首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对现有花椒簇检测算法模型参数量多、计算量大、检测速度低、很难部署到嵌入式设备的问题,提出一种基于轻量化YOLOv5s的花椒簇检测算法模型。首先将ShuffleNet v2主干网络替代原YOLOv5s中的主干网络进行重构;同时将SPPF嵌入至ShuffleNet v2骨干中;其次引入轻量级注意力机制CBAM;最后使用SIoU_Loss代替CIoU_Loss作为回归损失函数。试验结果表明:改进后的轻量化YOLOv5s网络参数降低85.6%,计算量降低87.7%,对花椒簇的检测精度mAP@0.5达到92.6%,较原YOLOv5s模型提高3.4%,mAP@0.5:0.95达到61.4%,检测时间为11 ms,相比原模型16 ms缩短31.3%,可以满足在现场环境下对花椒簇的检测。  相似文献   

2.
基于改进YOLO v5的自然环境下樱桃果实识别方法   总被引:1,自引:0,他引:1  
为提高对樱桃果实识别的准确率,提升果园自动采摘机器人的工作效率,使用采集到的樱桃原始图像以及其搭配不同数据增强方式得到的数据图像共1816幅建立数据集,按照8∶2将数据集划分成训练集与测试集。基于深度学习网络,利用YOLO v5模型分别对不同数据增强方式以及组合增强方式扩增后的樱桃数据集进行识别检测,结果表明离线增强与在线增强均对模型精度提升有一定的正向促进作用,其中采用离线数据增强策略能够显著且稳定的增加检测精度,在线数据增强策略能够小幅度提高检测精度,同时使用离线增强以及在线增强能够最大幅度的提升平均检测精度。针对樱桃果实之间相互遮挡以及图像中的小目标樱桃检测难等导致自然环境下樱桃果实检测精度低的问题,本文将YOLO v5的骨干网络进行改动,增添具有注意力机制的Transformer模块,Neck结构由原来的PAFPN改成可以进行双向加权融合的BiFPN,Head结构增加了浅层下采样的P2模块,提出一种基于改进YOLO v5的自然环境下樱桃果实的识别网络。实验结果表明:相比于其他已有模型以及单一结构改进后的YOLO v5模型,本文提出的综合改进模型具有更高的检测精度,使平均精度均值2提高了29个百分点。结果表明该方法有效的增强了识别过程中特征融合的效率和精度,显著地提高了樱桃果实的检测效果。同时,本文将训练好的网络模型部署到安卓(Android)平台上。该系统使用简洁,用户设备环境要求不高,具有一定的实用性,可在大田环境下对樱桃果实进行准确检测,能够很好地满足实时检测樱桃果实的需求,也为自动采摘等实际应用奠定了基础。  相似文献   

3.
曾俊  陈仁凡  邹腾跃 《南方农机》2023,(24):24-27+41
【目的】解决自然环境下不同成熟度桃子快速准确检测的问题,课题组提出一种基于改进YOLOv5s的目标检测算法YOLO-Faster。【方法】使用YOLOv5s网络模型作为基础网络,将主干特征提取网络替换为FasterNet,使模型轻量化,并在主干和颈部之间增加串联的CBAM卷积注意力模块和常规卷积块,增强对图像重要特征的捕捉与表达,同时引入SIoU损失函数缓解预测框与真实框之间方向的不匹配。【结果】改进后模型的m AP为88.6%,与YOLOv5s相比提升1个百分点,模型权重缩减39.4%,浮点运算量降低44.3%,在GPU、CPU上的单张图像平均检测时间分别减少12.6%和24%。此外,本研究将训练好的模型部署到嵌入式设备Jetson Nano上,模型在Jetson Nano上的检测时间比YOLOv5s减少30.4%。【结论】改进后的轻量级模型能够快速准确地检测自然环境下不同成熟度的桃子,可以为桃子采摘机器人的视觉识别系统提供技术支持。  相似文献   

