首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为认识宿州煤矿区大气降尘中重金属的污染现状及来源,利用富集因子指标评价尘样中Cu、Pb、Zn、Cr、Cd、As、Mn和Fe的污染等级,并借助相关分析和主成分分析手段对降尘中重金属元素的来源进行了研究。结果表明:降尘中Cu、Pb、Zn、Cd和As的平均含量均高于安徽省土壤背景值,而Cr、Mn和Fe则低于土壤背景含量;Cd的元素富集因子为9.02,为显著污染水平,Cu和As的富集因子介于2~5,为中度污染,其余元素富集因子均小于2,为无污染至弱污染;降尘中的Cd和As元素具有同源性,与煤矿开采及煤炭资源利用等相关的人为活动密切相关,Cu、Pb和Zn的含量富集主要受到矿区大型运输车辆交通污染影响,而降尘中Cr、Mn和Fe则来源于地表土壤颗粒物。  相似文献   

2.
为了探讨贵州省某县辣椒种植区土壤重金属来源,采用4 km×4 km的网格采集了108个土壤样品,运用电感耦合等离子体质谱仪(ICP-MS)和原子荧光光谱仪(AFS)测定土壤中Cd、Hg、As、Pb、Cr、Cu、Zn、Ni元素含量,通过正定矩阵因子分析模型(PMF)解析土壤中8种重金属的污染来源。结果表明:辣椒种植区土壤大部分重金属含量相对贵州省土壤背景值已存在一定程度的富集,大部分土壤中Cd含量超过农用地土壤污染风险筛选值,且8个重金属在研究区的分布差异较大,Cd、Hg、As、Cr、Ni的高含量区主要分布在研究区的东部;Pb的高含量区较为零散,没有明显集中分布区;Cu、Zn的高含量区主要分布于西南部。PMF模型解析出5个贡献源,工业源、自然源、交通源、大气沉降源及混合源。其中,Cd的污染来源较为复杂,有自然背景、农业活动、工业活动等;Hg的主要来源是大气沉降;As的污染来源主要是工业活动;Pb、Zn的污染来源主要是交通活动;Cr、Cu、Ni的主要来源是自然背景,其中部分Zn还可能来源于交通活动。辣椒种植区存在Cd、Hg、As、Cu、Ni污染风险,辣椒产业布局应考虑交通、工业等活动对土壤表层重金属的影响,减少污染源、降低污染物排放量;同时也要合理的施用化肥、农药,以保障辣椒的安全生产。  相似文献   

3.
本研究选取西安市灞桥燃煤电厂周边80个表层土壤样品,测定其中As、Ba、Cd、Co、Cr、Cu、Mn、Ni、Pb、V、Zn等11种重金属含量,然后用修正BCR提取技术测定分析重金属的赋存形态,最后用多元统计方法分析了重金属的来源。结果表明:(1)土壤中11种重金属元素的平均含量均超过了陕西土壤背景值,其中Cd、Co和Pb的平均值分别是陕西土壤背景值的5.0、5.6倍和6.6倍,在土壤中存在明显的富集。(2)元素Mn、Co、Zn和Pb易发生迁移,潜在危害较大,应成为优先防控对象。(3)As、Cu、Cd、Pb主要来源于交通污染源、煤炭燃烧和工业"三废"排放;Cr、Mn、Ni、V主要来源于成土母质;Ba和Zn受工业排放、交通污染和居民活动的综合作用的影响,而Co主要受自然与人为因素共同控制。  相似文献   

4.
小流域是耕地土壤重金属分布与再迁移的基本景观单元,厘清其污染特征及来源是精准治污与科学治污的重要基础,然而小流域尺度耕地土壤重金属污染源解析研究仍亟待加强。本研究以典型工业区周边小流域耕地为例,利用土壤调查和正定矩阵因子法(PMF)结合源排放清单法,研究土壤重金属污染特征并解析耕地土壤重金属污染来源。结果表明,受污染耕地主要分布在小流域中部工业企业密集区域以及小流域西南部,主要为Cd污染,污染点位比例为90.5%;As、Hg和Pb污染点位比例1.1%~6.3%,无Cr污染。表层土壤Cd和Hg累积明显,地质累积指数均值为1.41和0.87;而Pb、As和Cr地质累积指数均值均小于或接近0。灌溉水和肥料等农业投入品重金属含量均未超标。当前耕地土壤主要污染物的输入途径中,Cd和Pb主要为大气沉降,占比71.0%~82.6%;As和Hg主要为大气沉降和灌溉水输入,占比39.0%~58.9%。农业投入品使用对耕地土壤Cd、Hg、As、Pb和Cr的输入通量占比较小,仅2.1%~18.7%。PMF模型分析显示,耕地土壤重金属污染来源包括土壤母质与工业企业混合源、工业企业源和农业源,相对贡献依次为38...  相似文献   

