首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of twin-screw extrusion conditions on wheat flour proteins were studied, using a two-level fractional factorial experimental design (11 and 14% protein content, 160 and 185°C, 16 and 20% moisture, 300 and 500 rpm screw speed, mass flow rate of 225 and 400 g/min). Total protein detectable by solid-phase bicinchoninic acid assay decreased slightly after extrusion, with greatest protein loss at 16% moisture and 160°C. Sulfhydryl content of both flours increased after extrusion at 185°C and 16% moisture with moderate specific mechanical energy (SME ≈ 400–600 kJ/kg) or 160°C and 16% moisture with high SME (SME > 1,000 kJ/kg). Disulfide bonds increased under comparable conditions but with moderate shear (SME = 510–540 kJ/kg). At 20% moisture and either temperature, sulfhydryl and total thiol contents decreased without corresponding increases in disulfides. Reversed-phase HPLC indicated gliadins were the fractions most affected by extrusion; high molecular weight glutenin subunits also were affected. Changes in gliadins were extensive at 185°C and 16% moisture and were minimal at 160°C and 20% moisture. SDS-PAGE confirmed the disappearance of protein bands and appearance of new material at low and high molecular weights, presumably resulting from polypeptide fragmentation followed by random radical recombination. Both protein fragmentation and cross-linking appeared to involve free radicals.  相似文献   

2.
In a study of the vanadyl (VO2+)‐humic acids system, the residual vanadyl ion suppressed fluorescence and specific electron paramagnetic resonance (EPR) and NMR signals. In the case of NMR, the proton rotating frame relaxation times (TH) indicate that this suppression is due to an inefficient H‐C cross polarization, which is a consequence of a shortening of TH. Principal components analysis (PCA) facilitated the isolation of the effect of the VO2+ ion and indicated that the organic free radical signal was due to at least two paramagnetic centres and that the VO2+ ion preferentially suppressed the species whose electronic density is delocalized over O atoms (greater g‐factor). Additionally, the newly obtained variables (principal components – PC) indicated that, as the result of the more intense tillage a relative increase occurred in the accumulation of: (i) recalcitrant structures; (ii) lignin and long‐chain alkyl structures; and (iii) organic free radicals with smaller g‐factors.  相似文献   

3.
Distillers dried grains with solubles (DDGS) is the main coproduct of the U.S. fuel ethanol industry and has significantly impacted the livestock feed markets in recent years. Particle agglomeration and subsequent flowability problems during storage and transport are often a hindrance, a nuisance, and expensive. This paper aims at characterizing the glass transition (Tg) and sticky point (Ts) temperatures of DDGS samples prepared with varying condensed distillers solubles (CDS) levels (10, 15, and 20%, wb), drying temperatures (100, 200, and 300°C), and moisture contents (0, 10, and 20%, db), and it discusses implications on DDGS flowability behavior. Distillers wet grains were combined with specified levels of CDS and dried in a convection‐style laboratory oven to produce DDGS. Subsequently, predetermined amounts of water were added to the DDGS to achieve desired moisture content levels. To determine Tg (°C), a differential scanning calorimeter was used, whereas Ts (°C) was determined through a novel technique with a rheometer. Results indicated high correlations between observed Ts and observed Tg (R2 = 0.87) data for DDGS samples. Also, the empirical model for predicted Tg = f (drying temperature, CDS level, and moisture content) based on the Gordon–Taylor model showed favorable R2 (0.74). Stickiness of DDGS increased with an increase in moisture content, indicating flow problems resulting from moisture. It was found that drying temperatures and CDS levels each had significant effects on Tg and Ts as well.  相似文献   