4.
基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别   总被引:1,自引:0,他引:1  
为准确识别果树上的不同苹果目标,并区分不同枝干遮挡情形下的果实,从而为机械手主动调整位姿以避开枝干对苹果的遮挡进行果实采摘提供视觉引导,提出了一种基于改进YOLOv5m面向采摘机器人的苹果采摘方式实时识别方法。首先,改进设计了BottleneckCSP-B特征提取模块并替换原YOLOv5m骨干网络中的BottleneckCSP模块,实现了原模块对图像深层特征提取能力的增强与骨干网络的轻量化改进;然后,将SE模块嵌入到所改进设计的骨干网络中,以更好地提取不同苹果目标的特征;进而改进了原YOLOv5m架构中输入中等尺寸目标检测层的特征图的跨接融合方式,提升了果实的识别精度;最后,改进了网络的初始锚框尺寸,避免了对图像里较远种植行苹果的识别。结果表明,所提出的改进模型可实现对图像中可直接采摘、迂回采摘(苹果上、下、左、右侧采摘)和不可采摘果实的识别,识别召回率、准确率、mAP和F1值分别为85.9%、81.0%、80.7%和83.4%。单幅图像的平均识别时间为0.025s。对比了所提出的改进算法与原YOLOv5m、YOLOv3和EfficientDet-D0算法在测试集上对6类苹果采摘方式的识别效果,结果表明,所提出的算法比其他3种算法识别的mAP分别高出了5.4、22、20.6个百分点。改进模型的体积为原始YOLOv5m模型体积的89.59%。该方法可为机器人的采摘手主动避开枝干对果实的遮挡,以不同位姿采摘苹果提供技术支撑,可降低苹果的采摘损失。  相似文献   

5.
水稻叶病防治在提高水稻产量中具有重要作用,针对水稻叶病人工检查速度慢、主观性高的问题,提出一种基于改进Yolov5s的水稻叶病目标检测方法。采用K-means聚类算法得到先验框尺寸,增强检测模型对水稻叶病的适应性;将轻量级空间注意力与通道注意力融合,对高层语义特征信息增强,增强模型对病害信息的感知度;并结合特征金字塔网络,融合多尺度感受野获取目标上下文信息,有效地增强模型对目标周围特征的提取,提高目标检测的准确度。试验结果表明:改进后的Yolov5s算法平均检测精度(IOU=0.5)提高4.3%,F1值提高5.3%,帧率FPS为58.7 f/s。有效提升Yolov5s算法对水稻叶病的检测精度,达到实时检测的需求。  相似文献   

6.
针对不同光照,遮挡重叠,大视场等复杂环境下,自动采摘机器人无法快速准确地识别果蔬目标的问题,提出一种用于复杂环境下果蔬检测的改进YOLOv5(You Only Look Once v5)算法。首先,在主干网络Backbone中的CBL模块中嵌入卷积注意力机制(Convolutional Block Attention Module, CBAM),提高目标特征的提取能力。其次,引入完全交并比非极大抑制算法(Complete IOU Non-maximum suppression, CIOU-NMS),考虑长宽边长真实差,提高回归精度。最后,用加权双向特征金字塔网络(Bidirectional Feature Pyramid Network, BiFPN)替换原始YOLOv5的路径聚合网络(PANet),融合多尺度特征提高识别精度和准确率。以苹果为例进行试验,结果表明:改进YOLOv5算法精准率为94.7%,召回率为87%,平均精度为92.5%,相比于原始YOLOv5算法AP提高3.5%,在GPU下的检测时间为11 ms,可以实现复杂情况下的果蔬快速准确识别。  相似文献   

7.
黄明辉  程忠 《南方农机》2023,(16):135-138
【目的】在算力资源有限的嵌入式设备上对目标苹果进行快速、准确的识别与定位。【方法】研究小组对采摘机器人的目标识别与定位方法进行研究,以YOLOv4网络模型为基础,对YOLOv4进行轻量化改进,使用MobileNet V3作为特征提取的主干网络,减少模型的计算量,并结合ZED双目相机与定位算法在嵌入式平台上进行实验。【结果】实验表明:1)在目标识别方面,改进后模型的平均检测精度为87.32%,模型的大小为53.76 MB,较改进前降低了79%。2)采用ZED相机结合测距算法进行了苹果目标定位实验,ZED双目相机的测距误差可控制在0.02 m以内,同时改进的YOLOv4算法的平均检测速度在15FPS左右。【结论】改进后的YOLOv4网络模型更适合部署在算力有限的嵌入式设备中进行苹果采摘任务,且能够满足苹果采摘任务的实时性要求。因此,该方法可以为苹果采摘机器人的识别与定位提供技术参考。  相似文献   

