首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zero amylose starch isolated from hull-less barley (HB) showed a typical A-type diffraction pattern. The X-ray analysis suggested that granules of zero amylose (SB94794) and 5% amylose (CDC Candle) HB starches had lower crystallinity than did commercial waxy corn starch. Differential scanning calorimetry showed lower transition temperatures and endothermal enthalpies for the HB starches than for the waxy corn starch. The zero amylose HB starch showed a Brabender pasting curve similar to that of waxy corn starch, but with lower pasting and peak temperatures and a higher peak viscosity. Noteworthy characteristics of zero amylose HB starch were its low pasting temperature and high paste clarity and freezethaw stability, which make this starch useful for many food and industrial applications.  相似文献   

2.
Waxy hull-less barley (HB) starches containing 0 or 5% amylose were cross-linked with phosphorus oxychloride and the cross-linked starches were hydroxypropylated with propylene oxide. For comparison, waxy corn and potato starches were similarly modified. For all starches, cross-linking inhibited granule swelling and prevented swollen granules from disintegration, resulting in dramatic improvement in pasting properties and tolerance to cooking shear and autoclaving. Cross-linked waxy HB starches were more tolerant to cold storage and cooking shear than cross-linked waxy corn starch. Hydroxypropylation of the cross-linked starches reduced granule crystallinity and gelatinization temperature, and improved granule swelling, paste clarity, and freeze-thaw stability. The double-modified waxy HB starches showed higher cold tolerance than similarly modified waxy corn and potato starches, as judged by freeze-thaw stability and clarity after cold storage. These results indicated that the cross-linked and double-modified waxy HB starches together may have a wide range of food applications. This study indicated that the behavior of granule swelling and disintegration of swollen granules played an important role in governing paste viscosity, clarity, and freeze-thaw stability of waxy HB starches.  相似文献   

3.
Five registered cultivars of hull-less barley (HB) with regular or waxy starch were milled in a Quadrumat Jr. mill to obtain whole grain flour; pearled in a Satake mill (cultivar Condor only), and the pearled fractions examined by microscopy to determine true HB bran. The samples were milled after tempering and drying in a Buhler mill to obtain bran and flour yields. Flour color and composition of HB were unaltered on milling in the Quadrumat Jr. mill. Microscopic evidence showed that a 70% pearl yield was devoid of the grain's outer coverings, including the aleurone and subaleurone layers. Therefore, the balance of 30% constitutes true bran in HB. Dry milling (as-is grain moisture) of regular starch HB in the Buhler mill gave 59% total flour and 41% bran (bran + shorts) yields, the comparative values for the waxy starch HB were 42 and 58%. On tempering HB from 9 to 16% grain moisture, the total flour yield decreased in both types of HB but to a lesser extent in the waxy starch HB due to decreases in reduction flour. On drying HB to 5 or 7% moisture, total flour yields increased due to contamination with bran and shorts. The milling study led to the conclusion that HB, at best, be dry-milled and a bran finisher be used to obtain commercial flour extraction rates. Lower total flour yields in the waxy starch HB than in the regular starch HB milled at the same grain moisture levels seemed due to higher β-glucan rather than grain hardness. Waxy starch HB flour had higher mixograph water absorption and water-holding capacity than regular starch HB or soft white wheat flour milled under identical conditions. Roller-milled HB products offer the best potential for entry into the food market.  相似文献   

4.
The content and molecular weight (MW) of β-glucan in extracts from a selection of oat and barley cultivars were compared using flow-injection analysis and high-performance size-exclusion chromatography. From 60 to 75% of the β-glucan was extracted from oat and waxy barley by hot water (90°C) containing heat-stable α-amylase, whereas just 50–55% was extracted from nonwaxy barley. Consecutive extractions with hot water and dimethylsulfoxide (DMSO) extracted 65% (nonwaxy barley) or 75–80% (oat and waxy barley) of the total β-glucan. An extraction with sodium hydroxide and sodium borohydride (NaOH/NaBH4) increased the percentage of β-glucan extracted to 86–100% but decreased the MW. The MW of β-glucan in the oat cultivars selected was significantly higher than those in the barley cultivars. The β-glucan extracted from the nonwaxy barley cultivars showed significantly higher peak MW than that from the waxy barley cultivars.  相似文献   

