首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The variability in commercial corn hybrids for corn fiber yields, amounts of extractable oil, and levels of individual and total phytosterol components in corn fiber oil was determined. Also, the effect of growth location on fiber yields, fiber oil content, and the levels of individual and total phytosterol compounds was determined. Significant variation was observed in the commercial hybrids for fiber yield (13.2–16.6%) and fiber oil yield (0.9–2.4%). No significant correlation was observed between fiber and oil yields. Significant variations in the commercial corn hybrids were also observed in the individual phytosterol compounds in corn fiber oil: 2.9–9.2% for ferulate phytosterol esters (FPE); 1.9–4.3% for free phytosterols (St); and 6.5–9.5% for phytosterol fatty acyl esters (St:E). Positive correlations were observed among the three phytosterol compounds in the corn fiber oil (R = 0.75 for FPE and St:E; 0.48 for St:E and St; and 0.68 for FPE and St). The effect of location on dependent variables was also significant. The same hybrids grown at different locations showed a variation (range) of 4.0–17.5% for FPE, 4.9–12.2% for St:E, and 1.95–4.45% for St. Relative ranking of hybrids with respect to phytosterol composition was consistent for almost all of the growth locations.  相似文献   

2.
A new process was developed to recover corn fiber from the mash before fermentation in dry-grind ethanol production. In this process, corn is soaked in water (no chemicals) for a short period of time and then degermed using conventional degermination mills. In the remaining slurry, corn coarse fiber is floated by increasing the density of the slurry and then separated using density differences. The fiber recovered is called quick fiber to distinguish it from the conventional wet-milled fiber. This study evaluated the percent of quick fiber recovery for a normal yellow dent and high oil corn hybrid. The quick fiber was analyzed for levels of corn fiber oil, levels of ferulate phytosterol esters (FPE) and other valuable phytosterol components in the oil and compared with conventional wet-milled corn coarse and fine fiber samples. Fiber samples were also analyzed and compared for yields of potentially valuable corn fiber gum (CFG, hemicellulose B). Comparisons were made between the quick fiber samples obtained with and without chemicals in the soakwater. An average quick fiber yield of 6–7% was recovered from the two hybrids and represented 46–60% of the total fiber (fine and coarse) that could be recovered by wet-milling these hybrids. Adding steep chemicals (SO2 and lactic acid) to the soakwater increased the quick fiber yields, percent of FPE recoveries, and total percent of phytosterol components to levels either comparable to (for the dent corn hybrid) or higher than (for the high oil corn hybrid) those recovered from the total conventional wet-milled fiber samples. CFG yields in the quick fiber samples were comparable to those from the wet-milled fiber samples. CFG yields in the quick fiber samples were not significantly affected by the addition of chemicals (SO2 and lactic acid) to the soakwater.  相似文献   

3.
The addition of six acids (organic and inorganic) and four sulfite compounds (including gaseous SO2) during the conventional corn wet‐milling steeping process of two yellow dent corn hybrids were evaluated for the effect on corn fiber yield, corn fiber oil yield, and the composition of three phytosterol compounds (ferulate phytosterol esters [FPE], free phytosterols [St], and phytosterol fatty acyl esters [St:E]) in the corn fiber oil. No significant effect of different sulfite compounds and acids were observed on corn fiber yields. However, a significant effect was observed on corn fiber oil yield and the composition of corn fiber oil for phytosterol compounds. Three of the sulfite compounds (including gaseous SO2) caused very little effect on the levels of phytosterol compounds compared with the control sample (corn steeped with sodium metabisulfite and lactic acid). However, for one hybrid, ammonium sulfite gave a significantly higher yield of FPE and St:E and had no effect on the yield of St. For the other hybrid, it gave a significantly higher yield of FPE and had no effect on the yield of St and St:E compared with the control sample. This indicates that the effect of these sulfite compounds on yields of these phytosterol compounds in corn fiber oil is probably hybrid‐dependent. No significant effect of acids was observed on corn fiber yields, but significant effects were observed on corn fiber oil yields and yields of phytosterol compounds in the corn fiber oil. The effect also seems to be hybrid‐dependent because different acids affected the two hybrids differently. Overall, it seems that weak acids have a positive effect on increasing the individual phytosterol compounds in the corn fiber. When comparing the effect of experimental acids and sulfites on the two hybrids, acids have a more positive effect than sulfites in increasing the yield of phytosterol compounds in corn fiber oil.  相似文献   