8.
【目的】传统的水果检测识别技术具有一定的环境适应缺陷性和主观性,通常是对水果的纹理、颜色、形状等外表特征进行提取和识别,为实现对柑橘果实产量的精准预测,需研究温室环境下对柑橘果实的快速识别及计数。【方法】项目组选取从柑橘种植园中多场景拍摄的5 926张图片作为训练集、738张图片作为验证集、608张图片作为测试集,采用DeepSort算法结合改进YOLOv5算法的方式,通过在主干部分加入SE注意力机制以实现对算法的改进,从而提高对柑橘果实的识别效果;在柑橘果实计数部分,主要采用DeepSort算法给予每个柑橘果实单独的ID编号以实现对柑橘果实的计数。【结果】改进后的YOLOv5算法对柑橘果实的平均识别准确率为93.712%,相比改进前的CenterNet算法、EfficientDet算法、SSD算法、YOLOv4算法、YOLOX算法,平均识别准确率提升了1.354个百分点,并且精确度和召回率也有一定的提升,结合DeepSort算法后对柑橘果实的平均多目标跟踪准确率为88.465%,可较准确地实现对柑橘果实的计数。【结论】DeepSort算法具有提升目标被环境等其他因素遮挡情况下的计数效...  相似文献   

9.
杆塔是输电线路中的重要组成设施,其安全直接影响电网电力输送的安全稳定。根据遥感影像中杆塔小目标识别精度低等问题,研究基于YOLOv5s和YOLOv5x算法进行集成建模,并加入加权框融合(weighted boxes fusion,WBF)推理机制,借助高分辨率遥感杆塔影像数据集进行模型训练测试,并对数据集做测试时增强(test-time augmentation,TTA)。实验结果显示:与单模型识别结果相比较,集成YOLOv5模型识别精确度、召回率、mAP@.5显著提升,分别达到0.952、0.944、0.929;并且在一些复杂背景、不同光照环境和不同天气条件下模型都具有良好的识别效果,具有较强的鲁棒性。  相似文献   

10.
为提高草莓的总产量,合理监控和防治草莓病害是有效的手段,提出一种基于改进YOLOv5的草莓病害识别算法。该检测算法以CSPDarknet作为主干特征提取网络,能够有效提高模型的性能和训练效率,并使用EIOU Loss损失函数与K-means聚类算法,来提高模型的收敛速度。同时,在模型中增加CBAM注意力机制来提高检测精度,最终构建基于改进YOLOv5的CBAM-YOLOv5l算法。试验结果表明,改进后的模型较之原始模型,在检测精度上有所提升且依然能保证高效的检测速度。另外,经过训练的CBAM-YOLOv5l目标检测算法在验证集下的总体平均精度达到96.52%,平均检测时间为27.52 ms,对比YOLOv4、YOLOv4-Tiny、Faster_R-CNN等目标检测算法,该检测算法在精度上具有更大的优势,在实际的草莓果园环境中具有良好的鲁棒性与实时性,可以满足草莓病害识别精度的需求,能够可靠地提示草莓健康状态,从而及时地实现精准施药等保护措施。  相似文献   

11.
目前农业环境下的无序目标的精确计数有很高的应用需求,这种计数对其生物量、生物密度管理起到了重要的指导作用。如黑水虻幼虫目标追踪过程中,追踪对象具有高速和非线性的特征,常规算法存在追踪目标速度不足和丢失目标后的再识别困难等问题。针对以上问题,本文提出了一种改进SORT算法,通过改进卡尔曼滤波模型的方式提升目标追踪算法的快速性和准确性,提升了计数的精度。另外,针对黑水虻幼虫目标识别过程中幼虫性状的多样性和混料导致的复杂背景问题,本文通过实验对比多种深度学习网络性能选定YOLO v5s算法提取图像多维度特征,提升了目标识别精度。实验结果表明:在划线计数方面,本文提出的改进SORT算法与原模型相比,平均精度从91.36%提升到95.55%,提升4.19个百分点,通过仿真和实际应用,证明了本文模型的有效性;在目标识别方面,使用YOLO v5s模型在训练集上帧率为156f/s,mAP@0.5为99.10%,精度为90.11%,召回率为99.22%,综合性能优于其他网络。  相似文献   

