as rotational (CSL2100 fitted with a cone‐plate geometry) or radial (CP20 fitted with a plate‐plate geometry) small deformation mode and in lubricated squeezing flow and relaxation called large deformation mode. In comparison with radial shearing, rotational shearing induces a much larger preorientation of the network and thus a strain‐hardening phenomenon that affects the rheological measurements (storage modulus is overestimated) but relaxes, at least partially, during a rest period. Consequently, a longer period of time has to be allotted (allowing stress relaxation) before starting measurements. Plate‐plate geometry induces less preorientation and allows measurement a few minutes after setting. However, it has less discrimination of the differently structured dough than the cone‐plate geometry used in rotational mode. Results which partially agree with those of the CP20 are obtained using the lubricated squeezing flow followed by stress relaxation.  相似文献   

10.
Several reduction grinding conditions were used on a Canadian Western Red Spring (CWRS) farina to yield flours of comparable protein content within three specific particle size ranges (132–193, 110–132, 85–110 μm) at three starch damage levels (3.0, 3.9, 7.0 Megazyme units). White salted noodles (1% w/w NaCl) were initially processed at a fixed absorption (32%). Dynamic oscillatory and large deformation creep measurements indicated that doughs with lower starch damage, thick or thin, exhibited lower G′ (storage modulus), higher tan δ (G″ [loss modulus]/G′) values, and greater maximum strain during creep than doughs with higher starch damage. There were no clear trends between work input during sheeting and either starch damage or particle size. Instrumental texture analysis of raw noodles showed no significant differences due to either starch damage or flour particle size. Flours with fine particle size gave cooked noodles with the best textural attributes, whereas starch damage exhibited no consistent relationship with cooked noodle texture. Cooking loss was greatest in samples with highest starch damage and coarsest particle size; water uptake was inversely related to starch damage and particle size. Experiments were repeated at adjusted water absorptions (32–36.5%) for fine and coarse flours with highest and lowest starch damage. Differences in raw noodle dough rheological properties were largely eliminated, confirming that differences noted at constant absorption were primarily due to flour water absorption. Work input during sheeting was inversely related to starch damage and was higher for fine particle size. Cooking losses were highest for higher starch damage and fine particle size. Water uptake was highest for fine particle size, but in contrast to cooking loss, was higher at lower starch damage. Textural parameters indicated superior cooking quality when particle size was finer and starch damage was lower. Flour particle size and starch damage (as indicated by water absorption) are both primary quality determinants of white salted noodle properties and, to some extent, exert their influence independently.  相似文献   

11.
The rheological properties of fresh gluten in small amplitude oscillation in shear (SAOS) and creep recovery after short application of stress was related to the hearth breadbaking performance of wheat flours using the multivariate statistics partial least squares (PLS) regression. The picture was completed by dough mixing and extensional properties, flour protein size distribution determined by SE‐HPLC, and high molecular weight glutenin subunit (HMW‐GS) composition. The sample set comprised 20 wheat cultivars grown at two different levels of nitrogen fertilizer in one location. Flours yielding stiffer and more elastic glutens, with higher elastic and viscous moduli (G′ and G″) and lower tan δ values in SAOS, gave doughs that were better able to retain their shape during proving and baking, resulting in breads of high form ratios. Creep recovery measurements after short application of stress showed that glutens from flours of good breadmaking quality had high relative elastic recovery. The nitrogen fertilizer level affected the protein size distribution by an increase in monomeric proteins (gliadins), which gave glutens of higher tan δ and flatter bread loaves (lower form ratio).  相似文献   

