首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
农机数据采集传输系统的设计与实现——基于CAN总线   总被引:1,自引:0,他引:1  
刘传茂  王熙 《农机化研究》2016,(12):207-211
随着CAN总线的发展应用,越来越多的农业机械开始装备使用CAN总线,采集农机CAN数据对于农机作业运行及故障维修的应用研究具有重要意义。农机CAN总线数据采集传输系统,能够实时采集、解析、传输农机CAN总线数据信息,且可将数据传输到PC机进行数据处理和数据分析。为此,详细介绍了基于单片机、CAN控制器及CAN收发器的农机CAN总线数据采集传输系统,并给出了硬件设计和软件实现。试验表明:该系统将发动机转速、油耗、经纬度、高程等数据解析并传输存储,在实际应用过程中,系统可靠性好,信息准确、运行正常。  相似文献   

2.
智能农机控制系统作为智能化农业的重要组成部分,对于提高农机作业效率和农作物生产质量具有重要意义。该文系统论述了智能农机控制系统的结构组成与应用现状,主要包括机器视觉、传感器、数据采集与处理、控制算法等,能够实现对农机的智能化控制和优化,可以对农机的运动、作业、灌溉和施肥等过程进行实时监控和调节,从而提高农机作业效率和农作物生产质量,促进农业现代化进程。未来智能农机控制系统应逐步实现多机协同,并将智能农机控制系统的数据与地理信息系统进行融合,以实现更全面、准确的农田管理和决策支持。  相似文献   

3.
农机装备智能测控技术研究现状与展望   总被引:4,自引:0,他引:4       下载免费PDF全文
农机装备正朝着智能化方向发展,智能测控是实现智能农机的核心技术。农机装备智能测控技术以农机装备为载体,包括农机作业相关信息智能感知、精准监控和作业决策与管理等技术。目前,我国农机装备智能测控存在高端装备、核心技术国产化程度低的问题。本文从农机作业智能感知技术、农机装备精准监控技术和农机作业智能决策与管理技术等方面对国内外研究现状进行综述。阐述了作物生长信息、土壤信息和农机作业状态信息等智能感知技术的大量成果;阐述了耕深、平整地、土壤消毒、播种、植保和收获领域的农机装备精准监控技术的研究进展;阐述了农机作业智能决策与管理技术在农机作业质量监管、农机调度方面的技术突破;重点阐述了农机装备智能测控技术在土地耕整机、土壤消毒机、播种机、施肥机、植保机、收获机及农机作业管理平台的应用现状,分析了各环节待解决的问题。最后,提出了农机装备智能测控技术未来发展方向:农机装备智能测控系统化技术研究;无人农场农机自主作业关键测控技术研究;田间复杂环境农机核心部件及传感器研发;农机大数据支撑的作业决策模型研究。  相似文献   

4.
基于智能快递终端存取方案的农机信息化管理系统   总被引:1,自引:0,他引:1  
针对多农机规模化作业管理的需求,参照智能快递终端存取方案,设计了一套基于GPS和GPRS的农机信息系统,由信息采集终端、通信网络和监控终端组成。信息采集终端将农机作业实时信息通过GPRS网络和因特网上传到监控终端,监控终端具有数据通信与解析、数据存储与查询、农机具位置实时显示与轨迹回放等功能。为了验证方案的可行性,对系统进行了测试,结果表明:采用农机信息系统可以成功显示农机实时作业信息和状态,而且采用信息系统可以明显提高农机的调度和作业效率,对于农机规模化作业的研究具有重要的现实意义。  相似文献   

5.
赵星 《南方农机》2024,(5):182-184
本研究基于大数据技术,探索了农机作业数据挖掘与决策分析技术,旨在为农业生产提供智能决策支持。笔者通过深入分析大数据技术特点,建立了系统化的数据采集、挖掘分析和智能决策支持框架。实证研究验证了该框架在农机作业领域的有效性和潜在应用,为农业生产提供了可靠的智能化管理方案。  相似文献   