12.
针对智能网联汽车大发展环境下骑车人在公路上为易受伤群体的问题,将目标识别作为无人驾驶技术中的关键一环,提出使用YOLOv3算法对骑车人识别算法进行研究。YOLOv3的主干特征提取网络为Darknet-53,此种网络结构针对于多种类目标检测适用性强,然而公路骑车人作为单种类目标,Darknet-53网络结构显得冗繁。基于此,提出一种在YOLOv3算法基础上记性改进的算法,通过替换主干特征提取网络为Dark-19简化网络结构,降低网络复杂度,之后优化损失函数,将原来的Io U替换成CIo U,以提高识别精度。通过在TDCB上进行仿真实验,结果表明,改进后的YOLOv3算法平均检测精度和检测速度都有所提高,精度上提高了约3%,检测速度上约提高了0.013 s,此种改进后的算法有助于提高公路骑车人的安全性,对骑车人识别研究有着重要意义。  相似文献   

13.
针对果园目标检测时相机抖动以及物体相对运动导致检测图像模糊的问题,本文提出一种将DeblurGAN-v2去模糊网络和YOLOv5s目标检测网络相融合的D2-YOLO一阶段去模糊识别深度网络,用于检测识别果园模糊场景图像中的障碍物。为了减少融合网络的参数量并提升检测速度,首先将YOLOv5s骨干网络中的标准卷积替换成深度可分离卷积,并且在输出预测端使用CIoU_Loss进行边界框回归预测。融合网络使用改进的CSPDarknet作为骨干网络进行特征提取,将模糊图像恢复原始自然信息后,结合多尺度特征进行模型预测。为了验证本文方法的有效性,选取果园中7种常见的障碍物作为目标检测对象,在Pytorch深度学习框架上进行模型训练和测试。试验结果表明,本文提出的D2-YOLO去模糊识别网络准确率和召回率分别为91.33%和89.12%,与分步式DeblurGAN-v2+YOLOv5s相比提升1.36、2.7个百分点,与YOLOv5s相比分别提升9.54、9.99个百分点,能够满足果园机器人障碍物去模糊识别的准确性和实时性要求。  相似文献   

14.
针对现有检测算法难以检测自然场景下小而密集的柑橘问题,提出一种DS-YOLO(Deformable Convolution SimAM YOLO)密集柑橘检测算法。引入可形变卷积网络(Deformable Convolution)代替原YOLOv4中的特征提取网络部分卷积层,使特征提取网络能自适应提取遮挡、重叠等导致柑橘形状信息缺失的位置特征,在特征融合模块中,增加新的检测尺度并融合SimAM注意力机制,增强模型对于小而密集柑橘特征的提取能力。试验结果表明:DS-YOLO算法相较于原YOLOv4准确率提高8.75%,召回率提高7.9%,F1分数提高5%,能够较准确检测自然环境下的密集柑橘目标,为密集水果产量预测和采摘机器人提供了有效的技术支持。  相似文献   

15.
为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration, MSRCR)增强算法的改进YOLOv4-tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像特征增强预处理,提高图像的对比度和细节质量;然后使用Mosaic在线数据增强方式,丰富目标检测背景,提高训练效率和小目标的检测精度;最后对YOLOv4-tiny模型使用K-means++聚类算法进行先验框聚类分析和通道剪枝处理。改进和简化后的模型总参数量降低了45.3%,模型占用内存减少了45.8%,平均精度均值(Mean average precision, mAP)提高了2.5个百分点,在Jetson Nano嵌入式平台上平均检测帧耗时减少了22.4%。本文提出的Prune-YOLOv4-tiny模型与Faster RCNN、YOLOv3-tiny、YOLOv4 3种常用的目标检测模型进行比较,结果表明:Prune-YOLOv4-tiny的mAP为96.6%,分别比Faster RCNN和YOLOv3...  相似文献   

16.
为提高YOLOv4目标检测算法对苹果叶片小型病斑的检测性能,提出了一种PSA(金字塔压缩注意力)-YOLO算法。在CSPDarknet53的基础上融合了Focus结构和PSA机制,并采用网络深度减小策略,构建了参数量小、精确度高的PSA-CSPDarknet-1轻量化主干网络。其次在网络颈部,搭建了空间金字塔卷积池化模块,用极小的计算代价增强了对深层特征图的空间信息提取能力,并采用α-CIoU损失函数作为边界框损失函数,提高网络对高IoU阈值下目标的检测精度。根据实验结果,PSA-YOLO网络在苹果叶片病斑识别任务中的AP50达到88.2%。COCO AP@[0.5∶0.05∶0.95]达到49.8%,比YOLOv4提升3.5个百分点。网络对于小型病斑的特征提取能力提升幅度更大,小型病斑检测AP比YOLOv4提升3.9个百分点。在单张NVIDIA GTX TITAN V显卡上的实时检测速度达到69帧/s,相较于YOLOv4网络提升13帧/s。  相似文献   