5.
湘中南农田土壤重金属污染特征及源解析   总被引:1,自引:0,他引:1  
湖南省部分农田存在重金属污染现象,不仅影响农作物生长,而且威胁人体健康。为进一步明确土壤重金属分布特征,定量解析污染来源,采集了湖南省重金属潜在风险区内典型水旱轮作区107个土壤样品、13个肥料样品和31个灌溉水样品,测定了其中Cd、Pb、Zn、Cu 4种元素含量,并利用UNMIX模型对农田重金属污染源进行了解析。结果表明:研究区域内表层土壤Cd、Pb、Zn、Cu平均含量分别为背景值的5.22倍、4.58倍、1.10倍、1.49倍,其中Cd、Pb富集明显;对比国家土壤重金属二级标准,点位超标率分别为69.16%、5.61%、3.73%和6.54%,可见Cd污染尤为严重。肥料和灌溉水中Cd含量未超过我国有关限量标准。UNMIX解析结果表明,在郴州和衡阳区域,土壤表层Cd污染主要由工业活动(贡献率分别为66.15%和64.88%)引起,Pb污染同时受工业活动(贡献率分别为49.10%和54.28%)和交通运输及自然污染(贡献率分别为43.24%和50.23%)共同影响;在长沙区域,土壤表层Cd污染受农业源影响最大(61.50%),而Pb污染主要与交通运输及自然污染综合源(94.29%)有关。综合3个研究区域,土壤表层Zn、Cu污染物主要来源于施肥和灌溉等农事活动。本研究结论可为湖南省典型水旱轮作区重金属污染防控和治理提供理论基础。  相似文献   

6.
郑龙  张欢  高超 《江西农业学报》2022,34(1):186-192
以合肥市及其郊区为研究对象,以实测结果为基础,分析土壤重金属富集特征,利用正定矩阵因子分析模型(PMF)进行土壤重金属来源的定量解析.结果表明:区内富集程度较高的元素为Hg、Zn、Cd、Pb、Cu等,Hg和Zn的富集区主要在主城区,Cd、Pb、Cu的扩散范围相对较大.PMF模型结果显示,研究区土壤重金属的主要来源分别为...  相似文献   

7.
叶面降尘对大气环境状况有良好的指示作用,同时也是农田土壤重金属污染的来源之一。为调查湛江东海岛农田叶面降尘重金属污染状况,利用ICP-MS测定了As、Cd、Cr、Cu、Ni、Pb、Zn的含量,采用地累积指数法、单因子和内梅罗污染指数法、潜在生态危害指数法进行了综合评价,并结合相关分析和主成分分析法讨论了重金属来源。结果表明:Cd、Cu、Zn的平均值明显高于湛江土壤背景值,As、Cr、Pb的平均值均超过当地土壤背景值,但未超过国家标准值。Cd为严重污染、Zn为中度-严重污染、其他重金属元素为轻度污染或无污染;Pb主要来源于交通活动,Zn、Cd、Cu和Cr主要与工业活动有关。由此可知,东海岛农田叶面降尘污染情况严重,靠近钢铁石化区的农田的叶面降尘重金属污染大。  相似文献   

