首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于LED的设施农业智能补光系统   总被引:2,自引:0,他引:2  
光是植物生长过程中不可或缺的因素之一,人工补光可有效提高植物光合作用,促进农作物增产增收。现有LED补光系统在环境适宜性监测、光源控制和植物不同阶段需光量差异性考虑不足,造成红蓝光补光不足和补光过度并存。针对以上问题提出了一种设施农业智能补光系统,支持定义植物不同生长阶段的需光量,采用STC12C5A60S2单片机实时监测设施内环境温度和光强,并通过PWM信号控制红、蓝光LED补光灯亮度实现作物按需定量的智能补光。该系统已初步进行试用,证明该系统稳定可靠,可有效实现定量精确补光。  相似文献   

2.
植物生长补光灯优化部署模型   总被引:1,自引:0,他引:1  
人工补光可以有效提高温室作物产量与品质。针对温室补光光源空间部署不科学导致光照强度分布不均匀,不能满足作物实际需光量和资源配置不合理等问题,根据温室空间环境的影响以及光学原理计算,提出了基于温室补光灯光强场分布的圆形单光源补光灯与矩形多光源补光灯两类光源部署模型。这两类模型通过光学定律粗略计算,以补光灯辐射半中心光强边界为突破点,对补光灯的辐射重叠区域进行科学定位,使补光灯部署得到优化,从而实现温室光强按需均匀分布,避免补光光源部署冗余,减少能耗,促进了作物有效的生长。  相似文献   

3.
由于现有温室补光系统未针对专家规则考虑植物不同阶段补光量的差异和自动实现分阶段按需定量补光,因此设计了基于专家规则的智能补光系统。系统以51单片机为核心,采用模块化设计,主要包括控制模块、电源模块、时钟模块、人机交互模块和检测模块。系统利用DS1302时钟芯片模块模拟阶段补光累积时间,根据用户设置的各阶段光强阈值和阶段信息,当植物生长进入下一阶段时,系统会依据用户的相关设置计算对应PWM 控制信号的占空比,并输出 PWM 控制信号,控制植物的补光量。实验证明,系统可对植物各阶段进行按需补光,避免了不同阶段补光不足和过量的问题,从而提高了能源利用率,也为研究光强对植物的影响提供参考。  相似文献   

4.
针对光照影响食用菌产量及品质的特点,利用太阳能LED节能技术设计了一款食用菌补光控制系统。该系统由太阳能电池板组件、太阳能充电管理模块、锂电池、LED补光灯、单片机控制器、定时器模块、键盘、LCD显示器和光照传感器组成,补光强度和补光时间可设置。测试结果表明,该系统工作稳定且满足设计要求。   相似文献   

5.
温室环境监测控制器主要用于监测温室的空气温湿度、光照强度和土壤湿度等。传感器连接到控制器,控制器连接到执行机构,利用传感器检测,并把检测的信息传到控制器,由控制器控制执行机构工作。当土壤湿度不足时,单片机控制一个插座通电,该插座可以连接洒水装置,实现自动浇水;在规定的时间内,光照不足时,另外一个插座通电,可以和补光装置连接,实现自动补光;空气温湿度显示在液晶屏上,同时利用超声波传感器检测植物与补光灯的距离,通过步进电机调节植物与补光灯之间的距离,使补光灯与植物间保持合适的距离。该装置应用于辣椒育苗、种植,草莓的种植,效果良好,降低了劳动强度,提高了经济效益。  相似文献   

6.
针对目前温室植物补光无法针对植物生长状况实时反馈控制的问题,以LED补光系统为基础,设计了基于FluorMonitor叶绿素荧光传感器的植物补光测控系统。通过SDI-12和MODBUS通信协议实现对叶绿素荧光参数和光温参数的采集;并根据叶绿素荧光参数F_t、F_m、光化学量子效率Yield的测量流程和采集周期,设计了自动采集模式和手动采集模式;通过PWM调光模块的设计,完成对LED发光强度的精确调控;通过设计人机接口,实现了对光温参数和叶绿素荧光参数的显示和人机交互操作。以生菜为研究对象,进行了不同调光方式的补光调控试验,试验结果表明,基于叶绿素荧光的LED补光控制系统可以实现对光强、ETR和Yield的稳定控制,增加生菜对光能的利用效率,实现了基于作物生理信息的反馈控制。  相似文献   

7.
基于单片机的温室大棚LED智能补光系统设计   总被引:1,自引:0,他引:1  
目前,在黑龙江地区的温室大棚内种植反季节或当下蔬菜时,补光时间和补光强度全部靠人员经验,因此无法达到精准控制。本文针对这一问题设计一个基于AVR单片机的温室大棚LED智能补光系统。该系统基于ATmega16L单片机,利用光敏电阻阻值变化引起电路电流的变化,测出大棚内光照的强度,设定占空比进行间断补光,通过脉宽调制(PWM)控制LED灯光照强度,从而达到实际需要的光饱和点。本文选用蓝光、红光比例1∶8的LED补光灯补光,代替传统的一些补光手段。该系统节能环保、安全性高、稳定性好,在温室大棚智能控制方面具有很好的应用和推广前景。  相似文献   