12.
Two rye cultivars, Marder and Motto, with falling numbers 314 and 309, respectively, were germinated in vitro. Relative to the native grains, germination induced minor local changes in the microstructure of cell walls and proteins in the kernels. Kernels of germinated and native grains were milled, and doughs were prepared from the flours, with water content and incubation time varied according to experimental design. The viscoelastic properties of the doughs were measured just after mixing and after various incubation times. The area of blue fluorescence, a measure of intact cell walls, was quantified by computer-assisted image analysis in thin sections of rye dough after mixing and incubation, and the starch structure was studied under the microscope after iodine staining. The water content of the doughs was explained well by the rheological behavior. Doughs made from flours of germinated grains were always softer than doughs made from flours of native grains, and Marder doughs were always more rigid than Motto doughs. The higher the water content, and the longer the incubation time, the greater the rheological changes during incubation. Microstructural studies showed that germination and incubation caused changes in the cell wall structures of dough that might explain the softening of the doughs.  相似文献   

13.
The small deformation rheological properties of wheat flour doughs in relation to their structure and hydration were studied by dynamic mechanical thermal analysis, differential scanning calorimetry, and electron spin resonance. The effect of salt and triglycerides was also examined and compared with results we obtained previously on starch dispersions. Moisture content was adjusted to 48 or 60% (w/w, wb). Samples contained 0–16% NaCl (g/100 g of flour‐water) and 0–18% triolein or lard (g/100 g of flour‐water). The obtained results suggested that starch has an active role in determining the evolution of dough rheological characteristics during heating. The main factors controlling rheological behavior during thermal treatment are the volume fraction and deformability of starch granules. Gluten changes the viscoelasticity of the continuous phase and competes with starch for water. The addition of sodium chloride to flour dispersions shifted the structural disorganization and rigidity increased during heating to higher temperatures. At >7% NaCl, the reverse effect was observed. The mechanism controlling the effect of salt on dough rheological behavior was explained in terms of effect on water properties and on starch structure and hydration. Triglycerides had a lubricant effect (i.e., lowering G′ modulus) on the wheat flour dough system. These effects are of great importance for production and quality of bakery products.  相似文献   

14.
Measurements of creep‐recovery of flour‐water doughs were made using a dynamic mechanical analyzer (DMA) in a compression mode with an applied probe force of 50 mN. A series of wheat flour and blend samples with various breadmaking potentials were tested at a fixed water absorption of 54% and farinograph optimum water absorption, respectively. The flour‐water doughs exhibited a typical creep‐recovery behavior of a noncross‐linked viscoelastic material varying in some parameters with flour properties. The maximum recovery strain of doughs with a fixed water absorption of 54% was highly correlated (r = 0.939) to bread loaf volume. Wheat flours with a large bread volume exhibited greater dough recovery strain. However, there was no correlation (r = 0.122) between maximum creep strain and baking volume. The maximum recovery strain of flour‐water doughs also was correlated to some of the parameters provided by mixograph, farinograph, and TA‐XT2 extension.  相似文献   

15.
The effects of oxido-reductants on the rheological properties of wheat flour dough were evaluated by using a capillary rheometer and an oscillatory rheometer at three temperatures. The oxidants potassium iodate (KIO3) and l -ascorbic acid (l -AA) significantly increased the apparent viscosity and G′ and decreased loss tangent at low temperatures of 30 and 60°C due to enhanced formation of disulfide bonds. The reductant glutathione (GSH) had the opposite effect. Heating caused the gelatinization of starch, which diminished the effects of the oxido-reductants and produced doughs with similar rheological properties at 80°C. The correlation between dough rheology and characteristics of extruded noodles was also studied.  相似文献   

16.
《Cereal Chemistry》2017,94(6):970-977
The effects of damaged starch and NaCl (1 and 2% w/w [flour weight]) on the dough handling properties of a wheat flour (Triticum asetivum L. ‘Roblin’) were investigated with rheological and textural methods. Damaged starch levels of the base flour and three remilled flours (using reduction rolls with decreasing gap sizes) were 5.42, 6.23, 7.30, and 8.43%. Rheological measurements on the dough showed that the complex modulus increased and the loss tangent (tan δ) decreased with increasing damaged starch levels in the flour, indicating that greater amounts of damaged starch produced stiffer dough. The base flour produced doughs with the highest creep compliance value (J max), whereas the flour with the most damaged starch deformed the least. Higher levels of salt produced stiffer dough that deformed less, as evident by the higher complex modulus and lower creep compliance, compared with 1% NaCl. Damaged starch overall decreased dough stickiness (N), work of adhesion (N·s), and cohesiveness (mm). Increasing the salt content decreased the stickiness of the doughs. Increasing the damaged starch greatly increased dough extensibility at 1% NaCl. The greater amounts of damaged starch in the remilled flour mitigated some of the negative effects of reducing the salt content on the dough machinability.  相似文献   

