首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hard winter wheat (Triticum aestivum L.) flours (n = 72) were analyzed for free lipids (FL) and their relationships with quality parameters. The two main glycolipid (GL) classes showed contrary simple linear correlations (r) with quality parameters. Specifically, kernel hardness parameters, flour yields, and water absorptions had significant negative correlations with monogalactosyldiglycerides (MGDG) but positive correlations with digalactosyldiglycerides (DGDG). MGDG showed negative correlations with gluten content but positive correlations with gluten index. The percentages of DGDG in FL had significant positive correlations among cultivars (n = 12) with mixograph and bake mix times (r = 0.71, P < 0.01 and r = 0.67, P < 0.05, respectively), mixing tolerance (r = 0.67, P < 0.05), and bread crumb grain score (r = 0.71, P < 0.01). These results suggest that increasing DGDG in FL could contribute to enhancing wheat quality attributes including milling, dough mixing, and breadmaking quality characteristics. FL content and composition (ratio of MGDG or DGDG to GL) supplement flour protein content to develop prediction equations of mixograph mix time (R2 = 0.89), bake mix time (R2 = 0.76), and loaf volume (R2 = 0.72).  相似文献   

2.
The objective of this research was to determine whether computer‐analyzed (objective) mixograph parameters could replace conventional mixograph parameters in the evaluation of flour quality. The 642 hard winter wheat flours, collected from federal regional performance nurseries in 1995 and 1996, were analyzed by a conventional and computerized mixograph. Mixograph bandwidths at 6 min (BW6) showed the most significant linear correlation with subjective mixing tolerance scores (r = 0.81, P < 0.1%, n = 642). Prediction models of conventional and experimental baking parameters were developed by continuum regression using computer‐analyzed mixograph parameters of a calibration set (n = 282). The developed models could estimate conventional mixograph mixing time and tolerance scores, baking water absorption and mixing time, and bread loaf volume, showing R2 values of 0.86, 0.74, 0.68, 0.80, and 0.51, respectively, for a validation set (n = 380). These results indicated that computer‐analyzed mixograph parameters could be applied to develop prediction models to be used for flour quality evaluation in wheat breeding programs.  相似文献   

3.
This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best‐fit models for loaf volume, bake mix time, and water absorption had R2 values of 0.78–0.93 with five to eight variables. Crumb grain score was not well estimated, and had R2 values ≈0.60. For loaf volume models, grain or flour protein content was the most important parameter included. Bake water absorption was best estimated when using mixograph water absorption, and flour or grain protein content. Bake water absorption models could generally be improved by including farinograph, mixograph, or alveograph measurements. Bake mix time was estimated best when using mixograph mix time, and models could be improved by including glutenin data. When the data set was divided into calibration and prediction sets, the loaf volume and bake mix time models still looked promising for screening samples. When including only variables that could be rapidly measured (protein content, test weight, single kernel moisture content, single kernel diameter, single kernel hardness, bulk moisture content, and dark hard and vitreous kernels), only loaf volume could be predicted with accuracies adequate for screening samples.  相似文献   

4.
Flour proteins of hard and soft winter wheats grown in Oregon were characterized by size‐exclusion HPLC (SE‐HPLC). Flour pasting characteristics were assessed by a Rapid Visco Analyser (RVA). Principle component scores (PCS) were calculated from both RVA data and from absorbance area and % absorbance values from SE‐HPLC. The PCS and cross‐products, ratios, and squares were used to derive wheat classification and quality prediction models. A classification model calculated from PCS of SE‐HPLC data could reliably separate these hard and soft wheats. The prediction models for mixing and noodle characteristics showed better performance when calculated from PCS values of both SEHPLC and RVA data than from SE‐HPLC data only. The R2 values of prediction models for mixograph absorption, peak time, and tolerance were 0.827, 0.813, and 0.851, respectively. Prediction models for noodle hardness, cohesiveness, chewiness, and resilience immediately after cooking had R2 values of 0.928, 0.928, 0.896, and 0.855, respectively. These results suggest that multivariate methods could be used to develop reliable prediction models for dough mixing and noodle characteristics using just SE‐HPLC and RVA data.  相似文献   

