首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of starch retrogradation have not considered the initial thermal treatment. In this article, we explore the effect of heating to temperatures within and above the gelatinization range on maize starch retrogradation. In the first experiment, 30% suspensions of waxy (wx) starch were initially heated to final temperatures ranging from 54 to 72°C and held for 20 min. On reheating in the differential scanning calorimeter immediately after cooling, the residual gelatinization endotherm peak temperature increased, the endotherm narrowed, and enthalpy decreased. Samples stored for seven days at 4°C showed additional amylopectin retrogradation endotherms. Retrogradation increased dramatically as initial holding temperature increased from 60 to 72°C. In a second experiment, wx starch was initially heated to final temperatures from 54 to 180°C and rapidly cooled, followed by immediate reheating or storage at 4°C. Maximum amylopectin retrogradation enthalpy after storage was observed for initial heating to 82°C. Above 82°C, retrogradation enthalpy decreased as initial heating temperature increased. A similar effect for ae wx starch was observed, except that retrogradation occurred more rapidly than for wx starch. These experiments show that heating to various temperatures above the range of gelatinization may profoundly affect amylopectin retrogradation, perhaps due to varying extents of residual molecular order in starch materials that are commonly presumed to be fully gelatinized. This article shows that studies of starch retrogradation should take into account the thermal history of the samples even for temperatures above the gelatinization temperature range.  相似文献   

2.
Retrogradation of three high-amylose starches (HAS: ae du, ae V, and ae VII) and common corn starch (CCS) was examined by dynamic oscillatory rheometry (7.5% [w/w] starch in 20% [v/v] dimethyl sulfoxide [DMSO]), differential scanning calorimetry (DSC; 30% [w/w] starch in water), and turbidity (0.5% [w/w] starch in 20% [v/v] DMSO). Nongranular lipid-free starch and starch fractions (amylose [AM], amylopectin [AP], and intermediate material [IM]) were studied. Gels were prepared by dispersing starches or fractions in 90% DMSO and diluting with water, followed by storage for seven days at 4°C. For AM from each starch, the elastic modulus (G′) was similar when heated from 6 to 70°C. The G′ of HAS AP gels at 6°C was higher than for CCS AP gels. For nongranular CCS and ae du gels, G′ dropped dramatically (≈100×) when heated from 6 to 70°C, less (≈10×) for ae V gels, and least (≈5×) for ae VII gels. By DSC, each AM endotherm had a peak temperature of ≈140°C, whereas all AP endotherms were complete before 120°C. Endotherms >120°C were not observed for any nongranular starch despite the high AM content of some starches. After cooling starch suspensions from room temperature to 5°C and subsequent rewarming to room temperature, each AM and the ae VII nongranular starch remained highly turbid. Each AP and the remaining nongranular starches lost turbidity during rewarming. Our work suggests that branched molecules of CCS and HAS influence gel properties of nongranular starches by inhibiting or altering AM-AM interactions.  相似文献   

3.
Starch-lipid interactions involving native and acetylated pea starch were studied by differential scanning calorimetry (DSC) and measurements of iodine affinity. Lipids including lauric acid, monopalmitin, and butterfat were added to aqueous starch dispersions after the starch was gelatinized at 85°C. DSC thermal curves of gelatinized modified pea starch systems containing fatty acid or monoglyceride did not show DSC transitions indicative of amylose complexes with external lipids, whereas a DSC endotherm of amylose-lipid complexes was observed for the corresponding native starch-lipid systems. However, iodine binding studies revealed that acetylated pea starch amylose complexed with added fatty acid or monoglyceride in the modified pea starch-lipid composites. The failure of DSC detection of the complexes in these systems was attributed to the absence of crystalline structures of acetylated pea starch amylose complexes. Furthermore, acetylation of starch decreased the complexing ability of the pea starch amylose as revealed by a reduction in iodine affinity. Both DSC and iodine affinity studies showed that neither native nor modified pea starch interacted to a significant extent with butterfat that consisted mainly of triglycerides.  相似文献   