8.
焉耆盆地小麦地土壤重金属污染及生态风险   总被引:3,自引:1,他引:2  
从新疆焉耆盆地采集35个小麦地土壤样品,测定其中As、Cd、Cr、Cu、Mn、Ni、Pb和Zn 8种重金属元素的含量,采用内梅罗污染指数(NPI)、潜在生态风险指数(RI)和生态风险预警指数(IER)对小麦地土壤重金属污染及生态风险进行评价。结果表明:焉耆盆地小麦地Cd含量平均值超出国家土壤环境质量二级标准的11.12倍,Cd、Cr、Ni、Pb和Zn含量的平均值分别超出新疆灌耕土背景值的55.58、1.32、1.48、3.21倍和4.47倍。小麦地Cd、Pb和Zn呈现重度污染,Cr和Ni轻度污染,As和Cu轻微污染,Mn无污染;研究区NPI平均值为7.93(呈现重度污染状态),RI平均值为342.95(属于较强生态风险水平),IER平均值为5.68(属于重警级别),土壤RI和IER从研究区北向南部呈现逐渐增加趋势。小麦地Ni、Pb与Zn主要受到人为污染源的影响,Cu、Mn和Cr主要受到土壤地球化学特征的控制,As和Cd可能受人为污染和自然因素共同影响。综上认为,Cd是焉耆盆地小麦地主要的污染因子和生态风险因子,对研究区耕地Cd污染应予关注。  相似文献   

9.
基于GIS和PMF的铜仁植烟土壤重金属污染特征与来源解析   总被引:1,自引:0,他引:1  
植烟土壤重金属污染不仅影响烟叶品质,同时会对吸烟者的健康构成潜在危害,研究植烟土壤重金属污染现状及来源贡献对于保障烟叶安全生产具有重要意义。为定性、定量分析贵州铜仁地区植烟土壤重金属污染特征及来源贡献,采集主要植烟区土壤样品267份,测定8种重金属元素(Cu、Ni、Pb、Zn、As、Hg、Cr、Cd)含量,采用单因子污染指数(Pi)、污染负荷指数(PLI)结合地统计分析对重金属污染特征进行评价,并运用正定矩阵因子模型(PMF)解析其重金属的来源及贡献率。结果表明:植烟土壤Hg和Pb累积明显,均值分别是贵州省土壤背景值的2.27倍和1.74倍;Pi表明Cd、As、Pb的污染程度较高,高值区分布与区域矿冶活动分布密切相关。PMF计算结果显示,植烟土壤重金属来源主要有自然源、铅锌矿业源、交通和铅锌冶炼混合源、汞矿和煤矿源以及农业源5种类型,贡献率分别为25.38%、20.41%、16.60%、14.56%、23.05%。研究区植烟土壤重金属综合污染水平较低,重金属来源复杂,应重点加强Hg、Cd、Pb的源头控制,以降低其污染风险。  相似文献   

10.
以沈阳市典型农用土地为研究区域,进行土壤重金属(As、Pb、Cu 、Cr、Zn、Hg、Ni 、Cd)的污染情况评价及来源分析.结果表明,农用土地土壤受到不同程度的重金属污染,其污染程度依次为Pb>Hg>Zn>Ni=Cu>As>Cd>Cr,潜在危害问题最为突出的重金属为Hg与Cd.污染的来源与工业生产和人类活动有关,其中最主要的影响因素为交通运输.  相似文献   

11.
包头某铜厂周边土壤重金属分布特征及来源分析   总被引:8,自引:6,他引:2  
通过测定包头某铜厂周边4方向不同水平距离及深度处64个土壤样品中Cu、Cd、Pb、Zn、Mn、Cr 6种重金属含量,探讨其空间分布特征及可能来源。结果表明,铜厂周边土壤中6种重金属均已呈现不同程度的富集,其中Cu、Cd、Pb污染普遍且严重,且Cu受人为活动干扰最为强烈。6种重金属含量分布主要取决于其所在位置距铜厂的水平距离和土层深度,其中:0~20 cm表层土壤中重金属含量随水平距离增加呈现先增大后减小的规律,Pb、Cr和Cu、Zn、Mn分别在100 m和300 m处达到峰值;在距铜厂不同水平距离的样品中,各重金属含量均随土层深度增加而减小,但相距50 m处减小缓慢,100 m、300 m处减小迅速。土壤重金属来源解析表明,铜厂周边土壤中Cr、Cd、Cu来自复合污染源,Pb、Zn的外源污染主要来自交通源,Mn主要来自自然源。  相似文献   

12.
为分析台州市电子垃圾拆解场地周边农田土壤中重金属污染特征和来源贡献,在2021年3月采集研究区230个表层(0~20cm)农田土壤,测定了样品中9种重金属(Cr、Co、Ni、Cu、Zn、As、Cd、Hg和Pb)元素含量。通过污染负荷指数(PLI)和潜在生态风险指数(RI)分析重金属的生态风险,并利用地统计、多变量统计和...  相似文献   

