首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expansion of value‐added uses for rice has created a demand for quantitative models of functional changes during postharvest handling. Consequently, this study evaluated the effects of postharvest parameters on the functional properties of long‐grain (cvs. Cypress and Kaybonnet) and medium‐grain (cv. Bengal) rice. The experimental treatments included rough rice drying conditions (low vs. high temperature drying), storage moisture content (10, 12, and 14%), storage temperature (4, 21, and 38°C), and storage duration (up to 36 weeks). Milling, cooking, and amylograph pasting properties were analyzed. Polynomial models (up to third‐order) were developed to describe the effects of postharvest factors on the functional properties. Drying treatments, storage moisture content, and storage duration affected (P < 0.05) all of the functional properties. Storage temperature influenced (P < 0.01) cooking and pasting properties, but not milling properties. Overall, there were significant interactions among the postharvest parameters. Additionally, these factors were related to the functional properties by higher‐order relationships.  相似文献   

2.
3.
Rice (Oryza sativa L., ‘Cypress’) quality is highly dependent on its handling; hence, new storage treatments must be analyzed for their impact on rice quality. Rough rice from the 2000 season was harvested, dried, and stored in six farm‐scale bins. Three of the bins were aerated with a thermostatically activated controller, and three were aerated under traditional methods. Rice was sampled periodically over 12 weeks, and quality parameters were analyzed. The effects of bin sample position (spatial), bin sample depth, aeration treatment, and storage duration were investigated for their impact on rice quality factors: moisture content, head rice yield, pasting properties, and water absorption. For both aeration treatments at most sampling durations, rice sampled from the center of the bins had significantly lower head rice yield than that sampled from the north and south areas. Overall, moisture contents were not significantly affected by sampling position, although, in some specific sampling time and aeration treatment combinations, significant variation was noticed for moisture content as a function of sampling position. Sample depth within the bin did not cause any changes in the values of the rice properties. Throughout the storage duration, the physicochemical properties of the rice treated with controlled aeration were consistent with the trends of the rice treated with manual aeration. Storage duration significantly influenced (P < 0.05) water absorption, peak viscosity, head rice yield (HRY), and moisture content, with all but moisture content increasing over the storage duration. In contrast, the moisture content of the grain slightly decreased over the storage period.  相似文献   

4.
《Cereal Chemistry》2017,94(4):683-692
In‐bin, on‐farm drying systems for rough rice present challenges for maintaining kernel quality when drying fronts stall and the top layer of grain maintains its harvest moisture content (MC) for extended periods. This high MC, in addition to ambient temperatures in early autumn in the Mid‐South United States, creates ideal conditions for quality losses to occur. This study evaluated the effects of rough rice storage at MCs of 12.5, 16, 19, and 21% for up to 16 weeks at temperatures of 20, 27, and 40°C on milling yields, kernel color, and functionality of three long‐grain cultivars. Head rice yield was negatively impacted only after other reductions in quality had occurred. Temperature‐specific discoloration patterns were observed at 27 and 40°C in 2014; the uniquely discolored kernels seen in 2014 at 27°C were absent from samples in 2015 under identical conditions. Peak viscosity, breakdown, and final viscosity tended to increase over storage duration at 20 and 27°C and all storage MCs but plateaued after 8 weeks. Storage of rice at 40°C and all MCs greatly reduced peak viscosity after 6 weeks. To prevent quality losses, in‐bin dryers should be monitored closely to avoid exceeding the thresholds of storage MC, temperature, and duration identified here.  相似文献   