4.
The effect of four growing environments (two at Ames, IA; one at Clinton, IL; and one at Columbia, MO) on the thermal properties of starch from five exotic‐by‐adapted corn inbred lines (Chis37, Cuba34, Cuba38, Dk8, Dk10) and two control lines (B73 and Mo17) were studied using differential scanning calorimetry (DSC). The variations in thermal properties within environments were similar for the exotic‐by‐adapted lines and control lines. Missouri was the warmest environment and generally produced starch with the greatest gelatinization onset temperature (ToG), the narrowest range of gelatinization (RG), and the greatest enthalpy of gelatinization (ΔHG). Illinois was the coolest environment and generally resulted in starch with the lowest ToG, widest RG, and lowest ΔHG. These differences were attributed to higher temperatures in Missouri during grain‐filling months either increasing the amount of longer branches of amylopectin or perfecting amylopectin crystalline structure. The Ames 1 environment produced starch with thermal properties most similar to those of Illinois, whereas the Ames 2 environment produced starch with thermal properties most similar to those of Missouri. Ames 2, located near a river bottom where temperatures tend to be warmer, likely had temperatures most similar to those found in Missouri during grain filling.  相似文献   

5.
Nonwaxy rice starch was cross‐linked with sodium trimetaphosphate and sodium tripolyphosphate to obtain different degrees of cross‐linking (9.2, 26.2, and 29.2%). The objective was to investigate the influence of cross‐linking on thermal transitions of rice starch. Starch suspensions (67% moisture) were heated at 2°C/min using differential scanning calorimetry (DSC) to follow melting transition of amylopectin. Biphasic transitions were observed at ≈60–95°C in all samples. Melting endotherms of amylopectin shifted to a higher temperature (≤5°C) with an increasing degree of cross‐linking, while there was no dramatic change in enthalpy. Recrystallization during aging for 0–15 days was significantly suppressed by cross‐linking. The delayed gelatinization and retrogradation in crosslinked starch were evident due to restricted swelling and reduced hydration in starch granules. Glass transition temperature (Tg) measured from the derivative curve of heat flow was ‐3 to ‐4°C. No significant change in Tg was observed over the storage time studied.  相似文献   

6.
The influence of the lipid extraction process on both macroscopic and microscopic characteristics of nonwaxy rice starch gelatinization in excess water was examined. Surface lipids extraction did not change the thermodynamics of starch gelatinization but lead to a significant reduction (33%) in the enthalpy of starch-lipid complex melting at high temperature, resulting in less viscous dispersions. Internal lipid extraction using hot aqueous alcoholic solutions resulted in an irreversible increase in starch granule diameter (50% increase in D[4,3]) and a dramatic change in cooking characteristics of the starch. Instead of the bimodal swelling observed for native nonwaxy rice starch, only one broad transition in swelling, solubility, granule size, and viscosity was observed in the case of the totally defatted starch. While the total removal of lipids resulted in a slight increase in starch swelling at intermediate temperatures, the harshness of the process caused irreparable changes leading to notably lower swelling at high temperatures.  相似文献   

7.
Semolina from four durum wheat genotypes (cvs. Ben, Munich, Rugby, and Vic) were processed into spaghetti that was dried by low (LT), high (HT), and ultrahigh (UHT) temperature drying cycles. Starch was isolated from dried pasta and unprocessed wheat and semolina references. Pasta-drying cycles had no significant effect on the amylose content of starches. Significant increases in enzyme-resistant starch were observed in HT- and UHT-dried pasta (2.27 and 2.51%, respectively) compared with LT-dried pasta (1.68%). Differential scanning calorimetry (DSC) gelatinization characteristics of pasta starches showed a significantly narrow range (Tr), but no changes in onset and peak temperatures (To and Tp, respectively) and gelatinization enthalpy (ΔH1) were observed. When compared with unprocessed reference samples (wheat and semolina), all pasta starches shifted to higher gelatinization To and Tp, with narrow Tr and no changes in δH1. The second endothermic DSC peak indicated no increase in amylose-lipid complexation (δH2) due to drying cycle. Starches isolated from LT and HT pasta exhibited lower peak viscosities than those from UHT-dried pasta. Genotypes Ben and Rugby demonstrated higher pasting temperature and lower peak and breakdown viscosities than Vic and Munich.  相似文献   