4.
The effects of alternative corn wet‐milling (intermittent milling and dynamic steeping (IMDS), gaseous SO2 and alkali wet‐milling) and dry grind ethanol (quick germ and quick fiber with chemicals) production technologies were evaluated on the yield and phytosterol composition (ferulate phytosterol esters, free phytosterols, and fatty acyl phytosterol esters) of corn germ and fiber oil and compared with the conventional wet‐milling process. Small but statistically significant effects were observed on the yield and composition of corn germ and fiber oil with these alternative milling technologies. The results showed that the germ and fiber fractions from two of the alternative wet‐milling technologies (the gaseous SO2 and the IMDS) had, for almost all of the individual phytosterol compounds, either comparable or signficantly higher yields compared with the conventional wet‐milling process. Also, both of the modified dry grind ethanol processes (the quick germ and quick fiber) with chemicals (SO2 and lactic acid) can be used as a new source of corn germ and fiber and can produce oils with high yields of phytosterols. The alkali wet‐milling process showed significantly lower yields of phytosterols compounds in germ but showed significantly higher yield of free phytosterols, fatty acyl phytosterol esters and total phytosterols in the fiber fraction.  相似文献   

5.
As the ethanol industry continues to grow, it will become very important to develop value-added markets for its coproducts in order for the industry to remain profitable. Corn distiller's dried grain (DDG) is a major coproduct of ethanol fermentation from corn processed by dry-milling and is primarily sold as livestock feed. The objective of this research was to determine if valuable phytochemicals found in corn oil and corn fiber oil, such as phytosterols and their saturated equivalents, phytostanols, ferulate phytosterol esters (FPE), tocopherols, and tocotrienols, are retained in DDG. Hexane and supercritical carbon dioxide (CO2) extracts of DDG were similar in their concentrations of total phytosterols (15.8-17.3 mg/g of extract), FPE (3.75-3.99 mg/g of extract), and tocols (1.7-1.8 mg/g of extract). Ethanol extracts were slightly lower in concentration of phytosterols (8.9-11.4 mg/g of extract), FPE (1.62-1.98 mg/g of extract), and tocols (0.73-0.76 mg/g of extract).  相似文献   

6.
Coarse and fine fiber fractions obtained from the corn wet‐milling processes, with and without steeping chemicals (SO2 and lactic acid), were evaluated microscopically for structure and analytically for recovery of phytosterol compounds from the fiber oil. Microscopic results showed that wet milling, with and without chemicals during steeping, changed the line of fracture between pericarp and endosperm and therefore affected the recovery of the aleurone layer in coarse (pericarp) and fine (endosperm cellular structure) fiber. Analytical results showed that most of the phytosterols and mainly phytostanols in corn fiber are contributed by the aleurone layer. Hand‐dissection studies were performed to separate the two layers that comprise the wet‐milled coarse fiber, the aleurone, and pericarp layer. Analyses revealed that the aleurone contained 8× more phytosterols than the pericarp.  相似文献   

7.
Corn fiber contains an oil with high levels of three potential cholesterol‐lowering phytosterol compounds. Little information is available about the levels and types of phytosterols in sorghum. In this study, phytosterols were evaluated in grain sorhgum and its wet‐milled fractions and were compared with the phytosterols in corn. The study showed that sorghum kernels can provide a significant source of two phytosterol classes, free phytosterols (St) and fatty acyl phytosterol esters (St:E). Most of these phytosterols are concentrated in the wet‐milled fiber fraction followed by the germ fraction. In addition to phytosterols, other lipid classes such as wax esters and an aldehyde (50% C28 and 50% C30) are also present in the sorghum oil. Comparison of sorghum and corn kernels show that corn has 72–93% more phytosterols than sorghum.  相似文献   

8.
Seeds of 49 accessions of corn (Zea mays ssp. mays), 9 accessions of teosinte (Zea species that are thought to be ancestors and probable progenitors to corn), and 3 accessions of Job's tears (Coix lacryma), obtained from a germplasm repository, were ground and extracted with hexane. Whole kernel oil yields and levels of four phytonutrients (free phytosterols, fatty acyl phytosterol esters, ferulate phytosterol esters, and gamma-tocopherol) in the oils were measured. Among the seeds tested, oil yields ranged from 2.19 to 4.83 wt %, the levels of ferulate phytosterol esters in the oil ranged from 0.047 to 0.839 wt %, the levels of free phytosterols in the oil ranged from 0.54 to 1.28 wt %, the levels of phytosterol fatty acyl esters in the oil ranged from 0.76 to 3.09 wt %, the levels of total phytosterols in the oil ranged from 1.40 to 4.38 wt %, and the levels of gamma-tocopherol in the oil ranged from 0.023 to 0.127 wt %. In general, higher levels of all three phytosterol classes were observed in seed oils from accessions of Zea mays ssp. mays than in seed oils from accessions of the other taxonomic groups. The highest levels of gamma-tocopherol were observed in teosinte accessions.  相似文献   