13.
安徽省典型区农用地土壤重金属污染成因及特征分析   总被引:12,自引:6,他引:6  
为探讨安徽省南部山区农用地土壤重金属含量特征和污染成因,以安徽省南部某一典型区为研究区域,在农用地土壤上共布设314个点位,采集土壤样品并对其中Cd、Hg、As、Pb和Cr 5种重金属元素进行检测,运用多元统计分析、PMF(正定矩阵因子分解)模型、地统计分析等方法,对研究区农用地土壤重金属的含量水平、污染成因、空间特征进行系统分析。结果表明:研究区农用地土壤中Cd、Hg、As、Pb、Cr的含量平均值分别为0.32、0.1、14.38、49.44、87.42 mg·kg~(-1),超标率分别为26.93%、3.81%、23.47%、3.35%、2.23%;Cd、As在洪积物和冲积物成土母质中含量较高,Hg、Cr在洪积物成土母质中含量较高。研究表明,研究区农用地土壤重金属来源为:工矿污染源贡献率39.6%,交通污染源和大气沉降综合污染源贡献率42.3%,成土母质源贡献率18.1%。  相似文献   

14.
细河流域农田土壤重金属污染评价及来源解析   总被引:14,自引:6,他引:8  
由于长期接纳沈阳市工业废水和生活污水,细河水质和周边土壤污染严重。2015年10月采集细河流域农田表层(0~20 cm)土壤样品134份,分析土壤中重金属Hg、As、Pb、Cd、Ni、Cr、Zn和Cu的含量分布特征并进行污染评价,首次采用正定矩阵因子分析法(PMF)对该地区8种重金属来源进行分析,为土壤重金属源解析方法学评价提供依据。结果表明:细河流域农田土壤中Hg、As、Pb、Cd、Ni、Cr、Zn、Cu含量范围分别为0.04~1.85、4.80~11.70、10.80~36.70、0.09~1.50、22.30~47.40、19.60~104.00、71.40~242.00、31.20~105.00 mg·kg~(-1),其中Hg、Cd、Zn、Cu、Ni和Cr含量均值是沈阳市土壤背景值的3.80、2.50、2.04、2.03、1.14倍和1.02倍,Cd、Cu和Hg的含量超过土壤环境质量标准(GB 15618—1995)样点比例分别为48%、9%、9%。单因子污染指数评价结果显示Hg和Cd污染最为严重,污染指数均值分别为4.52和2.96;内梅罗综合污染指数均值为4.13,说明研究区域总体为重度污染。PMF模型解析出重金属污染来源有:工业污染源贡献率36.5%,交通污染源和大气沉降综合污染源贡献率23.5%,农业污染源贡献率20.8%,自然成土母质源贡献率19.2%。  相似文献   

15.
亳州市涡北煤矿周边农田土壤重金属污染评价及来源解析   总被引:1,自引:1,他引:0  
为开展煤矿周边农田土壤重金属污染程度及来源研究,采集了亳州市涡北煤矿周边农田105个表层土壤样品,测定了Ni、As、Cr、Zn、Cu、Cd和Pb 7种重金属的含量.利用污染指数法和潜在生态风险指数法对重金属污染程度进行评价,采用绝对主成分分数-多元线性回归(APCS-MLR)受体模型初步定量解析重金属的潜在来源.结果 表明,涡北煤矿周边农田土壤重金属含量总体处于较低水平,重金属Cd局部污染较为严重.涡北煤矿周边农田土壤中7种重金属主要受到自然因素与采矿、农业施肥等人为因素的影响.结论 显示,涡北煤矿周边农田土壤存在一定程度的重金属污染,重金属Zn与Cd的富集主要受矿业活动的影响.  相似文献   