8.
To determine the effect of amylose content on the starch properties, the amylose content, pasting properties, swelling power, enzymatic digestibility, and thermal properties of partial and perfect waxy types along with their wild‐type parent were analyzed. As expected, amylose content decreases differently in response to the loss of each Wx gene, showing the least response to Wx‐A1a. Most of the characteristics, except the thermal properties of the amylose‐lipid complex in differential scanning calorimetry (DSC), differed significantly among the tested types. Furthermore, the breakdown, setback, and pasting temperatures from the Rapid Visco Analyser (RVA) and the enzymatic digestibility, swelling power, peak temperature, and enthalpy of starch gelatinization from DSC showed a correlation with the amylose content. The relationships between the peak viscosity from the RVA and the onset temperature of starch gelatinization determined by DSC with amylose content of the tested materials were not clear. Waxy starch, which has no amylose, showed a contrasting behavior in starch gelatinization compared with nonwaxy starches. Among the nonwaxy starches, lower setback, lower pasting temperature, higher enzyme digestibility, higher peak temperature, higher enthalpy of starch gelatinization, and higher swelling were generally associated with low amylose starches.  相似文献   

9.
Phosphorylated starches were prepared with sodium tripolyphosphate (STPP) at pH 6, 8, and 10 from waxy (wx, 3.3% amylose), normal (22.4% amylose), and two high-amylose (ae, 47 and 66% amylose) maize starches. After phosphorylation, the gelatinization peak temperature (Tp) decreased and pasting peak viscosity (PV) increased for all the starches except wx, which showed a slight increase in gelatinization temperature. There was a substantial effect of phosphorylation pH on paste viscosity. More crosslinking was found in ae starches with phosphorylation at pH 10. Sodium ions apparently decreased PV of all the phosphorylated starches while only slightly affecting PV of native starches. Phosphorylation increased swelling power of some of the starches, with maximum swelling power at phosphorylation pH 8 and minimum at pH 10. Maximum swelling power for wx starch after preparation was at pH 8 and minimum at pH 6. After phosphorylation, the clarity and freeze-thaw stability of all the starches was greatly increased compared with the native starches. Phosphorylation increased digestibility of ae starches but had little effect on wx and normal starches. After phosphorylation, the adhesiveness, springiness, and cohesiveness of all starch gels generally increased, the hardness of 47% ae and wx starches increased, and that of normal starches decreased. Enthalpy of gelatinization decreased after phosphorylation with the greatest decrease observed for ae starches. When the phosphorylation pH increased from 6 to 10, the brightness (L*) of all the phosphorylated starches decreased, while a* and b* of all the phosphorylated starch increased. Scanning electron micrographs showed some erosion on the surface of starch granules after phosphorylation.  相似文献   

10.
Resistant starches (RS) were prepared by phosphorylation of wheat, waxy wheat, corn, waxy corn, high‐amylose corn, oat, rice, tapioca, mung bean, banana, and potato starches in aqueous slurry (≈33% starch solids, w/w) with 1–19% (starch basis) of a 99:1 (w/w) mixture of sodium trimetaphosphate (STMP) and sodium tripolyphosphate (STPP) at pH 10.5–12.3 and 25–70°C for 0.5–24 hr with sodium sulfate or sodium chloride at 0–20% (starch basis). The RS4 products contain ≤100% dietary fiber when assayed with the total dietary fiber method of the Association of Official Analytical Chemists (AOAC). In vitro digestion of four RS4 wheat starches showed they contained 13–22% slowly digestible starch (SDS) and 36–66% RS. However after gelatinization, RS levels fell by 7–25% of ungelatinized levels, while SDS levels remained nearly the same. The cross‐linked RS4 starches were distinguished from native starches by elevated phosphorus levels, low swelling powers (≈3g/g) at 95°C, insolubilities (<1%) in 1M potassium hydroxide or 95% dimethyl sulfoxide, and increased temperatures and decreased enthalpies of gelatinization measured by differential scanning calorimetry.  相似文献   

11.
Thermal properties of corn starch extraction intermediates from four types of corn were studied using differential scanning calorimetry. Starch at four different stages of extraction, including a standard single-kernel starch isolation procedure and three starch extraction intermediates, was isolated from mature corn kernels of B73 and Oh43 inbreds and the mutants of waxy (wx) and amylose extender (ae) in an Oh43 background. Differences in thermal properties and moisture and protein contents of starch from the extraction stages were statistically analyzed. Most thermal properties (gelatinization and retrogradation onset temperatures, gelatinization and retrogradation ranges, gelatinization and retrogradation peak temperatures, gelatinization and retrogradation enthalpies, peak height index, and percentage of retrogradation) of starches extracted at stage 3 intermediate (a procedure that did not include a final washing step) were similar to those of starch extracted by the standard single-kernel isolation procedure. Values for gelatinization peak temperature, gelatinization enthalpy, and peak height index were different between the standard and the stage 3 intermediate. The values obtained from starches extracted at stage 3, however, were consistent and predictable, suggesting that this extraction intermediate might be used in screening programs in which many starch samples are evaluated. By using the stage 3 extraction, samples could be evaluated in three rather than four days and the procedure saved ≈0.5 hr of labor time. The other two starch extraction intermediates, which excluded filtering and washing or filtering, washing, and steeping, produced starch with thermal properties generally significantly different from starch extracted by the standard single-kernel isolation procedure.  相似文献   