5.
Recovering starch from barley is problematic typically due to interference from β‐glucan (the soluble fiber component), which becomes highly viscous in aqueous solution. Dry fractionation techniques tend to be inefficient and often result in low yields. Recently, a protocol was developed in our laboratory for recovering β‐glucan from barley in which sieving whole barley flour in a semiaqueous (50% ethanol) medium allowed separation of the starch and fiber fractions without activating the viscosity of the β‐glucan. In this report, we investigate an aqueous method which further purifies the crude starch component recovered from this process. Six hulless barley (HB) cultivars representing two each of waxy, regular, and high‐amylose cultivars were fractionated into primarily starch, fiber, and protein components. Starch isolates primarily had large granules with high purity (>98%) and yield range was 22–39% (flour dry weight basis). More importantly, the β‐glucan extraction efficiency was 77–90%, meaning that it was well separated from the starch component during processing. Physicochemical evaluation of the starch isolates, which were mainly composed of large granules, showed properties that are typical of the barley genotypes.  相似文献   

6.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules.  相似文献   

7.
Cereal β-glucan can function as a thickener, but endogenous β-glucanase enzymes of the grain cleave β-glucan, reducing its viscosity. Although different extraction techniques have been developed, the viscosity stability of β-glucan gum has not been reported. The objective of this study was to investigate the effect of extraction treatments on the yield, purity, and viscosity stability of barley β-glucan (BBG) gum. A regular barley cultivar, Condor, and a waxy cultivar blend were extracted at pH 7–10 and 55°C for 0.5 hr. Four extraction conditions were evaluated: 1) extraction at high pH with no additional heat treatment; 2) boiling of extract; 3) prior refluxing of flour with 70% ethanol; and 4) treatment of extract with thermostable α-amylase for purification. Viscosity of extracts was monitored for ≥24 hr at 25°C. The highest β-glucan purities were achieved with a boiled Condor extract at pH 7 (81.3% db, 4.1% yield) and with refluxed waxy barley extracted at pH 8 and treated with α-amylase and (79.3% db, 5.1% yield). Gums extracted without subsequent heat treatment or prior refluxing of flour had high protein (>17%) and starch (>24%) impurities, respectively. The viscosity of gums obtained without heating was unstable. Prior refluxing treatment was not sufficient to stabilize final extracts. Boiling extracts resulted in stable but low viscosity. Reflux followed by purification treatment produced the highest stable viscosity for 0.5% solutions of both Condor (64 mPa sec-1, pH 7) and waxy (48.8 mPa sec-1, pH 8) extracts. Stable BBG gum with high viscosity can be obtained using thermal treatments in combination with high pH. The potential use of such gums as thickeners in food systems needs to be assessed.  相似文献   

8.
Fresh and dried white salted noodles (WSN) were prepared by incorporating up to 40% flour from hull‐less barley (HB) genotypes with normal amylose, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch into a 60% extraction Canada Prairie Spring White (cv. AC Vista) wheat flour. The HB flours, depending on genotype, contained four to six times the concentration of β‐glucan of the wheat flour, offering potential health benefits. The HB‐enriched noodles were made with conventional equipment without difficulty. Noodles containing 40% HB flour required less work input during sheeting, probably due to higher optimum water absorption and weakening of the dough due to dilution of wheat gluten. The addition of HB flour had a negative impact on WSN color and appearance, as evident from decreased brightness, increased redness, and more visible specking. The impact of HB flour on cooked WSN texture varied by starch type. Enrichment with HA or normal starch HB flour produced WSN with bite and chewiness values equivalent to or superior to the wheat flour control. Addition of waxy and ZAW HB flour resulted in WSN with lower values for bite and chewiness. The diversity of HB starch types allows tailoring of WSN texture to satisfy specific markets. HB flour also has potential as an ingredient in novel noodle products targeting health‐conscious consumers who associate darker colored cereal‐based foods with superior nutritional composition.  相似文献   

9.
Nine hull‐less barley (HB) containing waxy (0–7% amylose), normal (≈25% amylose), or high amylose (≈42% amylose) starch with normal or fractured granule make‐up and 4–9% (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) were pearled to remove 70% of the original grain weight in 10% intervals. The pearled fractions were analyzed for β‐glucan distribution within HB grain. Protein content of the pearled fractions indicated that the three outermost fractions contained pericarp and testa, aleurone, and subaleurone tissues, respectively. For all HB, β‐glucan and acid‐extract viscosity were very low in the outermost 20% of the kernel. For low β‐glucan HB, β‐glucan content was the greatest in the subaleurone region and declined slightly toward inner layers. For high β‐glucan HB, however, more than 80% of grain β‐glucan was distributed more evenly throughout the endosperm. Acid extract viscosity was significantly (P < 0.01) correlated with total (r = 0.75) and soluble (r = 0.87) β‐glucan content throughout the kernel of all HB. Growing conditions, location and year, had significant effects on the concentration of protein, starch and β‐glucan. However, protein, starch, and β‐glucan distribution patterns were not affected by growing conditions. The difference in β‐glucan distribution between low and high β‐glucan HB may explain the difference in milling performance of HB with low or high β‐glucan.  相似文献   