17.
复杂大田场景中麦穗检测级联网络优化方法   总被引:2,自引:0,他引:2  
单位种植面积的麦穗数量是评估小麦产量的关键农艺指标之一。针对农田复杂场景中存在的大量麦芒、卷曲麦叶、杂草等环境噪声、小尺寸目标和光照不均等导致的麦穗检测准确度下降的问题,提出了一种基于深度学习的麦穗检测方法(FCS R-CNN)。以Cascade R-CNN为基本网络模型,通过引入特征金字塔网络(Feature pyramid network,FPN)融合浅层细节特征和高层丰富语义特征,通过采用在线难例挖掘(Online hard example mining, OHEM)技术增加对高损失样本的训练频次,通过IOU(Intersection over union)阈值对网络模型进行阶段性融合,最后基于圆形LBP纹理特征训练一个SVM分类器,对麦穗检出结果进行复验。大田图像测试表明,FCS R-CNN模型的检测精度达92.9%,识别单幅图像平均耗时为0.357s,平均精度为81.22%,比Cascade R-CNN提高了21.76个百分点。  相似文献   

18.
随着智慧农业技术和大田种植技术的不断发展,自动除草具有广阔的市场前景。关于除草剂自动喷洒的有效性,农田杂草的精准、快速地识别和定位是关键技术之一。基于此提出一种改进的YOLOv5算法实现农田杂草检测,该方法通过改进数据增强方式,提高模型泛化性;通过添加注意力机制,增强主干网络的特征提取能力;通过改进框回归损失函数,提升预测框的准确率。试验表明,在芝麻作物和多种杂草的复杂环境下,本文方法的检测平均精度均值mAP为90.6%,杂草的检测平均精度AP为90.2%,比YOLOv5s模型分别提高4.7%和2%。在本文试验环境下,单张图像检测时间为2.8 ms,可实现实时检测。该研究内容可以为农田智能除草设备提供参考。  相似文献   

19.
[目的/意义]实现复杂的自然环境下农作物害虫的识别检测,改变当前农业生产过程中依赖于专家人工感官识别判定的现状,提升害虫检测效率和准确率具有重要意义。针对农作物害虫目标检测具有目标小、与农作物拟态、检测准确率低、算法推理速度慢等问题,本研究提出一种基于改进YOLOv8的复杂场景下农作物害虫目标检测算法。[方法]首先通过引入GSConv提高模型的感受野,部分Conv更换为轻量化的幻影卷积(Ghost Convolution),采用HorBlock捕捉更长期的特征依赖关系,Concat更换为BiFPN (Bi-directional Feature Pyramid Network)更加丰富的特征融合,使用VoVGSCSP模块提升微小目标检测,同时引入CBAM (Convolutional Block Attention Module)注意力机制来强化田间虫害目标特征。然后使用Wise-IoU损失函数更多地关注普通质量样本,提高网络模型的泛化能力和整体性能。之后,对改进后的YOLOv8-Extend模型与YOLOv8原模型、YOLOv5、YOLOv8-GSCONV、YOLOv8-BiFPN、...  相似文献   

20.
为了能准确检测、跟踪加州鲈鱼因水中溶解氧含量低产生的胁迫行为,本文构建了一种改进的YOLO v5与DeepSORT组合网络算法。在算法方面提出2个改进方案:在原YOLO v5的Backbone和Neck中分别加入2个基于移位窗口的自注意力Swin Transformer模块,提升了网络对目标特征信息的提取能力,以此提升原模型的检测效果;采用Warmup和Cosine Annealing结合的学习率策略,使多目标跟踪算法DeepSORT前期收敛速度更快、更稳定。实验结果表明,在目标检测方面,相对于原YOLO v5,改进的YOLO v5的mAP@0.5、mAP@0.5:0.95和召回率分别提升1.9、1.3、0.8个百分点,在不完全遮挡情况下,改进的算法表现出更好的检测效果。在目标跟踪方面,DeepSORT算法的MOTA、MOTP和IDF1分别提升4.0、0.7、10.7个百分点,并且加州鲈鱼在遮挡前后的ID切换频率得到明显抑制。改进的YOLO v5与DeepSORT跟踪算法更适合于检测、跟踪加州鲈鱼的低氧胁迫行为,能够为加州鲈鱼的养殖提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号