5.
The accuracy of using near‐infrared spectroscopy (NIRS) for predicting 186 grain, milling, flour, dough, and breadmaking quality parameters of 100 hard red winter (HRW) and 98 hard red spring (HRS) wheat and flour samples was evaluated. NIRS shows the potential for predicting protein content, moisture content, and flour color b* values with accuracies suitable for process control (R2 > 0.97). Many other parameters were predicted with accuracies suitable for rough screening including test weight, average single kernel diameter and moisture content, SDS sedimentation volume, color a* values, total gluten content, mixograph, farinograph, and alveograph parameters, loaf volume, specific loaf volume, baking water absorption and mix time, gliadin and glutenin content, flour particle size, and the percentage of dark hard and vitreous kernels. Similar results were seen when analyzing data from either HRW or HRS wheat, and when predicting quality using spectra from either grain or flour. However, many attributes were correlated to protein content and this relationship influenced classification accuracies. When the influence of protein content was removed from the analyses, the only factors that could be predicted by NIRS with R2 > 0.70 were moisture content, test weight, flour color, free lipids, flour particle size, and the percentage of dark hard and vitreous kernels. Thus, NIRS can be used to predict many grain quality and functionality traits, but mainly because of the high correlations of these traits to protein content.  相似文献   

6.
Development of a small‐scale method to measure dough extensibility, using a 2‐g mixograph and the TA.XT2 texture analyzer (TA) equipped with Kieffer rig, suitable for early‐generation wheat quality screening is presented. Three hook speeds 3.3, 7.0, and 10.0 mm/sec were tested on the TA. Only at the lower hook speed of 3.3 mm/sec were wheats, varying in quality, clearly differentiated. The ability to differentiate between wheats using the TA was compared with the Brabender Extensigraph. The sample ranking based on the resistance to extension (Rmax) from the TA at a hook speed of 10.0 mm/sec correlated highly (r = 0.99) to the ranking obtained on the extensigraph. Dough extensibility data from the extensigraph and the TA, using hook speed 10.0 mm/sec, was correlated (r = 0.90) to loaf volume. Similarly, dough extensibility on the TA, using hook speed 3.3 mm/sec, was correlated to loaf volume (r = 0.96). The effect of three dough water contents (farinograph absorption, farinograph absorption + 6%, and 2‐g mixograph water absorption) on physical properties of dough were evaluated by mixing the dough in a 2‐g mixograph and testing the extensibility on the TA. Dough prepared at farinograph absorption + 6% and at mixograph absorption allowed differentiation between wheats based on the resistance to extension (Rmax).  相似文献   

7.
A computerized 2‐g direct drive mixograph was used to study the mixing characteristics of flours milled from a range of breadmaking cultivars obtained from five separate locations around the UK, providing 54 flour samples. Fifteen parameters were extracted from each mixograph trace using the Mixsmart software program and correlated with baking volume using partial least squares multiple regression statistical analysis to give a prediction of baking volume. Location had a considerable influence on the prediction of baking volume. Excellent predictions of baking volume were obtained from flours from individual locations (R2 = 0.805–0.995), but predictions based on all cultivars without discriminating locations were poor. When mixograph and baking volume data for each cultivar were averaged over all five locations, a very high correlation was obtained (R2 = 0.999). Preparation of flour samples using rapid, small‐scale milling procedures (Brabender Quadrumat Jr. mill and Perten 3100 hammer mill) did not have any adverse effect on prediction of baking volume. Mixograph parameters obtained from six commercial glutens of varying quality gave good correlations with test baking volumes, based on 6% gluten addition to a control flour.  相似文献   