12.
Amylose contents of prime starches from nonwaxy and high-amylose barley, determined by colorimetric method, were 24.6 and 48.7%, respectively, whereas waxy starch contained only a trace (0.04%) of amylose. There was little difference in isoamylase-debranched amylopectin between nonwaxy and high-amylose barley, whereas amylopectin from waxy barley had a significantly higher percentage of fraction with degree of polymerization < 15 (45%). The X-ray diffraction pattern of waxy starch differed from nonwaxy and high-amylose starches. Waxy starch had sharper peaks at 0.58, 0.51, 0.49, and 0.38 nm than nonwaxy and high-amylose starches. The d-spacing at 0.44 nm, characterizing the amylose-lipids complex, was most evident for high-amylose starch and was not observed in waxy starch. Differential scanning calorimetry (DSC) thermograms of prime starch from nonwaxy and high-amylose barley exhibited two prominent transition peaks: the first was >60°C and corresponded to starch gelatinization; the second was >100°C and corresponded to the amylose-lipid complex. Starch from waxy barley had only one endothermic gelatinization peak of amylopectin with an enthalpy value of 16.0 J/g. The retrogradation of gelatinized starch of three types of barley stored at 4°C showed that amylopectin recrystallization rates of nonwaxy and high-amylose barley were comparable when recrystallization enthalpy was calculated based on the percentage of amylopectin. No amylopectin recrystallization peak was observed in waxy barley. Storage time had a strong influence on recrystallization of amylopectin. The enthalpy value for nonwaxy barley increased from 1.93 J/g after 24 hr of storage to 3.74 J/g after 120 hr. When gel was rescanned every 24 hr, a significant decrease in enthalpy was recorded. A highly statistically significant correlation (r = 0.991) between DSC values of retrograded starch of nonwaxy barley and gel hardness was obtained. The correlation between starch enthalpy value and gel hardness of starch concentrate indicates that gel texture is due mainly to its starch structure and functionality. The relationship between the properties of starch and starch concentrate may favor the application of barley starch concentrate without the necessity of using the wet fractionation process.  相似文献   

13.
Differential scanning calorimetry (DSC) was used to study the effect of sucrose on wheat starch glass transition, gelatinization, and retrogradation. As the ratio of sucrose to starch increased from 0.25:1 to 1:1, the glass transition temperature (Tg, Tg′) and ice melting enthalpy (ΔHice) of wheat starch‐sucrose mixtures (with total moistures of 40–60%) were decreased to a range of −7 to −20°C and increased to a range of 29.4 to 413.4 J/g of starch, respectively, in comparison with wheat starch with no sucrose. The Tg′ of the wheat starch‐sucrose mixtures was sensitive to the amount of added sucrose, and detection was possible only under conditions of excess total moisture of >40%. The peak temperature (Tm) and enthalpy value (ΔHG) for gelatinization of starch‐sucrose systems within the total moisture range of 40–60% were increased with increasing sucrose and were greater at lower total moisture levels. The Tg′ of the starch‐sucrose system increased during storage. In particular, the significant shift in Tg′ ranged between 15 and 18°C for a 1:1 starch‐sucrose system (total moisture 50%) after one week of storage at various temperatures (4, 32, and 40°C). At 40% total moisture, samples with sucrose stored at 4, 32, and 40°C for four weeks had higher retrogradation enthalpy (ΔH) values than a sample with no sucrose. At 50 and 60% total moisture, there were small increases in ΔH values at storage temperature of 4°C, whereas recrystallization of samples with sucrose stored at 32 and 40°C decreased. The peak temperature (Tp), peak width (δT), and enthalpy (ΔH) for the retrogradation endotherm of wheat starch‐sucrose systems (1:0.25, 1:0.5, and 1:1) at the same total moisture and storage temperature showed notable differences with the ratio of added sucrose. In addition, Tp increased at the higher storage temperature, while δT increased at the lower storage temperature. This suggests that the recrystallization of the wheat starch‐sucrose system at various storage temperatures can be interpreted in terms of δT and Tp.  相似文献   