10.
The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p < 0.05). Increase in grain protein concentration was not only related to total starch concentration (r(2) = -0.80, p < 0.01) but also affected enzymatic hydrolysis of pure starch (r(2) = -0.67, p < 0.01). However, an increase in amylopectin unit chain length between DP 12-18 (F-II) was detrimental to starch concentration (r(2) = 0.46, p < 0.01). Amylose concentration influenced granule size distribution with increased amylose genotypes showing highly reduced volume percentage of very small C-granules (<5 μm diameter) and significantly increased (r(2) = 0.83, p < 0.01) medium sized B granules (5-15 μm diameter). Amylose affected smaller (F-I) and larger (F-III) amylopectin chains in opposite ways. Increased amylose concentration positively influenced the F-III (DP 19-36) fraction of longer DP amylopectin chains (DP 19-36) which was associated with resistant starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p < 0.01) influenced resistant starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.  相似文献   

11.
A multiple enzyme cocktail containing cellulase, endo-(1→3), (1→4)-β-d -glucanase and xylanase was used in wet separation of starch, protein, β-glucan, bran, and tailings from four hull-less barleys (HB): SB94794 (0% amylose), CDC Candle (5% amylose), CDC Dawn (24% amylose), and SB550831 (40% amylose). Compared to a conventional procedure, the enzyme-assisted wet extraction reduced slurry viscosity by 50–99%, the amount of water and ethanol used in screening and β-glucan precipitation by 30–60%, and screening time by 20–80%. The enzyme-assisted extraction reduced starch contents and yields of tailings and bran fractions, resulting in a 10% increase in average starch extraction efficiency. However, β-glucan yield was reduced in the enzyme-assisted extraction, particularly in high-viscosity HB. The physicochemical properties of isolated starches were not affected by the enzyme-assisted extraction.  相似文献   

12.
Roller milled flours from eight genotypes of hull‐less barley (HB) with normal, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch were incorporated at 20 and 40% (w/w) with a 60% extraction Canada Prairie Spring White (CPSW, cv. AC Vista) wheat flour to evaluate their suitability as a blend for yellow alkaline noodles (YAN). The barley flour supplemented noodles were prepared using conventional equipment. Noodles containing 40% HB flour required less work input than the corresponding 20% blend noodles due to a higher water absorption at the elevated level of HB flour addition, which probably caused them to soften. The addition of any HB flour at either level to the CPSW flour resulted in significantly decreased brightness (L*) and yellowness (b*), elevated redness (a*), concomitant with a significantly greater number of specks per unit area of noodle sheet compared with the control flour. The addition of 40% HB flour to YAN decreased cook time and cooking losses. Noodle firmness, as determined by maximum cutting stress (MCS), was significantly increased by the addition of 40% HB flour. Noodle chewiness, as determined by the texture profile analysis (TPA), was affected by the type of starch in the barley samples; the addition of waxy and ZAW HB flour decreased chewiness, whereas normal and HA HB flour increased chewiness of composite noodles.  相似文献   

13.
Total and soluble beta-glucan content and effects of various treatments of barley grain on extractability and molecular characteristics of soluble beta-glucan were studied. Four types of hulless barley (normal, high amylose, waxy, and zero amylose waxy) from 29 registered and experimental genotypes were analyzed. For each, moisture, protein, amylose, 100 kernel weight, starch, beta-glucan (total and soluble), beta-glucanase activity, and slurry viscosity were determined. Significant differences in total beta-glucan were observed among the groups, with average values of 7. 49%, 6.86%, 6.30%, and 4.38% for high amylose, waxy, zero amylose waxy, and normal barley, respectively. The extractability of beta-glucan in high amylose barley was relatively low (20.6-29.7%) compared to that in normal (29.8-44.3%), zero amylose waxy (34.0-52. 5%), and waxy (36.7-52.7%) barley genotypes. Viscosity of barley flour slurries was affected by the content of soluble beta-glucans, beta-glucanase activity, and molecular weight of beta-glucans. Hydrothermal treatments (autoclaving and steaming) of barley had no effect on extractability of beta-glucans, but prevented enzymic hydrolysis of beta-glucans, and thereby substantially improved their molecular weight. The addition of enzymes (protease and esterase) during extraction and/or physical treatments (sonication) increased extractability of beta-glucans from barley.  相似文献   