9.
The phytosterol‐containing oil in the corn fiber (corn fiber oil) has potential use as a natural low‐density lipoprotein (LDL) lowering nutraceutical but its low concentration (1–3%) makes it difficult and expensive to extract. Pretreatment of corn fiber with dilute acid or glucosidases removed nonlipid components of fiber, producing oil‐enriched fractions that should be more amenable to efficient and inexpensive oil extraction. Acid, as well as enzymes, significantly increased the content of corn fiber oil and its phytosterol compounds by hydrolyzing (and removing) the starch and nonstarch (cell wall) polysaccharides from the wet‐milled corn fiber. Dual treatment of the fiber with acid and enzyme greatly increased the concentrations of corn fiber oil and its phytosterol components, compared with acid or enzyme treatments alone. Depending on the treatment, the oil concentration in the residual solids increased from 0.3 to 10.8% (21–771% increase in conc.) and the total phytosterol concentration increased from 19.8 to 1256.2 mg/g of fiber (11–710% increase in conc.) compared with untreated fiber.  相似文献   

10.
A corn wet-milling process in which alkali was used was studied as an alternative to the conventional corn wet-milling procedure. In the alkali wet-milling process, corn was soaked in 2% NaOH at 85°C for 5 min and then debranned mechanically to obtain pericarp as a coproduct. Debranned corn was cracked in a roller mill, and the cracked corn was steeped with agitation for 1 hr in 0.5% NaOH at 45°C. The cracked and steeped corn was then processed to separate germ, fiber, and gluten by steps similar to those in conventional wet-milling. Alkali wet-milling yielded soakwater solids, pericarp, germ, starch, gluten, and fine fiber. The protein content of the starch and the starch content of the fiber from the alkali process were lower than those from the conventional process.  相似文献   

11.
The thermal properties, solubility characteristics, and crystallization kinetics of four commercial phytosterol preparations (soy and wood sterols and stanols) and their blends with corn oil were examined. Differential scanning calorimetry (DSC) revealed narrow melting peaks between 138 and 145 degrees C for all phytosterol samples, reversible on rescan. Broader and less symmetrical melting transitions at lower temperatures with increasing oil content were observed for two samples of phytosterol-oil admixtures. The estimated, from the solubility law, deltaH values (34.7 and 70.7 mJ/mg for wood sterols and stanols, respectively), were similar to the DSC experimental data. Fatty acid esters of soy stanols differing in the chain length of the acyl groups (C2-C12) exhibited suppression of the melting point and increase of the fusion enthalpy with increasing chain length of the acyl group; the propionate ester exhibited the highest melting point (Tm: 151 degrees C) among all stanol-fatty acid esters. Solubility of phytosterols in corn oil was low (2-3% w/w at 25 degrees C) and increased slightly with a temperature rise. Plant sterols appeared more soluble than stanols with higher critical concentrations at saturation. The induction time for recrystallization of sterol-oil liquid blends, as determined by spectrophotometry, depended on the supersaturation ratio. The calculated interfacial free energies between crystalline sediments and oil were smaller for sterol samples (3.80 and 3.85 mJ/m2) than stanol mixtures (5.95 and 6.07 mJ/m2), in accord with the higher solubility of the sterol crystals in corn oil. The XRD patterns and light microscopy revealed some differences in the characteristics among the native and recrystallized in oil phytosterol preparations.  相似文献   

12.
Previously, hexane extraction of corn fiber was reported to produce a unique and potentially valuable oil that contained high levels of several phytosterols (which have been noted for their cholesterol-lowering properties). Current studies revealed that heat treatment (over the range of 100-175 degrees C) of corn fiber in either a convection oven or a vacuum oven caused only a modest reduction in the levels of the phytosterol components. However, these same heat pretreatments caused a considerable increase (up to 10-fold) in the levels (increasing from 0.34 wt % to a maximum of 3.64 wt % gamma-tocopherol in the oil) and yields (increasing from 5.4 mg of gamma-tocopherol/100 g of corn fiber to a maximum of 52.1 mg of gamma-tocopherol/100 g of corn fiber) of gamma-tocopherol in corn fiber oil. The main differences between the convection oven and vacuum oven pretreatments were associated with the disappearance of free fatty acids and free phytosterols at the higher temperature pretreatments in the vacuum oven, probably due to the lower boiling points of these lipids. Microwave pretreatment was also effective but caused a much smaller increase in the levels of gamma-tocopherol.  相似文献   