14.
Formation of ordered structures from disordered amylose is practically important. The thermal behavior of high-amylose maize starches was studied during cooling, following heating, and during subsequent reheating. Four commercial high-amylose genotype maize starches with varying amylose contents (ae du, ae su2, and ae [nominally both 50 and 70% amylose]) were heated to either 120, 140, 160, or 180°C, cooled to 5°C, and reheated to 180°C in a differential scanning calorimeter. Each starch was studied with its native lipid, as well as in reduced-lipid and lipid-free form. On cooling of lipid-containing starches, two distinct exotherms were observed and attributed to amylose-lipid complex formation and to amylose chain association. A distinct exotherm at ≈75°C was attributed to amylose-lipid complex formation. The exotherm attributed to amylose chain association on cooling varied according to the initial heat treatment, lipid level, and starch type. Starches with higher amylose contents showed larger exotherms on cooling. For initial heat treatments to 120 or 140°C, a broad exotherm beginning at ≈95°C was observed on cooling. In contrast, for initial heat treatments to 160 and 180°C, a sharper exotherm with a peak temperature below ≈55°C was observed. Upon reheating, samples that had been initially heated to 120 or 140°C showed a peak at >140°C that was attributed to the melting of ordered amylose. Starches initially heated to 160 or 180°C did not show this peak. This work illustrates that initial heating temperature, as well as lipid content and amylose content, all affect amylose chain association during cooling. Thus, this work suggests strategies for controlling ordering of amylose during processing.  相似文献   

15.
《Cereal Chemistry》2017,94(6):942-949
Since the discovery of the o2 mutation in maize, many studies have reported the characterization of the protein quality of opaque‐2 genotypes. However, few have reported the properties of their starch. The objective of this study was to characterize flour starch properties of 12 half‐sib families of opaque‐2 maize from Argentina. Chemical composition and thermal and pasting properties of whole grain flour were determined. Nonopaque genotypes were used as a control. Starch content of opaque‐2 genotypes did not show significant differences compared with nonopaque genotypes, yet amylose content was significantly lower. A high variability in pasting and thermal properties was observed in genotypes. Opaque samples showed a significantly higher peak viscosity and a lower pasting temperature compared with nonopaque samples, probably owing to larger and less compact starch granules in the floury endosperm. The higher the gelatinization enthalpy of opaque‐2 genotypes was, the lower the amylose content in relation to nonopaque varieties. Two retrogradation endotherms were observed in DSC analysis: one corresponding to amylopectin crystallization and the other to melting of amylose‐lipid complex. Both enthalpies were considered total starch retrogradation (ΔH RT). A wide range of variation was obtained in ΔH RT in opaque‐2 genotypes, but no significant differences between opaque and nonopaque genotypes were observed. The differences in starch properties found in this study would make it possible to identify opaque‐2 families with particular characteristics for the development of starchy food items adapted to specific processing traits.  相似文献   

16.
Ten parent corn lines, including four mutants (dull sugary2, amylose‐extender sugary2, amylose‐extender dull, and an amylose‐extender with introgressed Guatemalen germplasm [GUAT ae]) and six lines with introgressed exotic germplasm backgrounds, were crossed with each other to create 20 progeny crosses to increase resistant starch (RS) as a dietary fiber in corn starch and to provide materials for thermal evaluation. The resistant starch 2 (RS2) values from the 10 parent lines were 18.3–52.2% and the values from the 20 progeny crosses were 16.6–34.0%. The %RS2 of parents was not additive in the offspring but greater RS2 in parents was correlated to greater RS2 in the progeny crosses (r = 0.63). Differential scanning calorimetry (DSC) measured starch thermal characteristics, revealing positive correlations of peak gelatinization temperature and change in enthalpy with %RS2 (r = 0.65 and r = 0.67, P ≤ 0.05); however, % retrogradation (a measure of RS3) and retrogradation parameters did not correlate with %RS2. The %RS2 and onset temperature increased with the addition of the ae gene, likely because RS delays gelatinization.  相似文献   