8.
光环境是植物生长发育不可缺少的重要物理环境因素之一。植物补光灯是依照植物生长的自然规律,根据植物利用太阳光进行光合作用的原理,使用人工光源代替太阳光来提供植物生长发育所需光能的一种灯具。介绍了植物补光灯在北京市密云区设施反季节番茄生产中的试验情况,结果证明,植物补光灯的增产增收效果显著。  相似文献   

9.
光是植物进行光合作用的主要能量来源,光照好坏直接影响作物的产量和品质。本研究针对现有植物补光系统多以功能叶光合能力为基准进行冠层补光,导致冠层新生叶光抑制、株间功能叶位补光不足以及补光位置不能适应作物生长进行动态调整的问题,以黄瓜为研究对象,设计了一种基于植株需光差异特性的设施黄瓜立体光环境智能调控系统。该系统由智能控制子系统、冠层-株间LED补光子系统、冠层-株间环境监测子系统和补光灯升降子系统组成,通过ZigBee技术实现各子系统间无线通信。其中冠层-株间环境监测子系统分别获取冠层和株间环境信息并发送至智能控制子系统,智能控制子系统根据环境实时信息调用冠层调控模型和株间适宜叶位调控模型获得相应调控目标值,并将其下发至冠层-株间补光灯,实现冠层与株间补光灯的动态实时调控。在陕西省泾阳县蔬菜产业综合服务区蔬菜基地分别部署立体补光设备和传统冠层补光设备,并进行系统调控效果验证试验。结果表明,立体补光区黄瓜植株的株高和茎粗显著增长,其中相比传统冠层补光区平均株高、茎粗分别增长了8.03%和7.24%,相比自然处理区平均株高、茎粗分别增长了26.51%和36.03%;在一个月的采摘期内,立体补光区相比传统冠层补光区和自然处理区产量分别提升了0.28和1.39 kg/m2,经济效益分别增加了2.82和4.88 CNY/m2,说明立体光环境调控系统能够提高经济效益,具有应用推广价值。  相似文献   

10.
在冬季日光温室弱光环境下,以番茄"金鹏1号"为试材,采用带有机械遥控升降系统的SON—TArgo,发光效率达130lm/W的植物生长钠灯对番茄植株进行不同光源配置高度及时间的补光处理,研究升降式系统补光对弱光条件下日光温室番茄生长及产量品质的影响。结果表明:通过可升降式补光系统实现对光照强度的机械调节,补光处理促进番茄植株光合作用及生长发育、提早成熟、提高果实产量及品质。  相似文献   

11.
设施农业可调光质精确补光系统   总被引:4,自引:0,他引:4  
针对环境温度、光质和光强对农作物光合作用的影响,提出结合实时环境检测、特定波段补光与定量决策的精确补光方法,设计了基于反馈控制机制的定量决策算法。以单片机为核心控制器件,设计了可调光质的精准补光系统,可根据温度及红蓝光目标光强与实时光强的差值精确计算补光量,通过PWM占空比调整LED输出光强。实验结果证明系统可实现按需补光;采用的LED光源较白炽灯节能54%,较荧光灯节能83%;在相同LED光源时,较常规LED补光系统的节能率在不同光质阈值和气候条件下具有一定波动,平均节能在30%以上。  相似文献   

12.
对温室补光的必要性,补光灯种类及特点和选用配置进行了简明扼要的阐述,根据各种作物实际情况对补光各项要求、方法及补光灯在温室内布置做了详细的说明。   相似文献   

13.
组培室补光光源应用分析与评价   总被引:11,自引:1,他引:11  
测定了温室用日色镝灯,组培室用日色荧光灯以及植物生长灯等4种光源的光谱能量分布和灯正下方20cm处的照度,定义并计算了光源的有效生理辐射比率和效能,分析评价了各光源的有效生理辐射能力及其分布合理性,比较分析照度值并评价了光源在组培室的适应性,给出了组培室补光光源的最优选择,并提出了组培室专用光源的设计原则。  相似文献   