6.
智慧农机调配管理平台设计与实现   总被引:2,自引:0,他引:2  
针对目前农机作业过程中资源调度不合理、效率低下以及缺乏有效的农机调度与监管手段等问题,提出一种基于互联网的智慧农机管理平台。该平台分为数据采集层、网络传输层、平台层、访问层、用户层5个层次。围绕该平台,开发谷物收割机的机载数据采集单元,"我是地主"、"我是机手"手机APP,通过终端+APP的方式,将农机信息,服务供需双方信息进行实时动态匹配和对接,解决农机服务过程中供需之间的信息不对称问题。为解决大规模数据高并发的数据接收和存储问题,给出三层数据接收与存储架构,该结构同时具备良好的可扩展性。以机手为服务对象,提出在多目标约束下的基于回溯策略的农机智能调度算法,在作业季内可提高机手收益20.6%,实现了对农机资源的高效调配。设计改进型的三角形分割法,该方法提高农机作业面积计算精确性,使平均相对误差降至4.5%以下,减少农机服务过程中因测量作业面积产生的人力成本,能够满足服务费用快速计算的要求。将互联网技术融入农业机械的作业和管理环节,为实现农业机械作业全程信息化和智能化进行有益的尝试。  相似文献   

7.
基于LabVIEW的联合收割机远程作业数据采集系统   总被引:1,自引:1,他引:0  
针对联合收割机工作状况远程监测需求,设计一种基于LabVIEW的远程作业数据采集系统。通过霍尔转速传感器和谷物损失量传感器分别对联合收割机主要工作部件转速(或频率)以及出草口处谷物损失量进行监测,同时通过车载GPS模块实时获取收割速度与位置,最后经GPRS模块将采集到的联合收割机工作数据传输到云端存储。运行数据表明,该系统可稳定远程监测联合收割机转速(或频率)以及损失量等。  相似文献   

8.
推进我国农业的全程全面机械化对于实现我国农业现代化具有十分重要的意义。为此,设计了一款基于物联网技术的农机作业参数采集器,实现数据采集器与物联网相结合。该采集器可以实现农机作业参数的采集、处理、存储和数据的无线传输与监测调控,不仅可以节省人力、克服主观操作误差及提高数据的可靠性,还可以推进农机的科学管理与调度,为我国农业全程全面机械化提供数据支持。  相似文献   

9.
我国农机作业配套服务信息缺失,需要便捷、准确、高效的农机服务信息采集系统。为此,设计开发了基于Android智能终端的便携式农机作业服务信息采集系统,应用Google Maps的电子地图和遥感地图开放资源,通过GPS实时定位或地图拾取方式进行农田地块、维修点、加油站、粮库等农机作业服务信息采集,实现地物属性及图像信息的快速获取、远程传输与动态更新,为规模化农机作业服务提供更加高效、科学的信息支持。系统应用实践表明:地图数据清晰可信、界面操作简便、数据传输可靠。  相似文献   

10.
基于Web-GIS的多机协同作业远程监控平台设计   总被引:4,自引:0,他引:4  
为了实现对多机协同导航作业的实时远程监控,设计了基于Web-GIS的多机协同作业远程监控平台。该平台主要包括数据收发、数据存储、数据查询、数据显示和数据分析模块。其中,数据收发模块采用Socket技术实时接收多机位置和航姿等作业信息,并可以向车载终端发送远程控制命令。数据存储模块负责将接收到的作业信息存储到相应的SQL Server数据表中。数据查询模块用于多机作业历史信息的查询,并以表格的形式将查询结果呈现在网页中。数据显示模块结合Web-GIS技术,通过与百度地图服务器进行实时交互,实现多机作业轨迹的可视化显示。数据分析模块实时分析处理多机位置和航姿信息,对各农机进行决策分析和任务调度,从而实现多机协同作业。试验结果表明:平台具有良好的稳定性,能够实时显示多机作业轨迹和作业信息,并可以实现多机任务调度,从而满足多机协同作业需求。  相似文献   

11.
针对农田灌区范围广、数据量大和实时传输难的特点,设计了一种基于无线传感器网络的农田自动节水灌溉系统;综合运用无线传感器智能信息处理技术和无线数据通信技术,全面提升系统的自动化与监测水平。该系统采用星型拓扑结构组网,通过在监测区域部署ZigBee网络节点,将监测数据汇集到嵌入式测控系统,实现统一的数据管理和网络路由监测功能;以微处理器芯片为核心控制器件,由无线传感器网络节点实时采集和处理土壤温湿度数据,并将其发送到接收端,在接收端对数据进行存储和显示,实时监测土壤温湿变化,实现节水灌溉的自动化控制及水资源的高效利用。试验证明,该系统稳定性好,数据传输可靠性高,通过增加数据采集频率,减少了数据丢包率,使用灵活,适用于不便直接连线的一般监测场合应用。  相似文献   