17.
The rheological properties of cooked white salted noodles made from eight wheat cultivars with varied amylose content were analyzed at small and large deformation. Their dynamic shear viscoelasticity was measured using a rheometer with parallel plate geometry. Compressive force and creep‐recovery curves were measured using various probes and sample shapes. Noodles with lower amylose content showed a lower storage shear modulus (G′) and a higher frequency dependence of G′. The G′ values of noodles were highly correlated with amylose content in wheat flour and with G′ values of 30 and 40% starch gels. Remarkable differences in the characteristics of creep‐recovery curves were observed between cultivars. The difference in amylose content in wheat flour reflected the creep‐recovery properties of noodles. A negative correlation was demonstrated between amylose content and both maximum creep and recovery compliance. The compressive force required for 20, 50, 80, and 95% strains was compared. At 20 and 50% strain, noodles made from lower amylose wheat flour showed lower compressive force. Noodles of waxy wheat had a higher compressive force than nonwaxy noodles when the strain was >80%, indicating the waxy wheat noodles are soft but difficult to completely cut through.  相似文献   

18.
Starch and gluten were isolated from 10 wheat cultivars or lines with varied amylose content. The rheological properties of 30% wheat flour gel, starch gel, and the gel of isolated gluten mixed with common starch were determined in dynamic mechanical testing under shear deformation, creep‐recovery, and compression tests under uniaxial compression. Variation of wheat samples measured as storage shear modulus (G′), loss shear modulus (G″), and loss tangent (tan δ = G″/G′) was similar between flour and starch gels and correlated significantly between flour and starch gel. The proportion of acetic acid soluble glutenin exhibited a significant relationship with tan δ of gluten‐starch mixture gel. The small difference in amylose content strongly affected the rheological parameters of flour gels in creep‐recovery measurement. Wheat flour gel with lower amylose content showed higher creep and recovery compliance that corresponded to the trend in starch gel. Compressive force of flour gel at 50 and 95% strain correlated significantly with that of starch gel. Gel mixed with the isolated gluten from waxy wheat lines appeared to have a weaker gel structure in dynamic viscoelasticity, creep‐recovery, and compression tests. Starch properties of were primarily responsible for rheological changes in wheat flour gel.  相似文献   

19.
The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures of 25–60°C. Strain hardening and failure strain of cell walls both decreased with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties at higher temperatures (60°C), while the cell walls of poor breadmaking doughs became unstable at lower temperatures (45–50°C) and had lower strain hardening. Strain hardening measured at 50°C gave good correlations with baking volume, with the best correlations achieved between rheological measurements and baking tests that used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of 1 defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to strain hardening properties, and that extensional rheological measurements can be used as indicators of baking quality.  相似文献   

20.
Oxidation increased the strength of the dough. Addition of ascorbic acid or azodicabonamide (ADA) to dough increased both elastic modulus (G′) and viscous modulus (G″), while addition of cysteine decreased both values. Hydrogen peroxide, from either calcium peroxide or glucose oxidase, increased G′ and G″ and decreased tan δ (G″/G′) values. In addition to strengthening the dough, hydrogen peroxide dried the dough, but ADA did not. The absorption of doughs containing 20 GU of glucose oxidase (source of hydrogen peroxide) could be increased by ≈5% without altering the rheological properties. Presumably, the mobility of water in the gel formed by oxidative gelation decreased, thereby causing a drying of the dough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号