4.
EPR spectra of soluble coffee display single-line free radical signals in both the solid state and aqueous solution, along with signals from the paramagnetic ions Fe(III) and Mn(II). The intensity of the free radical signal in the pure solid was estimated to be ca. 7.5 x 10(16) unpaired electrons/g, and there was no significant change on dissolution in water. In aqueous solutions, however, the free radical signal declined rapidly over ca. 10-15 min in the temperature range 20-65 degrees C, after which only slow changes were observed. This decline, which was essentially independent of atmosphere, was greatest for the lowest temperatures used, and the intensity after 1 h fitted well to an exponential curve with respect to temperature. The free radicals responsible for the single-peak EPR signal did not react with any of the spin traps tested in the present experiments, but unstable free radicals with parameters consistent with adducts of C-centered radicals were detected in coffee solutions in the presence of PBN and 4-POBN spin traps. The presence of oxygen in the solutions increased the initial rate of formation of these free radical adducts. No adducts were detected when DEPMPO was used as spin trap. However, *OH adducts of DEPMPO were shown to be unstable in the presence of coffee, a fact which illustrates the strong free radical scavenging ability of coffee solutions.  相似文献   

5.
This research investigated the effects of micronization, at different moisture levels, on the chemical and rheological properties of wheat. A set of tests designed to analyze protein fraction characteristics and rheological behaviors were conducted on samples from four wheat cultivars (AC Karma, AC Barrie, Glenlea, and Kanata). After being subjected to infrared radiation at three moisture levels (as‐is, 16%, and 22%), the seeds were milled to produce straight‐grade flour. The protein fractionation test revealed significant decreases (P ≤ 0.01) in both monomeric proteins (from 54% of total protein in the control to 37% in the tempered micronized sample) and soluble glutenins (9.4–2.5%). There was a strong negative correlation (r = ‐0.98) between the percentages of monomeric proteins and insoluble glutenins. Total extractable proteins of micronized samples tempered to 22% moisture decreased 43.5% when compared with nonmicronized control samples using size‐exclusion HPLC (SE‐HPLC). Micronization had a significant effect on gluten properties, as seen from a decrease in water absorption (P ≤ 0.01) and dough development time (P ≤ 0.01). Results showed that micronization at 100 ± 5°C had detrimental effects on wheat flour gluten functionality, including a decrease in protein solubility and impairment of rheological properties. These phenomena could be due to the formation of both hydrophobic and disulfide bonds in wheat during micronization.  相似文献   

6.
Differential scanning calorimetry (DSC) was used to study the effect of sucrose on wheat starch glass transition, gelatinization, and retrogradation. As the ratio of sucrose to starch increased from 0.25:1 to 1:1, the glass transition temperature (Tg, Tg′) and ice melting enthalpy (ΔHice) of wheat starch‐sucrose mixtures (with total moistures of 40–60%) were decreased to a range of −7 to −20°C and increased to a range of 29.4 to 413.4 J/g of starch, respectively, in comparison with wheat starch with no sucrose. The Tg′ of the wheat starch‐sucrose mixtures was sensitive to the amount of added sucrose, and detection was possible only under conditions of excess total moisture of >40%. The peak temperature (Tm) and enthalpy value (ΔHG) for gelatinization of starch‐sucrose systems within the total moisture range of 40–60% were increased with increasing sucrose and were greater at lower total moisture levels. The Tg′ of the starch‐sucrose system increased during storage. In particular, the significant shift in Tg′ ranged between 15 and 18°C for a 1:1 starch‐sucrose system (total moisture 50%) after one week of storage at various temperatures (4, 32, and 40°C). At 40% total moisture, samples with sucrose stored at 4, 32, and 40°C for four weeks had higher retrogradation enthalpy (ΔH) values than a sample with no sucrose. At 50 and 60% total moisture, there were small increases in ΔH values at storage temperature of 4°C, whereas recrystallization of samples with sucrose stored at 32 and 40°C decreased. The peak temperature (Tp), peak width (δT), and enthalpy (ΔH) for the retrogradation endotherm of wheat starch‐sucrose systems (1:0.25, 1:0.5, and 1:1) at the same total moisture and storage temperature showed notable differences with the ratio of added sucrose. In addition, Tp increased at the higher storage temperature, while δT increased at the lower storage temperature. This suggests that the recrystallization of the wheat starch‐sucrose system at various storage temperatures can be interpreted in terms of δT and Tp.  相似文献   