12.
基于CAN总线的联合收割机脱粒滚筒测控系统研究   总被引:1,自引:0,他引:1  
提出了一种基于CAN总线的联合收割机脱粒滚筒测控系统的设计方法。利用LM3S8962芯片构建了各个CAN智能控制节点,并利用CAN总线多主通信的优势,将各个节点采集到的数据传送给上位机,通过上位机的数据处理和判断,实现了联合收割机参数的智能采集和脱粒滚筒的智能化控制。此外,基于Labwindows/CVI设计了相应的上位机监控软件,实现了数据的实时显示和存储,为操作人员提供了友好的人机界面和操作平台。该系统灵活方便、可靠性好、抗干扰能力强、通信速率高,是联合收割机脱粒滚筒关键作业性能数据采集与控制的有效解决方案。  相似文献   

13.
为了将智能车载终端应用于大型拖拉机上,对拖拉机CAN总线车载智能终端技术进行了研究。该车载智能终端系统由农机CAN总线数据解析器及车载计算机等组成。农机CAN总线数据解析器根据ISO11783农机CAN总线协议,对拖拉机作业产生的CAN数据进行解析,并使用VB6.0软件编写了车载计算机应用程序。该程序能够对解析后的CAN数据进行处理、存储、传输和显示。车载智能终端具有拖拉机作业参数实时监测、作业轨迹显示、虚拟仪表等功能,能够辅助驾驶操作和精准管理。  相似文献   

14.
设计了基于激光雷达的农田环境点云采集系统,可实现农田环境点云与农机位置姿态的稳定、可靠采集;设计了多传感器数据的采集软件,可实现准确、一致的全局点云数据获取。系统以拖拉机为移动载体,由点云数据采集模块、车体位姿采集模块和数据融合模块组成。其中,点云数据采集模块可获取周边环境点云数据,并解决近距离盲区问题;车体位姿采集模块可实时获取农机位置和姿态信息;数据融合模块可接收并融合环境点云数据与车体位姿数据,进而获取位姿补偿后的点云数据。系统实现了各传感器数据的在线采集、时间同步与空间配准,以及数据的实时显示与存储。在农田环境下进行点云采集试验,结果表明,采集系统具有良好的户外工作稳定性,在线典型丢帧率不超过1%,离线典型丢帧率不超过0. 47%,能够满足农田点云数据采集的要求。为分析系统采集点云数据质量,将经过位姿补偿的点云与原始点云分别进行直通滤波地面点滤除,结果表明,位姿补偿后的点云经滤波后仅包含少量地面点云,可作为农机自主导航避障的可靠数据。  相似文献   

15.
大数据背景下的智能化农业设施系统设计   总被引:2,自引:0,他引:2  
针对目前农业设施管理和环境监测能力不足、农业生产相关数据积累不够、农业生产智能化程度不高等问题,以农业温室大棚为对象,应用物联网技术,设计一个能够实时采集温室大棚的温度、湿度、土壤温湿度、光照等环境信息,并通过WIFI技术接入互联网云端控制平台或移动客户端进行数据通信,实现环境数据的实时采集、显示、存储和共享,并对采集到的数据进行分析与判断、自动调控喷灌电机和加热设备的智能化温室大棚系统。实验表明,系统具有安装简单、界面友好、实用性强、易扩展等特点,Android客户端及微信公众号实现系统的远程移动管理,良好的数据接口有助于大数据采集与分析,能够适应智能农业的大数据应用需求。  相似文献   