5.
Changes in gelatinization and retrogradation properties of two rice cultivars, Bengal and Kaybonnet, during rough rice storage were studied using differential scanning calorimetry (DSC). The storage variables included two storage moisture contents (12 and 14%), three storage temperatures (4, 21, and 38°C), and four storage durations (0, 3, 9, and 16 weeks). Rough rice cultivar, storage temperature, moisture content, and duration affected (P < 0.05) the enthalpies and temperatures of gelatinization and retrogradation of rice flour. Bengal had a higher gelatinization enthalpy (P < 0.005) but lower gelatinization temperatures (P < 0.0001) than the long-grain Kaybonnet. Rice stored at 38°C exhibited higher gelatinization enthalpy and temperatures (P < 0.05) than those stored at 4 or 21°C. Storage duration affected the gelatinization and retrogradation properties through a higher order, rather than a linear, relationship.  相似文献   

6.
7.
An improved method for the extraction of storage proteins from rice endosperm under conditions safe for producing food was developed. The contribution of the protein extracts to the eating quality of cooked rice and to the aroma and flavor of sake was examined. Sensory analysis was performed to evaluate the eating quality of cooked rice enriched with the protein extracts. Prolamin‐enrichment increased the hardness of cooked rice, and glutelin‐enrichment degraded the appearance of cooked rice. Physical analyses confirmed that prolamin‐enrichment changed, whereas the glutelin‐enrichment did not change the physical properties of cooked rice. Light and scanning electron microscopy of rice protein extracts revealed small particles of the prolamin extract and larger aggregated particles of the glutelin extract; these features remained after heating. The aroma and flavor of sake were negatively affected by the addition of the protein extracts. Especially, addition of prolamin significantly lowered the evaluation score of the aroma obtained by sensory analysis.  相似文献   

8.
The objective of this study was to investigate the effect of infrared (IR) drying followed by tempering and natural cooling on the change of physicochemical characteristics of white rice during up to 10 months of storage. The physicochemical characteristics of IR‐dried rice were also compared with those of conventionally dried rice. It took only 58 s to heat the rough rice from room temperature to 60°C with IR, and 2.17 percentage points of moisture was removed. After four months of storage, the increases in yellowness index, water uptake ratio, and volume expansion ratio of the rice dried with IR were 73.8, 63.9, and 55.3% those of rice dried with an ambient air drying method, respectively. IR drying slightly decreased the gelatinization temperature, enthalpy, and viscosities, reduced the changes in microstructure, and maintained cooking characteristics during storage. Therefore, the IR drying process is recommended to maintain the quality of white rice during storage.  相似文献   

9.
10.
Tempering has been shown in literature to preserve head rice yield after heated air drying. Most reported tempering work was done adiabatically at a temperature below that for rice drying. In this study, the effect of a tempering temperature above that for rice drying on the whole kernel percentage was investigated. High‐temperature tempering is an effective way to preserve the whole kernel percentage for rice dried at a raised temperature (e.g., 60°C) at which head rice yield would otherwise incur a pronounced reduction without tempering. Tempering helped relax the strains inside a rice kernel induced by internal stresses developed during the drying process. The strains had two components (elastic component and viscous component) due to the viscoelasticity of rice kernels. The reduction of moisture content gradients inside a rice kernel during tempering helped eliminate the elastic component of the strains due to the elasticity of the rice kernel. Results showed that to effectively eliminate the viscous component of the strains due to the viscosity of the rice kernel, tempering temperatures must be kept well above the glass transition temperature of the rice kernel. A tempering temperature below the glass transition temperature failed to preserve the whole kernel percentage. For example, with a tempering temperature of 80°C and a tempering duration of 80 min, the whole kernel percentage for the rice with an initial moisture content of 20.4% wb dried at 60°C and 17% rh for 120 min down to 10.2% wb (10.2 percentage points of moisture content removal in one drying pass) was preserved to a level close to that of the control sample.  相似文献   