7.
Electron paramagnetic resonance (EPR) studies were conducted on barley seeds exposed to normal (H(2)O) and deuterated (D(2)O) moisture, irradiated with 750 Gy at 77 K. Reported here, for the first time, are the trapped electrons formed on gamma-irradiation of seeds at 77 K. Electrons are stabilized/solvated with an increase in the moisture content (H(2)O/D(2)O) of seeds. The recombination of the trapped electron with radical cation gave intense thermoluminescence emission at 110 K. With the increase in temperature and the destruction of singlet, unmasking of an underlying heterogeneous population of free radicals was observed. These free radicals emanate mainly from the endosperm (approximately 95% by wt of the seed), whereas irradiated embryos show a broad multiplet of comparatively low amplitude. Radiolysis of carbohydrate, proteins (approximately 95% of endosperm), and lipids could possibly be responsible for the heterogeneous population of free radicals. Peroxyl radicals were also observed on annealing.  相似文献   

8.
Waxy (short grain), long grain, and parboiled (long grain) rice flours were extruded using three different temperatures and five different water feed rates. The water absorption and water solubility index of the extrudates was 0.67–5.86 and 86.45–10.03%, respectively. The fat absorption index was similar to that of unextruded flours with an average value of 0.96 g/g ± 0.12. Bulk density decreased with an increase in moisture, except waxy rice, which had a quadratic relationship. The viscosity profiles for long grain and parboiled rice were similar. Both initially increased in viscosity (>130 RVU), then decreased to ≈40 RVU. The final viscosity was ≈60 RVU. Waxy rice viscosity remained low (<20 RVU), then doubled upon cooling. The main difference in the digestion profiles was due to temperature. The flours extruded at 100°C digested significantly slower than those extruded at 125 and 150°C. Significant differences were not detected for a given temperature and moisture (P > 0.05) except for long grain and parboiled rice extruded at 100°C and 15% added moisture (F = 4.48, P = 0.03) and 150°C and 20% added moisture (F = 3.72, P = 0.05). Moisture appeared to have little effect for a given temperature, except when parboiled rice was extruded at 150°C. The digestion rate for 11 and 25% added moisture was significantly less than that for 20% (P ≤ 0.05).  相似文献   

9.
Flours differing in water content of 10% (F10), 12% (F12), and 14% (F14) were stored for 16 weeks at 22, 32, and 45°C. The major changes in lipids concerned the free fatty acids (increase) and the triglycerides (decrease). In all cases, the changes increased with increasing storage temperature and water content. After 16 weeks of storage, the losses in lipoxygenase (LOX) activity increased with increasing flour moisture and storage temperature from 10% for F10 at 22°C to 100% for F14 at 45°C. At the end of storage at 22 and 32°C, the bread volumes decreased by 10 and 25%, respectively, with no statistical differences (P < 0.05) between the samples. At 45°C, the volume losses were equal to 35, 46, and 61% for the F10, F12, and F14 samples, respectively. In the same time, the flour oxidative ability (oxygen uptake during dough mixing) increased for the F10 and F12 samples with increasing storage temperature, whereas it decreased for the F14 samples stored at 45°C. Therefore, provided the residual LOX activity is sufficient (omission of the F14 samples stored at 45°C), the flour oxidative ability increased during storage and is positively correlated to its oxidable PUFA content.  相似文献   

10.
White and blue corns of Mexican and American origins were lime-cooked to obtain nixtamals with optimal moisture (48–50%) for tortillas and chips. Blue kernels had less bulk density, softer endosperm and, consequently, required less cooking time than the white kernels. The optimum cooking regime for the white kernels was 100°C for 20 min, while the optimum for both pigmented genotypes was 90°C for 0 min (until the lime-cooking solution reached 90°C). Doughs, tortillas, and chips were characterized by total soluble phenolics (TSP), anthocyanins (ACN), and antioxidant capacity (AOX). A dough acidification procedure using fumaric acid (pH 5.2) was assessed as a means to improve TSP, ACN, and AOX retention. The Mexican blue corn had higher AOX (16%) than the American blue genotype, although the latter had a threefold higher TSP content (12.1 g/kg, dwb). Mexican and American blue corns had higher AOX capacity (29.6 and 25.6 μM trolox equivalents [TE]/g dwb), respectively, than the white corn (17.4 μM TE/g). White corns did not have detectable amounts of ACN, while blue Mexican and American kernels contained 342 and 261 mg/kg. Lime cooking had the greatest negative impact on the stability of TSP, ACN, and AOX. However, the acidification reduced ACN, TSP, and AOX losses by 8–23, 3–14, and 4–15%, respectively. Similar ACN losses were observed for both types of blue kernels when processed into nixtamal/dough (47%); however, ACN losses in tortillas and chips manufactured from the American blue genotype were higher (63 and 81%, respectively) than those of Mexican blue corn products (54 and 75%). ACN losses were highly correlated to TSP (r = 0.91) and AOX capacity losses (r = 0.94).  相似文献   