16.
重金属污染已严重危害人类健康与粮食安全,为探明不同时期土壤重金属动态变化规律,采集了天津市武清区的95个农田表层土,并对样品中Pb、Cu、Cr、Ni、Zn、Cd和As的含量进行测定。基于地统计法分析农田土壤重金属空间分布规律,探讨2005年和2019年土壤重金属的累积、潜在生态风险以及土壤中重金属的空间分布特征。结果表明,除Ni以外,重金属Pb、Cu、Cr、Zn、Cd和As随着时间的推移累积污染不断增加。地累积指数和潜在生态风险指数结果表明,Cd和As是研究区生态风险的主要贡献者。2005年和2019年重金属空间特征表明,Cu、Cr、Ni、Zn和As具有相似的空间分布,高值区集中在研究区的西南部,Pb的高值区呈现面源污染,而Cd呈现明显的点源污染。研究区Cu主要受农业施肥的影响,Zn主要受农业施肥和污水灌溉的双重影响,As、Ni和Cr的污染主要来自成土母质,Cd可能来源于工业活动,Pb归因于交通尾气的排放。研究表明,武清区典型蔬菜种植土壤重金属累积的主要原因是工业排放以及污水灌溉。本研究明确了天津市武清区的土壤重金属空间分布特征及污染源,可为研究区污染控制和生态保护提供理论依据。  相似文献   

17.
[目的]掌握铜绿山矿区农业土壤中重金属含量、污染程度及分布特征。[方法]对矿区周边农业土壤重金属进行实地采样,并对Cu、Pb、Cd、Zn含量进行分析。采用地累积指数法及潜在生态风险指数法,评价土壤中的重金属污染程度和风险。[结果]矿区农业土壤受到重金属不同程度的污染,重金属的污染程度从大到小依次为Cu、Zn、Pb、Cd;重金属区域污染差异较大,局部区域污染严重;矿区农业土壤中Cu、Pb、Zn和Cd 4种重金属综合的潜在危害程度均为"轻微",Cu是潜在生态危害最大的因子。重金属潜在危害程度从大到小依次为Cu、Pb、Zn、Cd;Pb和Zn有很大相关性,说明Pb和Zn可能属于同源污染物。[结论]该研究可为矿区农业用地重金属污染防治提供科学依据。  相似文献   

18.
大冶龙角山矿区农田土壤重金属形态分布及其来源   总被引:5,自引:3,他引:2  
为研究大冶龙角山矿区某溪流段沿岸农田土壤基本理化性质和重金属分布情况,采用Tessier五步连续提取法提取并测定土壤中Mn、Cu、Zn、Pb、Cr、Ni和Cd 7种重金属的形态与含量,并分析了重金属含量与土壤Fe和S含量之间的相关性。结果表明:所有重金属在大部分取样点总含量均超出湖北省土壤背景值;Cu和Cd总含量超过土壤环境质量三级标准(GB 15618—1995)限值,Zn、Pb、Cr和Ni符合土壤环境质量二级标准;Mn、Cu、Zn、Pb、Ni和Cd均以残渣态和铁锰氧化物结合态为主,Pb、Cr和Cd存在一定比例的可交换态。矿山矿石组分主要为黄铁矿和黄铜矿,且Mn、Cu、Zn、Pb和Cd的铁锰氧化物结合态、残渣态以及总含量的分布均与土壤Fe和S含量分布表现出较好的正相关关系,表明硫化物矿物开采引发了重金属Mn、Cu、Pb、Zn和Cd在该矿区农田土壤中的累积与污染。  相似文献   

19.
正定矩阵因子分解模型(PMF)可用于污染源未知情况下的土壤中重金属来源解析,但对数据样本敏感,结果波动大。为探究PMF模型对土壤重金属源解析的适用性,本研究以湖南省水口山铅锌矿周边农田土壤为研究对象,考察成分谱元素种类和异常值剔除两个因素对PMF模型解析结果的影响。根据成分谱中有无地壳元素和是否剔除异常值,建立4种数据样本,对PMF模型结果进行比较分析。结果表明:根据散点图剔除2个异常样本后未改变分类结果,仅改变各源贡献率;引入6种地壳元素后PMF模型的源轮廓(源数量和贡献元素)均发生变化。在成分谱中增加地壳元素后,源解析结果受异常值影响小,结果更稳定且容易解释。因此,应将地壳元素引入成分谱并对数据进行预处理,可较好地保证源解析结果的稳定性和可信度。结合文献和该地区实际情况对模型结果进行解读,最终确定5个来源:Pb、Zn、Cd和Sb主要来自铅锌矿的采选及冶炼等工业活动源(26.81%),As和Hg主要来自污水灌溉和农药化肥施用等农业活动源(14.68%),Cr、Ni、Co和Mo主要来自土壤母质源(24.41%),Mn和Fe主要来自铁矿石开采和交通运输源(16.39%),Al和Ca主要来自矿石风化源(17.72%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号