13.
In the dry-grind process, corn starch is converted into sugars that are fermented into ethanol. The remaining corn components (protein, fiber, fat, and ash) form a coproduct, distillers dried grains with solubles (DDGS). In a previous study, the combination of sieving and elutriation (air classification), known as the elusieve process, was effective in separating fiber from DDGS. In this study, elusieve fiber was evaluated for ethanol production and results were compared with those reported in other studies for fiber from different corn processing techniques. Fiber samples were pretreated using acid hydrolysis followed by enzymatic treatment. The hydrolyzate was fermented using Escherichia coli FBR5 strain. Efficiency of ethanol production from elusieve fiber was 89–91%, similar to that for pericarp fiber from wet-milling and quick fiber processes (86–90%). Ethanol yields from elusieve fiber were 0.23–0.25 L/kg (0.027–0.030 gal/lb); similar to ethanol yields from wet-milling pericarp fiber and quick fiber. Fermentations were completed within 50 hr. Elusieve fiber conversion could result in 1.2–2.7% increase in ethanol production from dry-grind plants. It could be economically feasible to use elusieve fiber along with other feedstock in a plant producing ethanol from cellulosic feedstocks. Due to the small scale of operation and the stage of technology development for cellulosic conversion to ethanol, implementation of elusieve fiber conversion to ethanol within a dry-grind plant may not be currently economically feasible.  相似文献   

14.
Plant sterols (phytosterols) have been shown to possess serum cholesterol-lowering properties. In recent years, several phytosterol-enriched functional food products have been developed and marketed. Some phytosterol products contain common unsaturated sterols and some contain a subset of phytosterols called phytostanols (saturated sterols, also called plant stanols). Current methods for the quantitative analysis of plant sterols are labor intensive and require sophisticated gas or liquid chromatographs. In this study, a popular commercial spectrophotometric serum cholesterol test kit was evaluated for the analysis of plant sterols. The results indicate that the method could be modified to analyze phytosterols and phytostanols by increasing the incubation time. Both free phytosterols and fatty acyl phytosteryl esters were quantitatively analyzed, but ferulate phytosteryl esters, such as those that are found in corn and other cereals, were not hydrolyzed by the enzymes in the test kit and therefore were not detected.  相似文献   

15.
Corn fiber gum (CFG) is a hemicellulose (arabinoxylan)-enriched fraction obtained by the extraction of corn bran/fiber using a proprietary alkaline hydrogen peroxide process. When purified CFG prepared by this process was hydrolyzed with more concentrated base (1.5 N methanolic KOH at 70 degrees C for 1 hour), considerable amounts of hydroxycinnamic acids (up to 0.015% of mainly ferulic acid) and lipids (up to 0.43%) were released. The released phenolic acids and lipids were identified and quantified using high-performance liquid chromatography (HPLC) with detection by both UV and evaporative light-scattering detection (ELSD). During the wet milling of corn, two types of corn fiber are produced: coarse fiber, which is primarily from pericarp, and fine fiber, which is from the endosperm. The total phenolic acid content in CFGs purified from coarse corn fiber (pericarp fiber) is comparatively higher than that purified from fine corn fiber (endosperm fiber). It was also determined that the purified CFG samples contained significant amounts of strongly associated proteins, from 2 to 5% by weight. The presence of these phenolic acids, lipids, and proteins strongly associated or bound to CFG may contribute to its excellent ability to emulsify oil-in-water emulsions.  相似文献   

16.
Ferulic acid esters of triterpene alcohols and sterols in rice bran oil have been extensively studied and reported to possess important pharmacological actions. Inconsistent results on the numbers and structures of ferulates have been reported, primarily because of the analytical procedures employed. Conventional methods for analysis of phytosterol content in oil are carried out by characterization of trimethylsilylated derivatives (TMS) using GC-EI-MS after saponification of oils or individual compound isolated from oils. This study developed an LC-MS/MS method for the direct analysis of triterpene alcohol and sterol esters in rice bran oil. In addition to verifying the results of previous research, nine new relatively polar triterpene alcohol and sterol esters were characterized by their retention behaviors in LC and ESI-MS data from both negative- and positive-ion mode. This is the first evidence for the presence of hydroxylated ferulate esters and caffeate esters as part of gamma-oryzanol in rice bran. The method enables rapid and direct on-line characterization of triterpene alcohol and sterol esters in oils. LC-MS/MS equipped with reverse-phase LC and ESI-MS should be well-suited for identification and quantification of the polar metabolites of phytosterols in biological fluids after consumption of rice bran oil or other oils.  相似文献   