8.
A negative relationship between dough strength and dough extensibility would pose a problem for breeding hard wheats, as both dough strength and dough extensibility are desirable. We derived 77 recombinant inbred lines (RIL) from a cross between hard red spring wheat cultivars McNeal and Thatcher. McNeal produces flour with stronger dough and lower extensibility than does Thatcher. RIL were evaluated for strength‐related properties using mixograph analysis and extensibility parameters using the Kieffer attachment to the TA.XT2 texture analyzer. Additionally, the RIL were test baked. Measurements using the mixograph and the Kieffer attachment were highly heritable. Maximum dough extensibility (Extmax) was negatively correlated with resistance to extension (Rmax) (r = ‐0.74) and with mixograph tolerance (r = ‐0.45). Loaf volume was correlated with both Rmax (r = 0.42) and area under the extensigraph curve (r = 0.44) based on partial correlation analysis adjusted for protein differences. Extmax was negatively correlated with loaf volume (r = ‐0.26). The McNeal allele for polymorphism at the Gli1‐B1 locus on chromosome 1BS caused high dough‐mixing tolerance and low dough extensibility. Our results suggest that traditional selection criteria in hard red spring wheat, including tolerance to dough mixing and high loaf volume, may result in reduced dough extensibility.  相似文献   

9.
To investigate relationships of wheat single kernel (SK) characteristics with end-use properties, we used 12 hard winter wheat cultivars harvested at six regions in Kansas in 1993. Significant positive correlations occurred among wheat hardness parameters including near-infrared reflectance hardness score, SK hardness index (SK-HI), and SK peak force (SK-PF) obtained by the Single Kernel Characterization System (SKCS). The SKCS characteristics also were significantly correlated to conventional wheat quality parameters such as test weight, kernel density, and kernel sizing. Flour yields were significantly correlated with SK-PF, SK-HI, and SK weight (SK-WT), suggesting the usefulness of SKCS in evaluating milling quality. The negative correlation of milling score with the standard deviation of SK-HI and SK-PF indicated that uniformity of SK hardness is desirable for good milling performance. However, bread loaf volumes had significant negative correlations with SK diameter and SK-WT, mainly due to the inverse relationship between wheat protein contents and kernel weights or sizes. Loaf volume regression values, the changes in loaf volumes per one percentage point of flour protein, also had significant negative correlations with SK-HI, SK-PF, and SK-WT.  相似文献   

10.
The progenies of four intervarietal durum wheat crosses were used to determine the effects of glutenin variants coded at Glu‐1 and Glu‐3 loci on durum wheat quality properties. The F2 lines were analyzed for high molecular weight (HMW) and low molecular weight (LMW) glutenin composition by electrophoresis. Whole grain derived F3 and F4 samples were analyzed for vitreousness, protein, and dry gluten contents, gluten index, SDS sedimentation volume, mixograph, and alveograph properties. Allelic variation at the Glu‐B1 and Glu‐B3 loci affected gluten quality significantly. Comparisons among the Glu‐B3 and Glu‐B1 loci indicated that the LMW glutenin subunits controlled by Glu‐B3 c and j made the largest positive contribution, followed by the alleles a, k, and b. HMW glutenin subunits 14+15 gave larger SDS values and higher mixing development times than subunits 7+8 and 20. The positive effects of the glutenin subunits LMW c and HMW 14+15 were additive. Flour protein content, vitreousness, and mixograph peak height values were positively correlated with each other as well as with Dglut values, whereas the SDS sedimentation highly correlated with mixing development time, alveograph strength, and extensibility but was not correlated with the other parameters. The results of quality analysis, together with the results of the genetic analysis, led to the conclusion that SDS sedimentation, mixograph mixing development time, and peak breakdown are the tests more influenced by allelic variation of prolamin. The uses of the results in durum wheat quality breeding programs are discussed.  相似文献   