11.
The antioxidant properties of components of leaf extracts of the evergreen plant, Sempervivum tectorum (ST), have been evaluated using UV irradiated liposomal systems containing the spin trap 5-(diethoxyphosphoryl)-5-methyl-pyrroline-N-oxide. Decreases in free radical activity in the liposomal systems as measured by electron paramagnetic resonance (EPR) spectroscopy demonstrate that the lipophilic ST juice components, kaempferol (KA) and kaempferol-3-glucoside (KG) contribute significantly to the antioxidant properties of the juice. EPR spectral simulation established the presence of oxygen and carbon centered free radical adducts. The mixtures with low pH, citric and malic acid, and ST juice reveal increased EPR signals from oxygen centered radicals in comparison to the control, pointing to the important role of pH in oxygen radical formation. Parallel assays that measured thiobarbituric acid related substances confirm the antioxidant effects of KA and KG and explain the results of spin trapping experiments complicated by low pH's.  相似文献   

12.
The objective of this research was to analyze the antioxidant capacity directly of water‐extractable nonstarch polysaccharides (NSP) and feruloylated arabinoxylans (WEAX) following their characterization. NSP were isolated from barley, wheat, and wheat fractions (germ, bran, and aleurone). WEAX were extracted only from wheat fractions. Antioxidant capacity of NSP measured with the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH), 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS), and oxygen radical absorbance capacity (ORAC) assays was 24.0–99.0, 40.0–122.0, and 140.0–286.0μM Trolox equivalents (TE)/g, respectively. The antioxidant capacity of WEAX was 75.7–84.0, 58.0–105.0, and 110.0–235.0μM TE/g for those three assays. DPPH and ABTS were highly correlated to xylose content (R2 = 0.85), degree of substitution (R2 = −0.99), total phenolic acids (R2 = >0.73), total phenolic content (TPC) (R2 = >0.78), and ferulic acid content (R2 = >0.86). ORAC was only influenced by TPC (R2 = 0.63). By taking yield and antioxidant capacity into account, NSP would provide about 0.4–4.2, 0.6–5.1, and 2.8–12.0μM TE/g of flour of radical scavenging activity as measured by DPPH, ABTS, and ORAC, respectively, compared with WEAX (0.4–1.0, 0.3–1.3, and 0.6–2.8μM TE/g). Our results suggest that NSP or WEAX may play a role in protection against free radicals in a food matrix and likely in the gastrointestinal tract.  相似文献   

13.
Free radicals in olive oils were identified and quantified by EPR, by means of the spin-trapping technique making use of alpha-phenylbutylnitrone (PBN) as spin trap. The radical species were identified as PBN-trapped hydroxyl radicals (PBN-*OH) in the water microdroplets inside the fat medium. The largest radical concentration was 12.5 microM identical with 100%. The following were the relative concentrations of the radicals under different conditions: (1) Two oils, produced by continuous centrifugation, aged for 1 year, showed a 25-30% increase in the radicals compared to nonaged oils; 1-year-old oil, produced by pressure, did not differ from the nonaged oil. (2) Radical production was markedly reduced by N(2) bubbling; it was increased by heating, whereas it showed a biphasic pattern by air bubbling over time. (3) Radical concentration as a function of the UV irradiation time increased up to a maximum, after which it decreased and finally remained constant. The phenolic and oxygen contents were related to the radical content. This study demonstrates that the EPR technique is suitably applied to the detection of free radicals in olive oil and that storage, handling, and stress conditions of the oils significantly influence the radical concentration.  相似文献   