14.
为快速获取作物的生长状态信息及时指导农业生产,基于作物生理生化光谱学响应机理,设计了基于光环境校正的便携作物叶绿素检测装置。装置测量以610、680、730、760、810、860nm为中心,20nm带宽的反射光谱以及环境光照光谱数据,计算植被指数并预测植物叶绿素含量,在环境光照强度较差时使用主动补光灯进行补光,并对补光条件下环境光照强度进行校正。实验表明GPS定位在纬度最大漂移为6.2m、经度最大漂移为4.9m;光谱传感器6个波段的光强响应与照度计测量值之间的决定系数均超过0.99;标定的2块光谱传感器的匹配系数在610nm和860nm波段分别为0.743、1.035。建立了610nm和860nm波段补光强度与测量距离间的拟合模型用于光环境校正;使用无纺布进行了叶绿素梯度实验,建立了植被指数NDVI与植物叶绿素含量的数学模型,在较差光环境条件下不进行补光的模型决定系数为0.685,补光并进行校正情况下模型决定系数为0.965。  相似文献   

15.
针对集装箱植物工厂体积小、可控性强的特征,利用最适化控制原理,针对控制成本低、控制效果好的营养液管理、人工补光、箱内环境温度3个因子,基于可编程控制器建立了一套自动控制系统。该系统将人机交互触摸屏作为上位机,采用开关量控制原理进行营养液循环和LED周期补光的管理;利用闭环PID控制原理,进行箱内温度的调节,可实时监测集装箱内部温度和营养液特征变化过程。同时,采用人机友好的工作方式,通过调用管理者输入的各类参数,自动进行控制决策并执行控制程序。试验验证表明:该系统能够根据人工设定的控制参数,实现营养液分层循环、定时供液;能够按照设定时间自动控制LED光源的闭合/断开,实现不同光照周期的转换;能够实时监测温度,并根据目标温度调节制冷/供暖机构,使集装箱内温度持续保持在适宜作物生长的范围内。参照系统在集装箱植物工厂内使用情况,可以确定本系统成本低、运行稳定,能够满足集装箱植物工厂中农作物管理需求。  相似文献   

16.
从解决阳台农业立体栽培系统的自动补水、补光问题出发,针对人工定时补给和传感器自动感应补给的不同操作需求,设计开发了基于STM32F103微控制器作为嵌入式芯片的立体栽培架自动补给控制系统,实现了硬件和软件结合的自动补水与补光控制。测试结果表明,该控制系统可较好地实现通过时钟进行人工定时准确精量补水、补光控制,也可有效获取基质湿度传感器及光照传感器的实时数据,根据浇水及光照设置阈值,开启或关闭补光补水控制,达到栽培架中基质水分及植物需光有效补给的目的。通过多次运行,该系统性能稳定、可靠,可满足阳台农业立体栽培系统自动补水、补光要求。  相似文献   

17.
为实现植物工厂内环境参数的采集和智能远程监控,研究并开发出一套基于LoRa无线数据采集系统和组态软件(力控组态)的智能监控系统。组态软件为控制系统的上位机,基于LoRa无线网关和无线传感节点来采集植物工厂内部的环境参数,通过Modbus通讯协议实现上位机与LoR a网关之间的通讯,并在工控机的上位机软件中实时显示植物工厂的环境参数,通过组态软件来控制PLC实现对执行机构如补光灯、加湿器、空调等进行精准控制。试验在江苏省现代农业装备工程中心的植物工厂中进行,试验结果证明该系统性价比高,鲁棒性好,提高了植物工厂环境参数采集的稳定性和准确性。  相似文献   

18.
从温室结构、农艺控制及辅助设备3方面介绍了日光温室增温的措施。从温室补光灯、棚膜的选择和张挂反光幕等方面阐述了温室补光的方法。  相似文献   

19.
随着人们生活品质的提高,家庭植物工厂受到越来越多的关注。为此,设计了一种以LED光源模拟太阳光的人工光型密闭式家庭植物工厂。为了使该家庭植物工厂能够为作物提供适宜的生长环境,并且能够实现远程智能监控,设计并实现了一种基于Android平台的智能监控系统。该系统能够实时监测和显示种植空间的环境参数,可根据实际需要对种植空间的温度、二氧化碳浓度和LED灯亮度进行分时段的独立设置。该系统能够控制作物根部营养液的循环,可以通过WEB浏览器实现远程监控。系统运行情况表明,所设计的智能监控系统能够在以LED光源模拟太阳光的人工环境下,为作物提供满足要求的生长环境,并且通过对环境参数的合理设置,可以大大缩短作物的种植周期。  相似文献   

20.
基于多传感器的精准变量施肥控制系统   总被引:1,自引:0,他引:1  
为实现田间精准变量施肥,设计基于多传感器的变量施肥控制系统。该系统以STM32F103ZET6微处理器为核心,搭配GPS定位模块、作物生理信息监测模块、温湿度与光照度监测以及施肥机构监测模块,可实现水稻田间精准变量施肥作业环境参数、地理位置信息、作物生长信息以及施肥机构的执行状态实时监测,系统根据内置施肥算法,结合采集的多源传感信息,实现实时变量施肥控制。系统测试结果表明,调速测试试验最大控制误差为6.25%,开度测试试验最大控制误差为11.1%,系统的控制精度达到88%以上,性能稳定,满足精准作业的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号