11.
Solvent retention capacity (SRC) was investigated in assessing the end use quality of hard winter wheat (HWW). The four SRC values of 116 HWW flours were determined using 5% lactic acid, 50% sucrose, 5% sodium carbonate, and distilled water. The SRC values were greatly affected by wheat and flour protein contents, and showed significant linear correlations with 1,000‐kernel weight and single kernel weight, size, and hardness. The 5% lactic acid SRC value showed the highest correlation (r = 0.83, P < 0.0001) with straight‐dough bread volume, followed by 50% sucrose, and least by distilled water. We found that the 5% lactic acid SRC value differentiated the quality of protein relating to loaf volume. When we selected a set of flours that had a narrow range of protein content of 12–13% (n = 37) from the 116 flours, flour protein content was not significantly correlated with loaf volume. The 5% lactic acid SRC value, however, showed a significant correlation (r = 0.84, P < 0.0001) with loaf volume. The 5% lactic acid SRC value was significantly correlated with SDS‐sedimentation volume (r = 0.83, P < 0.0001). The SDS‐sedimentation test showed a similar capability to 5% lactic acid SRC, correlating significantly with loaf volume for flours with similar protein content (r = 0.72, P < 0.0001). Prediction models for loaf volume were derived from a series of wheat and flour quality parameters. The inclusion of 5% lactic acid SRC values in the prediction model improved R2 = 0.778 and root mean square error (RMSE) of 57.2 from R2 = 0.609 and RMSE = 75.6, respectively, from the prediction model developed with the single kernel characterization system (SKCS) and near‐infrared reflectance (NIR) spectroscopy data. The prediction models were tested with three validation sets with different protein ranges and confirmed that the 5% lactic acid SRC test is valuable in predicting the loaf volume of bread from a HWW flour, especially for flours with similar protein contents.  相似文献   

12.
The objective of this study was to evaluate protein composition and its effects on flour quality and physical dough test parameters using waxy wheat near‐isogenic lines. Partial waxy (single and double nulls) and waxy (null at all three waxy loci, Wx‐A1, Wx‐B1, and Wx‐D1) lines of N11 set (bread wheat) and Svevo (durum) were investigated. For protein composition, waxy wheats in this study had relatively lower albumins‐globulins than the hard winter wheat control. In the bread wheats (N11), dough strength as measured by mixograph peak dough development time (MDDT) (r = 0.75) and maximum resistance (Rmax) (r = 0.70) was significantly correlated with unextractable polymeric protein (UPP), whereas in durum wheats, moderate correlation was observed (r = 0.73 and 0.59, respectively). This may be due to the presence of high molecular weight glutenin subunits (HMW‐GS) Dx2+Dy12 at the Glu‐D1 locus instead of Dx5+Dy10, which are associated with dough strength. Significant correlation of initial loaf volume (ILV) to flour polymeric protein (FPP) (r = 0.75) and flour protein (FP) (r = 0.63) was found in bread wheats, whereas in durum wheats, a weak correlation of ILV was observed with FP (r = 0.09) and FPP (r =0.51). Significant correlation of ILV with FPP in bread wheats and with % polymeric protein (PPP) (r = 0.75) in durum lines indicates that this aspect of end‐use functionality is influenced by FPP and PPP, respectively, in these waxy wheat lines. High ILV was observed with 100% waxy wheat flour alone and was not affected by 50% blending with bread wheat flour. However, dark color and poor crumb structure was observed with 100% waxy flour, which was unacceptable to consumers. As the amylopectin content of the starch increases, loaf expansion increases but the crumb structure becomes increasingly unstable and collapses.  相似文献   

13.
Flour dispersed in aqueous solutions of sodium dodecyl sulfate (SDS) forms a proteinaceous gel when centrifuged at high speed. The conventional methodology for SDS gel testing was modified to develop a small-scale (<1 g of flour or wheat meal) screening test for evaluation of the protein quality of wheat for breadmaking. The principal modification involved centrifugation with a swinging-bucket rotor to facilitate direct measurement of gel height, which is the primary test parameter. The effects of suspension temperature and time, centrifugation speed, sample size, and sieving of ground wheat or flour on the efficacy of the test were examined. Gel height, wet weight, and protein content were assessed as test parameters. In the standard test procedure that was developed, 0.67 g of flour or ground whole wheat was dispersed in 13.5 mL of 1.5% SDS solution for 15 min at 20°C, followed by centrifugation at 80,000 × g for 30 min. The test was evaluated using seven Canadian commercial wheat flours with diverse breadmaking quality. For the samples, gel height was strongly related to loaf volume (R2 = 0.89 and 0.95 for flour and ground wheat, respectively). Sieving flour through a 75-μm sieve slightly increased the predictive power of the test (R2 = 0.94). SDS gel height gave better discrimination of samples for prediction of loaf volume than did the traditional SDS sedimentation test. The performance of the sedimentation test improved when sieved ground wheat was used. The relationship between gel height or protein content and flour protein content was comparatively poor (R2 = 0.25). The SDS gel test appears to primarily measure the effects of flour protein quality.  相似文献   