14.
Nonwaxy rice starch was cross‐linked with sodium trimetaphosphate and sodium tripolyphosphate to obtain different degrees of cross‐linking (9.2, 26.2, and 29.2%). The objective was to investigate the influence of cross‐linking on thermal transitions of rice starch. Starch suspensions (67% moisture) were heated at 2°C/min using differential scanning calorimetry (DSC) to follow melting transition of amylopectin. Biphasic transitions were observed at ≈60–95°C in all samples. Melting endotherms of amylopectin shifted to a higher temperature (≤5°C) with an increasing degree of cross‐linking, while there was no dramatic change in enthalpy. Recrystallization during aging for 0–15 days was significantly suppressed by cross‐linking. The delayed gelatinization and retrogradation in crosslinked starch were evident due to restricted swelling and reduced hydration in starch granules. Glass transition temperature (Tg) measured from the derivative curve of heat flow was ‐3 to ‐4°C. No significant change in Tg was observed over the storage time studied.  相似文献   

15.
This study was conducted to develop a ready‐to‐eat extruded food using a single‐screw laboratory extruder. Blends of Indian barley and rice were used as the ingredients for extrusion. The effect of extrusion variables and barley‐to‐rice ratio on properties like expansion ratio, bulk density, water absorption index, hardness, β‐glucan, L*, a*, b* values, and pasting characteristics of extruded products were studied. A central composite rotatable design was used to evaluate the effects of operating variables: die temperature (150–200°C), initial feed moisture content (20–40%), screw speed (90–110 rpm), and barley flour (10–30%) on properties like expansion ratio, bulk density, water absorption index (WAI), hardness, β‐glucan, L*, a*, b* values, and sensory and pasting characteristics of extruded products. Die temperature >175°C and feed moisture <30% resulted in a steep increase in expansion ratio and a decrease in bulk density. Barley flour content of 10% and feed moisture content of <20% resulted in an increased hardness value. When barley flour content was 30–40% and feed moisture content was <20%, a steep increase in the WAI was noticed. Viscosity values of extruded products were far less than those of corresponding unprocessed counterparts as evaluated. Rapid visco analysis indicated that the extruded blend starches were partially pregelatinized as a result of the extrusion process. Sensory scores indicated that barley flour content at 20%, feed moisture content at 30%, and die temperature at 175°C resulted in an acceptable product. The prepared product was roasted in oil using a particular spice mix and its sensory and nutritional properties were studied.  相似文献   

16.
Changes in gelatinization and retrogradation properties of two rice cultivars, Bengal and Kaybonnet, during rough rice storage were studied using differential scanning calorimetry (DSC). The storage variables included two storage moisture contents (12 and 14%), three storage temperatures (4, 21, and 38°C), and four storage durations (0, 3, 9, and 16 weeks). Rough rice cultivar, storage temperature, moisture content, and duration affected (P < 0.05) the enthalpies and temperatures of gelatinization and retrogradation of rice flour. Bengal had a higher gelatinization enthalpy (P < 0.005) but lower gelatinization temperatures (P < 0.0001) than the long-grain Kaybonnet. Rice stored at 38°C exhibited higher gelatinization enthalpy and temperatures (P < 0.05) than those stored at 4 or 21°C. Storage duration affected the gelatinization and retrogradation properties through a higher order, rather than a linear, relationship.  相似文献   

17.
This study used 1H nuclear magnetic resonance (NMR) spin‐spin relaxation time (T2) and differential scanning calorimetric (DSC) measurements of unfreezable water content (UFW), to assess water behavior in freshly prepared (25°C), refrigerator‐stored (4°C, one day), or freezer‐stored (–35°C, one day) doughs containing 5, 10, or 30% whole grain, air‐classified β‐glucan‐diminished, and air‐classified β‐glucan‐enriched (BGB‐E) barley flours. Three populations of water were detected by NMR, depending on moisture content of dough, namely, tightly (T21, 2–5 msec), less tightly (T22, 20–50 msec), and weakly (T23, 100–200 msec) bound water. T22 peak was always detectable, and T22 peak time linearly correlated to moisture content of dough in a range of 0.7–2.0 g/g db (r = 0.99, P < 0.05). Freezer storage showed less effect on water mobility in dough compared with refrigerator storage, whereas cooking and cool storage of cooked dough significantly decreased the water mobility (P < 0.05). Adding barley flour steadily decreased the water mobility in dough, and the reduction was more significant with adding BGB‐E (P < 0.05). Immobile water content was calculated by extrapolating T22 peak time versus total moisture content in dough and significantly correlated to the UFW content measured by DSC (r = 0.72, P < 0.05).  相似文献   