11.
Rough rice (cv. Bengal) was stored at four moisture contents (8.8, 10.7, 12.9, and 13.6% MC) and three temperatures (3, 20, and 37°C) for up to six months. The amylograph overall paste viscosity of the milled rice increased during storage. This increase was most apparent in all samples stored at 37°C. For rice stored at 20 and 37°C at all MC levels, a 30–50% increase in peak viscosity (PV) was observed during the first three months of storage. PV subsequently leveled off for rice stored at 12.9 and 13.6% MC but declined for samples stored at 8.8 and 10.7% MC. The final viscosities also increased during storage. The water-absorption ratio of the samples during cooking in excess water increased by an average of 15% over six months of storage. The amylograph and cooking properties were significantly affected (P < 0.05) by rough rice storage duration, temperature, MC, and their respective interactions.  相似文献   

12.
13.
《Cereal Chemistry》2017,94(2):251-261
The objective for this study was to investigate the effectiveness of scaled‐up infrared (IR) heating followed by tempering steps to dry freshly harvested rough rice. An industrial‐type, pilot‐scale, IR heating system designed to dry rough rice was used in this study. The heating zone of the equipment had catalytic IR emitters that provided heat energy to the sample as it was conveyed on a vibrating belt. The sample comprised freshly harvested rough rice of long‐grain pureline (Cheniere), long‐grain hybrid (6XP 756), and medium‐grain (CL 271) cultivars at initial moisture contents of 23, 23.5, and 24% wb, respectively. Samples at a loading rate of 1.61 kg/m2 were heated with IR of radiation intensity 5.55 kW/m2 for 30, 50, 90, and 180 s followed by tempering at 60°C for 4 h, at a product‐to‐emitter‐gap size of 450 mm, in one‐ and two‐pass drying operations. Control samples were gently natural air dried in an equilibrium moisture content chamber set at relative humidity of 65% and temperature of 26°C to moisture content of 12.5% wb. The effects of IR treatments followed by tempering on percentage points of moisture removed, head rice yield, energy use, rice color, and pasting characteristics were evaluated. For all cultivars, percentage point moisture removed increased with increase in IR drying duration. For all rice cultivars, one‐pass IR treatments for 180 s resulted in head rice yield significantly lower than that of rice dried with natural air in the controlled‐environment conditions (P < 0.05). Energy required to dry rice increased with increase in drying duration. Viscosity values of all the experimental samples were significantly greater (P value < 0.05) than that of the control samples for all the cultivars, except those treated with IR for 180 s. There was a significant difference (P < 0.05) in the color index (ΔE ) of treated milled samples and the controls. In conclusion, the study provided information crucial to understanding the effects of scaled‐up radiant heating and tempering of rough rice on drying rates and rice quality for long‐grain pureline, long‐grain hybrid, and medium‐grain rice cultivars.  相似文献   

14.
15.
Mixolab is a new instrument with capability to measure starch pasting properties on actual dough. It characterizes dough rheological behavior using a dual constraints of mixing and temperature. Rice samples (183) collected from 15 provinces across China were tested to determine the possibility of using Mixolab in predicting rice quality. Mixolab measurements, torque (Nm) at different mixing and heating stages (C1 to C5) were compared with rice quality characteristics (gelatinization temperature and consistency, amylose and protein contents), Rapid Visco‐Analyser (RVA) parameters and sensory assessments scores of cooked rice. Our results showed that Mixolab parameters were good indicators of amylose and protein content and quality suggested by significant correlations among Mixolab parameters, and between Mixolab and RVA measurements. Based on a subsample of 30 rice cultivars, correlation coefficients between the Mixolab parameter C4 and sensory assessment characteristics of palatability and total sensory score was negatively significant (P < 0.05). Cb (C3 – C4) was also significantly correlated with flavor (P < 0.05). The rice samples that gave high palatability and total sensory scores had low C4 values and low amylose contents. The cooked rice with high flavor had high values of Cb and GT but low protein content. It is possible to determine physicochemical properties of rice flour and sensory characteristics of cooked rice using Mixolab parameters.  相似文献   