17.
In the dry‐grind process, starch in ground corn (flour) is converted to ethanol, and the remaining corn components (protein, fat, fiber, and ash) form a coproduct called distillers dried grains with solubles (DDGS). Fiber separation from corn flour would produce fiber as an additional coproduct that could be used as combustion fuel, cattle feed, and as feedstock for producing valuable products such as “cellulosic” ethanol, corn fiber gum, oligosaccharides, phytosterols, and polyols. Fiber is not fermented in the dry‐grind corn process. Its separation before fermentation would increase ethanol productivity in the fermenter. Recently, we showed that the elusieve process, a combination of sieving and elutriation (air flow), was effective in fiber separation from DDGS. In this study, we evaluated the elusieve process for separating pericarp fiber from corn flour. Corn flour remaining after fiber separation was termed “enhanced corn flour”. Of the total weight of corn flour, 3.8% was obtained as fiber and 96.2% was obtained as enhanced corn flour. Neutral detergent fiber (NDF) of corn flour, fiber, and enhanced corn flour (dry basis) were 9.0, 61.5, and 5.7%, respectively. Starch content of corn flour, fiber, and enhanced corn flour (dry basis) were 68.8, 23.5, and 71.3%, respectively. Final ethanol concentration from enhanced corn flour (14.12% v/v) was marginally higher than corn flour (13.72% v/v). No difference in ethanol yields from corn flour and enhanced corn flour was observed. The combination of sieving and air classification can be used to separate pericarp fiber from corn flour. The economics of fiber separation from corn flour using the elusieve process would be governed by the production of valuable products from fiber and the revenues generated from the valuable products.  相似文献   

18.
A modified dry‐grind corn process has been developed that allows recovery of both pericarp and endosperm fibers as coproducts at the front end of the process before fermentation. The modified process is called enzymatic milling (E‐Mill) dry‐grind process. In a conventional dry‐grind corn process, only the starch component of the corn kernel is converted into ethanol. Additional ethanol can be produced from corn if the fiber component can also be converted into ethanol. In this study, pericarp and endosperm fibers recovered in the E‐Mill dry‐grind process were evaluated as a potential ethanol feedstock. Both fractions were tested for fermentability and potential ethanol yield. Total ethanol yield recovered from corn by fermenting starch, pericarp, and endosperm fibers was also determined. Results show that endosperm fiber produced 20.5% more ethanol than pericarp fiber on a g/100 g of fiber basis. Total ethanol yield obtained by fermenting starch and both fiber fractions was 0.370 L/kg compared with ethanol yield of 0.334 L/kg obtained by fermenting starch alone.  相似文献   

19.
An alkali corn wet-milling process was developed to evaluate the process as a method to produce high purity corn starch and coproducts with added value. Using a single hybrid (R1064 × LH59), the effects of alkali concentration (0.18–0.82% NaOH), time (29–61 min), and temperature (36–75°C) were investigated. Starch yield was not affected by steep time or temperature. Starch yield was optimal at 65.2% using 0.5% alkali. Increasing the concentration of alkali to 0.82% or decreasing it to 0.18% caused a decrease in starch yield of 8–10 percentage points. Other wet-milling products (fiber, germ, and gluten) also were affected. Steep conditions of 0.5% NaOH, 60 min, and 45°C gave optimal starch yield. Comparisons between alkali and sulfur dioxide wet-milling processes, using 1-kg sample size, were performed on 10 commercial yellow dent corn hybrids. The alkali process averaged 1.7 percentage points more starch than the sulfur dioxide process. Each hybrid had a higher starch yield when wet-milled with the alkali method. Alkali wet-milling produced pure corn starch with <0.30% protein (db).  相似文献   

20.
Three fibrous corn wet-milling fractions, coarse fiber, fine fiber, and spent flake, were isolated. More highly valued uses are sought for these milling products, which are generally directed into the corn gluten feed product stream. Coarse fiber was further dissected into pericarp and aleurone layers. An alkaline hydrogen peroxide process was used to efficiently extract corn fiber gum (CFG) from each of the materials. CFG is a hemicellulose B arabinoxylan which also contains low levels of D,L-galactose and D-glucuronic acid. CFG yield information was obtained from each source, as well as structural information in terms of degrees of branching of the beta-D-xylopyranose backbone with alpha-L-arabinofuranosyl moieties. There were significant differences in degree of branching among the CFGs from the various fractions. A novel capillary electrophoresis procedure was developed to measure these differences. Solution viscosity differences among the CFGs were also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号