16.
吴勇强  寇家华  杨立珂  孙家坤 《南方农机》2023,(11):136-138+148
【目的】传统的信息采集系统受设备、环境、人员等因素制约,采用人工法、摄像法采集信息存在周期长、成本高等缺点,且采集到的数据缺乏准确性、时效性、完整性,容易形成数据盲区,难以满足制造企业信息化、实时化的发展需求。【方法】课题组在工业工程实验室结合物联网技术构建了生产数据采集系统,借以对制造业车间数据采集进行模拟研究,结合需求分析,运用模块化方法对生产信息采集实验系统的总体架构、主控模块、采集模块、存储模块、展示模块等硬件设备进行了设计,再通过传感器、树莓派实现生产数据的实时采集、传输,并对处理分析后的数据通过OneNET平台进行了可视化展示。【结果】基于物联网的生产数据采集实验系统实现了对生产数据的采集以及车间生产状态的实时监控,验证了该系统的稳定性、时效性和可行性。【结论】由于系统开发经验有限以及其他因素的限制,目前仅将温度与湿度作为数据源上传至平台,在设备搭建、数据传输、系统集成等方面还存在不足与瑕疵,需要进一步研究完善。  相似文献   

17.
一种便携式用电异常检测设备和系统,其中检测设备可以在线检测电路节点电流实时数值,实现无线远距离数据传输;检测系统将所有电路节点的数据进行采集、存储、分析、整合,通过数学分析模型进行用电异常智能化自适应分析、判断,能够根据实际应用场景,实现在线设定用电异常阈值,实时显示检测数据、判断结果,也具备数据存储查询等相关功能。  相似文献   

18.
针对现有的农机作业信息远程传输系统产品功能过于单一,无法满足日益增长的农机监管需求,且在无线网络信号差的地块存在数据丢失的问题,开发一种基于ARM的农机作业信息远程传输系统,选用STM32F103作为主控制芯片,通过CAN总线采集作业的数据信息,通过RS232串口采集作业的图像信息,采用集成化的SIM808模块来采集卫星定位信息和实现远程数据传输功能,同时设计远程数据传输协议和数据补传系统,可以实现即使在田间GPRS移动无线网络信号丢失时的农机作业的数据信息、空间信息和图像信息的远程传输。试验结果表明,该远程传输系统无线通信数据丢包率小于等于0.2%,数据补传成功率100%,系统功能全、通信可靠性和安全保障机制高,对提升农业装备机械化与信息化融合具有重大的意义。  相似文献   

19.
代冬  陈度  张宾  王玲  王书茂 《农业机械学报》2020,51(S1):568-575
针对当前拖拉机检测系统功能集成度低、检测参数不全面、传输距离有限的问题,开发了拖拉机田间作业参数无线检测系统。该系统由传感器、数据采集仪及上位机软件监测平台3部分组成,能够实现PTO转矩及转速、油耗、发动机转速、悬挂提升力、力位调节加载力、加载角度、行驶速度、车轮转速、牵引力等多种参数的采集、无线发送与存储。系统工作时,数据采集仪中的车载检测仪将采集的传感器数据发送至无线数据接收器,无线数据接收器通过串口将数据传输至上位机软件监测平台,实现对各类试验参数的实时监测与数据处理。为验证检测系统的可行性与稳定性,对系统进行了采集通道的计量,结果显示模拟信号通道绝对误差绝对值最大为0.003V,引用误差最大为0.03%,频率信号通道检测绝对误差最大为2Hz,引用误差最大为0.013%,满足对拖拉机作业参数的采集需求。在此基础上,进行了PTO转矩参数及拖拉机无负载行驶速度采集试验。试验结果表明,检测系统可以实现转矩参数的稳定采集及数据的无线传输;在5、8、14km/h 3挡车速匀速行驶下,拖拉机车轮转速与实际行驶速度基本一致,最大相对误差分别为2.0%、1.2%及0.7%。本系统可满足对拖拉机工作性能参数的无线检测需求,数据采集稳定且采集精度较高,为拖拉机多作业参数的无线采集提供有效手段。  相似文献   

20.
论述了对温室环境数据进行远程监测的一种方法.温室环境数据采集系统将传感器采集到的环境数据通过GSM模块进行无线传输,实现对温室环境的远程监测.SWP系列多路巡检显示控制仪处理传感器采集的环境数据,并通过RS232串口实时传输给计算机.GSM模块将环境数据通过GSM无线网络传输给远程的数据中心.采用无线数据传输实现通讯具有方便和安全的特点,克服了恶劣环境下架线不便的困难.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号