16.
The effects of drying conditions, final moisture content, and degree of milling on the texture of cooked rice varieties, as measured by texture profile analysis, were investigated. Instrumentally measured textural properties were not significantly (α = 0.05) affected by drying conditions, with the exception of cohesiveness. Cohesiveness was lower in rice dried at lower temperatures (18°C or ambient) than in that dried at the higher commercial temperatures. Final moisture content and degree of milling significantly (α = 0.05) affected textural property values for adhesiveness, cohesiveness, hardness, and springiness; their effects were interdependent. The effects of deep milling were more pronounced in the rice dried to 15% moisture than that dried to 12%. In general, textural property values for hardness were higher and those for cohesiveness, adhesiveness, and springiness were lower in regular-milled rice dried to 15% moisture than in that dried to 12%. In contrast, hardness values were lower and cohesiveness, adhesiveness, and springiness values were higher in deep-milled rice dried to 15% moisture than in that dried to 12% moisture. Deep milling resulted in rice with lower hardness values and higher cohesiveness, adhesiveness, and springiness values.  相似文献   

17.
Drying Enhancement of Rough Rice by an Electric Field   总被引:4,自引:0,他引:4  
Corona discharge produced by a multiple point-to-plate high-voltage electric field (HVEF) was used to investigate the enhancement of rough rice drying and its effect on rice fissuring and germination. The HVEF consisted of a 16 needle point cathode with a direct current power supply, and a grounded stainless steel plate anode. The drying rate of the treated rough rice was notably greater than that of the control, and the drying rate was described by an exponential model. There was a good agreement between the predicted and experimental results (coefficient of determination R2=0·98). The electric field treatment significantly enhanced drying but had no effect on rice fissuring at a lower temperature. The average drying rate of the treated rice increased 2·83, 1·59 and 1·63 times at 25, 40 and 50°C, respectively, compared to the corresponding control. The drying rate also increased with increasing electric field strength. The electric field treatment did not have significant effects on the percentage of kernels having heavy fissures or the germination rate of rough rice (probability P>0·05). The total number of fissured kernels in the treated sample was increased compared to the control.  相似文献   

18.
19.
Effect of storage temperature (ST) (5, 15, and 25°C) for paddy on the consumer perception of cooked rice (CR) was investigated with six major rice cultivars in Korea (Ilmibyeo, Chucheongbyeo, Ilpumbyeo, Hwayeongbyeo, Nampyeongbyeo, and Odaebyeo) after 12 months of storage. Germination rate (GR) of the paddy, grading characteristics (percentages of head rice, broken kernels, damaged kernels, colored kernels and chalky kernels) of milled rice (MR) kernels, texture profile analysis (hardness, springiness, cohesiveness, adhesiveness, and chewiness) and color (L*, a*, and b*) of CR were measured. Also, consumer testing on CR was done with 108 consumers. Consumers evaluated acceptability for odor, appearance, taste, texture, and overall purchase intent, and willingness to pay (WTP) of CR. After 12 months of storage, physicochemical characteristics of MR and CR were significantly different depending on ST. The significant difference among three ST of paddy was noted for GR, color b* value, fat acidity of MR, and overall consumer acceptability of CR. The GR was constant during 12 months of storage at 5°C, whereas a significant decrease of GR was noted for all six cultivars within 12 months of storage at 25°C. The average WTP for rice stored at 5°C for 12 months was $U.S. 45.68/20 kg, whereas WTP for rice stored at 15°C and 25°C were $U.S. 44.19/20 kg and $U.S. 41.87/20 kg, respectively, implying the importance of ST on grain quality and product value by consumers. Overall consumer acceptability had high correlation coefficient with WTP (r = 0.985). Overall consumer acceptability had highest correlation with GR of paddy (r = 0.861), followed by b* value of CR (r = –0.826), fat acidity (r = –0.768), cohesiveness (r = 0.733), and hardness (r = –0.650) of CR by TA, implying GR of paddy and b* value of CR could be used as indicators for eating quality of rice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号