14.
Baking and 2‐g mixograph analyses were performed for 55 cultivars (19 spring and 36 winter wheat) from various quality classes from the 2002 harvest in Poland. An instrumented 2‐g direct‐drive mixograph was used to study the mixing characteristics of the wheat cultivars. A number of parameters were extracted automatically from each mixograph trace and correlated with baking volume and flour quality parameters (protein content and high molecular weight glutenin subunit [HMW‐GS] composition by SDS‐PAGE) using multiple linear regression statistical analysis. Principal component analysis of the mixograph data discriminated between four flour quality classes, and predictions of baking volume were obtained using several selected mixograph parameters, chosen using a best subsets regression routine, giving R2 values of 0.862–0.866. In particular, three new spring wheat strains (CHD 502a‐c) recently registered in Poland were highly discriminated and predicted to give high baking volume on the basis of two mixograph parameters: peak bandwidth and 10‐min bandwidth.  相似文献   

15.
The nicotinamide adenine dinucleotide coenzymes [NAD(P)(H)] are strong redox agents naturally present in wheat flour, and are indispensable cofactors in many redox reactions. Hence, it is not inconceivable that they affect gluten cross‐linking during breadmaking. We investigated the effect of increasing concentrations of NAD(P)(H) on gluten cross‐linking, dough properties, and bread volume using two flours of different breadmaking quality. Separate addition of the four nicotinamide coenzymes did not significantly affect mixograph properties. While addition of NAD+ hardly affected bread volume, supplementation with NADP(H) and NADH significantly decreased loaf volumes of breads made using flour of high breadmaking quality. Wheat flour incubation with NAD(P)H under anaerobic conditions increased wheat flour thiol content, while NAD(P)+ increased the extractability in SDS‐containing medium of the protein of the strong breadmaking flour. Based on the results, it was hypothesized that at least three reactions, competing for NAD(P)(H), occur during breadmaking that determine the final effect on protein, dough, and loaf properties. Next to coenzyme hydrolysis, the experiments pointed to coenzyme oxidation and NAD(P)(H) dependent redox reactions affecting protein properties.  相似文献   

16.
Various whole‐kernel, milling, flour, dough, and breadmaking quality parameters were compared between hard red winter (HRW) and hard red spring (HRS) wheat. From the 50 quality parameters evaluated, values of only nine quality characteristics were found to be similar for both classes. These were test weight, grain moisture content, kernel size, polyphenol oxidase content, average gluten index, insoluble polymeric protein (%), free nonpolar lipids, loaf volume potential, and mixograph tolerance. Some of the quality characteristics that had significantly higher levels in HRS than in HRW wheat samples included grain protein content, grain hardness, most milling and flour quality measurements, most dough physicochemical properties, and most baking characteristics. When HRW and HRS wheat samples were grouped to be within the same wheat protein content range (11.4–15.8%), the average value of many grain and breadmaking quality characteristics were similar for both wheat classes but significant differences still existed. Values that were higher for HRW wheat flour were color b*, free polar lipids content, falling number, and farinograph tolerance. Values that were higher for HRS wheat flour were geometric mean diameter, quantity of insoluble polymeric proteins and gliadins, mixograph mix time, alveograph configuration ratio, dough weight, crumb grain score, and SDS sedimentation volume. This research showed that the grain and flour quality of HRS wheat generally exceeds that of HRW wheat whether or not samples are grouped to include a similar protein content range.  相似文献   