14.
Random inbred lines were produced from a cross between the genotypes Chalky Glenn and Waxy Hector, and two-row lines were classified as waxy or nonwaxy by an iodine staining test. Mean nitrogen and β-glucan contents of the waxy types were higher than those of the nonwaxy types but, in contrast to previous data, mean milling energies of the two groups were not significantly different. Waxy lines with low milling energy had much lower β-glucan levels than those with high milling energy, and they also demonstrated much more extensive cell wall modification during malting. From a trial grown the following season, the waxy types with low milling energy were again identified and had levels of β-glucan content similar to those of nonwaxy types. β-Glucan contents and, particularly, milling energies showed good agreement between seasons. It is suggested that, although waxy starch is usually associated with high β-glucan content, a genetic factor from Chalky Glenn that confers low levels of β-glucan can express in a waxy background.  相似文献   

15.
Five different barley cultivars, including covered and naked samples containing low, normal, or high-amylose starches were fractionated by weighing, pneumatic classification, sieving, or sorting on a specific gravity table, and analyzed for content of starch, protein, ash, and β-glucan. For ash content, almost no variation could be found between different fractions. Protein content was minimum in the intermediate fractions for all cultivars when sorted by weighing. For the other fractionation methods, the differences in protein content were small. A tendency for decreasing content of starch with increasing grain mass and size could be seen when fractionating grains by weighing and sieving, respectively. The clearest trend was seen in differences in β-glucan content for all cultivars and all methods used. The main interpretation of our results is, however, that the chemical composition within the cultivars studied is very similar for all fractions, and that the differences between the unfractionated barley samples are larger.  相似文献   

16.
Aqueous dispersions (2 mg/mL) of debranched corn starches of different amylose contents (waxy, normal, and high‐amylose) were subjected to extensive autoclaving and boiling‐stirring, and then the changes in starch chain profile were examined using medium‐pressure, aqueous, size‐exclusion column chromatography. As autoclaving time increased from 15 to 60 min, weight‐average chain length (CLw) of waxy, normal, and high‐amylose corn starches determined using pullulan standards decreased from 46 to 41.2, from 122.1 to 96.3, and from 207.3 to 151.8, respectively. Number‐average chain length (CLn) measured by the Nelson‐Somogyi method also decreased from 23.0 to 18.4, from 26.4 to 21.8, and from 66.5 to 41.5, respectively, indicating that thermal degradation of starch chains occurred. The CLw/CLn ratio for normal corn starch was higher than that for waxy corn starch, indicating an increase in polydispersity of the amylose fraction. Thermal degradation was also observed when the debranched starch was subjected to the boiling‐stirring treatment (0–96 hr). During 96 hr, the CLw and relative proportion of B≥2 chains of amylopectin released by debranching waxy corn starch increased, whereas those of B1 chains decreased. This change may indicate physical aggregation of B1 chains. But branches from normal and high‐amylose corn starches showed increases in CLw and the proportion of both B1 and B≥2 chains, along with substantial decreases in those of amylose chains. Therefore, thermal degradation of amylose was greater than that of amylopectin.  相似文献   

17.
The effect of tea polyphenols (TPLs), specifically tea catechins, on the postprandial glycemic response to cooked starches differing in amylose contents was investigated. The in vivo test using a mouse model showed a moderate reduction of the postprandial glycemic response to co-cooked normal (containing 27.8% amylose) or waxy corn starch with 10% TPLs (dry weight of starch), while an augmented glycemic response with a delayed blood glucose peak was observed when high amylose corn starch (HAC, containing 79.4% amylose) was used as the starch component. Enzyme kinetics results demonstrated that TPLs noncompetitively inhibit the digestion of waxy or normal corn starch, while the digestion rate of HAC starch was increased in the presence of TPLs, which supports the observed postprandial glycemic responses. Further studies using X-ray powder diffraction showed that the diffraction intensity (area under the diffraction curves) of normal and HAC starch was increased by 45% and 74%, respectively, whereas no change was observed for waxy corn starch. Consistently, dynamic laser light scattering studies using a solution of pure amylose showed an increased hydrodynamic radius of amylose molecules from ~54 nm to ~112 nm in the presence of TPLs. These experimental results indicate that there might exist an interaction between TPLs and amylose, which facilitates the association of amylose molecules to form a special nonordered structure that can produce a high and sustained postprandial glycemic response. Thus, a combination of tea polyphenols and specific starches could be used to manipulate postprandial glycemic response for glycemic control and optimal health.  相似文献   