17.
Rapid visco analysis (RVA) and differential scannning calorimetry (DSC) provided overall assessments of the effects of variable temperature soaking at 30, 50, 70, and 90°C and steaming at 4, 8, and 12 min. Calculation of the relative parboiling index (RPI) and percent gelatinization provided good metrics for determining the overall effects of partial parboiling. FT‐Raman and solid‐state 13C CP‐MAS NMR spectroscopies provided insight to conformational changes in protein and starch of paddy rice under various parboiling conditions. RVA showed lower pasting curves and DSC showed lower ΔH with increased temperature and steaming times. A large decrease in viscosity occurred with only the 30‐4 treatment as opposed to raw rice. This observation was consistent with FT‐Raman results that indicated substantial conversion of the protein from α‐helix to other conformations. DSC indicated incomplete gelatinization of starch, even with 90°C soaking and 12 min of steaming. Solid‐state 13C CP‐MAS NMR spectroscopy confirmed this result. However, it indicated the percent of Vh/amorphous plus the remaining crystalline starch in the 90‐12 treatment was equal to the amorphous and partially‐ordered starch in commercially parboiled rice. These results suggest that partial parboiling, 90°C soaking, and more than 8 min of steaming (ideally ≈12 min) of paddy rice is sufficient to induce changes that inactivate enzymes and provide enough starch gelatinization to prevent kernel breakage.  相似文献   

18.
The impact of dietary fiber (DF) mixtures on dough thermal properties needs to be investigated when designing high‐fiber wheat bread. Effects of flour replacement at different levels (6–34%) by soluble (inuline [FN]), partially soluble (sugar beet [FX], pea cell wall [SW]), and insoluble (pea hull [EX]) DF on wheat dough thermal profiles have been investigated by simulating baking, cooling, and storage in differential scanning calorimetry (DSC) pans. In general, DF incorporation into water‐flour systems delayed endothermic transition temperatures for both gelatinization and retrogradation phenomena except for the peak temperature (Tp) of retrogradation. With some exception, the pattern of the enthalpy of amylopectin retrogradation was lower and slower (lower constant of proportion, k) over 10 days of storage in gelatinized hydrated flour‐fiber blends when compared with control without DF. FX, a partially soluble fiber, provided major effects on gelatinization (Tp decrease and ΔH increase) and retrogradation kinetics (the Avrami exponent, n, increase). Single presence of EX allowed a significant reduction in the Avrami exponent n leading to slower kinetics for amylopectin retrogradation when included in the blends.  相似文献   

19.
Differential scanning calorimetry (DSC) is used routinely to screen for starch thermal properties. In early generations of line development, the established analysis separately evaluates starch extracted from five, single corn kernels. A thermal property trait carried by a recessive gene would appear 25% of the time; thus, if five separate kernels were evaluated, the likelihood of detecting an unusual thermal trait is high. The objective of the current work was to expedite selection by examining five kernels at a time, instead of one, hypothesizing that we would be able to detect different thermal properties in this blend. Corn lines, all from the same genetic background (ExSeed68 or Oh43), with known thermal functions (amylose‐extender, dull, sugary‐1, sugary‐2, and waxy) were blended with normal starch (control) in ratios of 0:5, 1:4, 2:3, 3:2, 4:1, and 5:0, and analyzed with DSC. The values for each ratio within a mutant type were unique (α < 0.01) for most DSC measurements, especially for gelatinization onset temperature, change in enthalpy of gelatinization, and range of gelatinization. These results support the five‐kernel method for rapidly screening large amounts of corn germplasm to identify kernels with unusual starch traits.  相似文献   

20.
The total, reversing, and nonreversing thermal properties during gelatinization of waxy rice starch (starch-to-water ratio = 1:2, w/w) were examined by modulated differential scanning calorimetry (MDSC). The effect of MDSC operating variables (i.e., the amplitude and frequency of temperature modulation and the underlying heating rate) on these thermal properties was determined by response surface methodology (RSM) and statistical analysis. The frequency of temperature modulation and the underlying heating rate significantly influenced the gelatinization temperatures and enthalpy changes in total and nonreversing endotherms. In addition, the combination of 0.025Hz and 4–8°C/min with a properly low degree of oscillation was suitable for characterization of starch gelatinization by MDSC. The enthalpy changes in the reversing (thermodynamic) endotherms increased, but those in the nonreversing (kinetic) endotherms decreased with increasing periods (i.e., decreasing frequencies) and underlying heating rates. However, the total enthalpy changes were only slightly influenced by the MDSC variables studied. In addition, the activation energies for the total and nonreversing events were 281.8–417.3 and 386.3–739.7 kJ/mol, respectively, depending on the MDSC conditions. From the compensation relationship between the activation energy and frequency factor, we concluded that the total and nonreversing endotherms were linked to the same single transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号