18.
《Cereal Chemistry》2017,94(2):298-309
Ethanol production in 2015 was over 15 million gallons in the United States, and it is projected to increase in the next few years to meet market demands. With the continued growth in the ethanol industry, there has been enormous expansion in distillers grains production. Because the local market for distillers dried grains with solubles (DDGS) is often saturated, it is essential to transport DDGS long distances, across the United States and to international markets. Caking and agglomeration of DDGS particles in hoppers and other storage structures are typical during transportation. The current study deals with DDGS prepared by combining condensed distillers solubles (CDS) with distillers wet grains and then drying at varying temperatures. DDGS was stored in conical hoppers under varying ambient temperature, consolidation pressure, and time conditions. We investigated the effects of CDS (10, 15, and 20% wb), drying temperature (100, 200, and 300°C), drying time (20, 40, and 60 min), cooling temperature (0, 25, and 50°C), consolidation pressure (0, 1.72, and 3.43 kPa), and consolidation time (0, 3, and 6 days) levels on various flow parameters. To examine these factors, Taguchi's experimental design with an L 18 orthogonal array was implemented. Response surface modeling yielded mass flow rate = f (Hausner ratio, angle of repose) with R 2 = 0.99, and it predicted moisture content for good, fair, and poor flow. Results showed that drying temperature, drying time, and cooling type were the main factors in predicting mass flow rate. The Johansson model for predicted mass flow rate was calibrated with experimental data, and a new parameter, compressibility factor, with a value of 0.96 g2/(min cm3), was determined to quantify the divergence of compressible and cohesive materials (such as DDGS) for free‐flowing bulk solids. Thus, the predicted models may be beneficial for quantitative understanding of DDGS flow.  相似文献   

19.
The glass transition temperature of gluten at different moisture levels was determined by differential scanning calorimetry and mechanical spectrometry. The dynamic moduli (G′ and G″) of gluten with 10–40% moisture were measured as a function of temperature by pressure rheometry. At 10% moisture, gluten exhibited entangled polymer flow at 92–140°C and networking reactions at higher temperatures. At higher moisture levels, gluten experienced structured flow before networking cross‐linking reactions. The onset temperature of the reaction zone was 120°C in 20% moisture gluten and 93°C at moisture levels of 30–40%. Softening of the vitrified network occurred at 184, 181, and 170°C in 20, 30, and 40% moisture gluten, respectively. A preliminary state diagram of gluten as a function of moisture and temperature was developed.  相似文献   

20.
The impact of extrusion on physical and sensory properties and on the in vitro bile acid (BA) binding was examined for N979 and Jim oat (Avena sativa) lines with 8.1 and 4.8% β‐glucan, respectively. Based on hardness and edibility of products made from Jim oats, moisture concentrations of 16–25% and temperatures of 165–180°C were selected for N979 extrusion. Jim‐based cereal had a significantly greater (P < 0.05) expansion ratio than did N979‐based cereal at most moistures. N979 cereal was browner, but not harder, than Jim cereal. Extruded products from N979 and Jim oats had 5.29–5.99% and 3.38–3.94% β‐glucan, respectively. Changing extrusion temperature or moisture content did not affect β‐glucan concentration in the products. N979 cereal made at 165°C and 16% moisture had greater BA binding than at other conditions, and had crunchiness comparable to cereals made at other conditions. BA binding of Cheerios brand breakfast cereal was close to that of N979 cereal made at 180°C and 18% moisture, but lower than cereals made at other conditions. Cereals made from Jim and N979 oats were browner, harder, coarser, and crunchier than Cheerios breakfast cereal. Proper processing and preparation techniques should be considered when producing extruded products from high β‐glucan oats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号