18.
Prime barley starches were isolated in the laboratory by a conventional extraction procedure from regular (Condor), waxy (SB89528), and high amylose (Glacier) barleys; cationized; and evaluated as wet-end additives in papermaking. The cationized barley starches showed functionality (contribution to paper strength) comparable that of to a commercial grade cationic corn starch. The laboratory evaluation was followed by a pilot plant study in which an air-classified starch-rich fraction from Condor barley was purified by a short wet-extraction procedure. The starch obtained was then cationized, using a slightly different procedure than that used in the laboratory. Mass balances for starch extraction and cationization were obtained for the pilot plant study. The cationized barley starch needs evaluation in a Canadian paper mill.  相似文献   

19.
为探究不同类型玉米淀粉形成机理,对普通玉米、甜玉米、糯玉米淀粉积累、相关酶活及基因表达进行测定,分析不同类型玉米淀粉积累、相关酶活及基因表达之间的差异及相互关系。结果表明,不同类型玉米总淀粉和直链淀粉百分含量为:普通玉米>糯玉米>甜玉米,支链淀粉百分含量为:糯玉米>普通玉米>甜玉米,灌浆期间总淀粉和直链淀粉含量3个玉米类型间差异显著;灌浆期间,普通玉米各淀粉合成相关酶活性最高,甜玉米淀粉合成相关酶活性最低,糯玉米则介于普通玉米和甜玉米之间,但其GBSS酶活性很小。灌浆期间3个类型玉米除GBSS酶活性差异不显著外,其他淀粉合成相关酶活性差异显著;普通玉米淀粉合成相关基因表达量总体均高于甜玉米和糯玉米,甜玉米和糯玉米相关突变基因仍存在表达。表明不同类型玉米淀粉含量和组成上差异明显;普通玉米淀粉的形成需要淀粉合成相关酶相互作用,淀粉合成相关酶活性的缺失会改变淀粉组成;不同类型玉米淀粉合成相关基因表达差异显著,但都存在转录活性。对普通玉米进行相关性分析同时发现,淀粉的合成不仅受到转录调控,还受到转录后调控,淀粉的合成是淀粉合成各酶之间相互协调的结果。  相似文献   

20.
Starches from normal, waxy, and sugary‐2 (su2) corn kernels were isolated, and their structures and properties determined. The total lipid contents of normal, waxy, and su2 corn starches were 0.84, 0.00, and 1.61%, respectively. Scanning electron micrographs showed that normal and waxy corn starch granules were spherical or angular in shape with smooth surfaces. The su2 starch granules consisted of lobes that resembled starch mutants deficient in soluble starch synthases. Normal and waxy corn starches displayed A‐type X‐ray patterns. The su2 starch showed a weak A‐type pattern. The chain‐length distributions of normal, waxy, and su2 debranched amylopectins showed the first peak chain length at DP (degree of polymerization) 13, 14, and 13, respectively; second peak chain length at DP 45, 49, and 49, respectively; and highest detectable DP of 80, 72, and 76, respectively. The su2 amylopectin showed a higher percentage of chains with DP 6–12 (22.2%) than normal (15.0%) and waxy (14.6%) amylopectins. The absolute amylose content of normal, waxy, and su2 starches was 18.8, 0.0, and 27.3%, respectively. Gel‐permeation profiles of su2 corn starch displayed a considerable amount of intermediate components. The su2 corn starch displayed lower gelatinization temperature, enthalpy change, and viscosity; a significantly higher enthalpy change for melting of amylose‐lipid complex; and lower melting temperature and enthalpy change for retrograded starch than did normal and waxy corn starches. The initial rate of hydrolysis (3 hr) of the corn starches followed the order su2 > waxy > normal corn. Waxy and su2 starches were hydrolyzed to the same extent, which was higher than normal starch after a 72‐hr hydrolysis period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号