17.
Measurements of creep‐recovery of flour‐water doughs were made using a dynamic mechanical analyzer (DMA) in a compression mode with an applied probe force of 50 mN. A series of wheat flour and blend samples with various breadmaking potentials were tested at a fixed water absorption of 54% and farinograph optimum water absorption, respectively. The flour‐water doughs exhibited a typical creep‐recovery behavior of a noncross‐linked viscoelastic material varying in some parameters with flour properties. The maximum recovery strain of doughs with a fixed water absorption of 54% was highly correlated (r = 0.939) to bread loaf volume. Wheat flours with a large bread volume exhibited greater dough recovery strain. However, there was no correlation (r = 0.122) between maximum creep strain and baking volume. The maximum recovery strain of flour‐water doughs also was correlated to some of the parameters provided by mixograph, farinograph, and TA‐XT2 extension.  相似文献   

18.
The effects of prolonged frozen storage on the starch, rheological, and baking properties of doughs were investigated. Four hard red spring (HRS) wheat cultivars exhibiting consistently different gluten characteristics were used. Gelatinization properties of starches isolated from fresh and thawed frozen doughs over 16 weeks of frozen storage were examined using differential scanning calorimetry (DSC). Significance of results varied with cultivar, but all cultivars showed a significant increase in ΔH with increased frozen storage time, indicating water migration and ice crystallization. The amount of freezable water in frozen doughs increased for all cultivars with frozen storage, but the rate of increase varied. Glupro showed a consistent increase in freezable water during frozen storage (41.6%), which may be associated with its high protein content and strong gluten characteristics. Rheological strength of the frozen doughs which was determined by decreases in extensigraph resistance and storage modulus (G′), declined throughout frozen dough storage. Proofing time increased from 45 min for fresh doughs to an average of 342 min for frozen doughs stored 16 weeks. Concomitantly, loaf volumes decreased from an average of 912 cm3 for fresh doughs to an average of 738 cm3 for the frozen doughs. Longer proof times and greater loaf volume loss were obtained for the cultivars exhibiting greater gluten strength characteristics.  相似文献   

19.
Gluten strength is the main factor determining the rheological and processing properties of wheat. Rapid, small‐scale tests that can indirectly predict gluten strength are extremely important for wheat‐breeding selection, particularly when using pedigree methodology. The efficiency and reliability of three small‐scale tests (SDS sedimentation volume [SDSS], swelling index of glutenin [SIG], and lactic acid retention capacity [LARC]) across three environments (E1, no stress; E2, drought stress; and E3, heat stress) were evaluated by using 15 common wheat and nine durum wheat cultivars. In the case of common wheat, SIG highlighted its advantage for predicting gluten strength, even under stress environments, compared with LARC and SDSS, whereas SDSS showed the best relationship with bread loaf volume. For durum wheat, SIG showed the best predicting value in E1 and E3; however, under drought stress, SDSS, SIG, and LARC all lost their good ability for predicting gluten strength in durum wheat, which needs further investigation. Also, the comparison between two mixograph parameters (mixograph peak time and mixograph peak integral) for predicting gluten strength and the suitability of testing SIG and LARC with whole meal (or semolina) instead of refined flour were also investigated.  相似文献   

20.
Protein and protein fractions were measured in 49 hard winter wheat flours to investigate their relationship to breadmaking properties, particularly loaf volume, which varied from 760 to 1,055 cm3 and crumb grain score of 1.0–5.0 from 100 g of flour straight‐dough bread. Protein composition varied with flour protein content because total soluble protein (SP) and gliadin levels increased proportionally to increased protein content, but albumins and globulins (AG), soluble polymeric proteins (SPP), and insoluble polymeric protein (IPP) levels did not. Flour protein content was positively correlated with loaf volume and bake water absorption (r = 0.80, P < 0.0001 and r = 0.45, P < 0.01, respectively). The percent SP based on flour showed the highest correlation with loaf volume (r = 0.85) and low but significant correlation with crumb grain score (r = 0.35, P < 0.05). Percent gliadins based on flour and on protein content were positively correlated to loaf volume (r = 0.73, P < 0.0001 and r = 0.46, P < 0.001, respectively). The percent IPP based on flour was the only protein fraction that was highly correlated (r = 0.62, P < 0.0001) with bake water absorption followed by AG in flour (r = 0.30, P < 0.05). Bake mix time was correlated positively with percent IPP based on protein (r = 0.86) but negatively with percent SPP based on protein (r = ‐0.56, P < 0.0001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号