首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了一种利用硬脂酸对纳米二氧化钛(Nano-TiO_2)和纤维素纳米纤维(CNF)复合物进行有机表面修饰的新方法,主要包括纳米二氧化钛、纤维素纳米纤维的制备和利用硬脂酸对Nano-TiO_2/CNF复合体系进行有机表面修饰制得超疏水材料三个工艺过程。通过傅里叶变换红外光谱仪(FTIR)和场发射扫描电子镜(SEM)等对所得的样品进行表征,得出硬脂酸中的—COOH基团与TiO_2/CNF复合体系表面的—OH基团发生脱水反应,并将疏水性—CH_3基团引入复合体系中,复合体系表面构建的纳米级粗糙结构协同体系内引入的疏水基团使最终产物具有超疏水性。  相似文献   

2.
以大青杨木材为研究对象,为提高其抗润湿和耐老化性能,采用层层自组装技术,将聚乙烯亚胺(PEI)和纳米ZrO_2交替吸附在木材表面,然后用全氟癸基三甲氧基硅烷(FAS)对组装后的木材进行修饰,在木材表面形成复合的功能薄膜。结果表明,在组装过程中,纳米ZrO_2的单斜晶系晶体结构没有发生转变。(PEI/ZrO_2)i膜层能均匀地负载在木材表面,随着层数的增加,膜层变得更加致密。接触角测试结果发现,与未处理材相比,组装后的木材试样经过FAS修饰后均具有较稳定的疏水效果,初始接触角最高可达148°。加速老化试验结果表明,未处理材的颜色变化ΔE*可达35.36,而处理后木材的ΔE*明显减小,降幅达到66.4%。因此,利用层层自组装技术,在木材表面吸附了(PEI/ZrO_2)i/FAS膜层,可使木材具有良好的抗润湿及耐老化效果。  相似文献   

3.
固体超强酸作为酯化反应的催化剂,充分显示了该类催化剂酸强度高、催化活性好、无污染等优点,但这类多相催化反应体系往往存在反应界面小、传质阻力大等弊端,当固体微粒达到纳米级就可以扩大其表面积,提高其催化活性。本采用微波法成功制备出纳米级固体超强酸SO4^2-/ZrO2.同时将其用于催化酯化合成乳酸正酯,并优化了合成乳酸正酯的工条件。  相似文献   

4.
聚多巴胺(PDA)修饰的木材表面具有较强粘附特性和表面化学反应活性,通过引入氨基改性纳米二氧化硅(SiO;)粒子构建木材粗糙表面,采用乙二醇二缩水甘油醚为交联剂,提高纳米SiO2粒子在木材表面的稳固性,采用十八烷基三甲氧基氯硅烷为低功能化改性剂制备表面稳固的超疏水木材。研究表明:当纳米SiO;粒子浓度为2%时,接触角最大为156.6°,滚动角为4.7°,超疏水木材表面经过超声波震荡、模拟下雨冲刷、加热、酸碱腐蚀及有机溶剂浸泡等处理后,仍具有较强的超疏水稳固特性。  相似文献   

5.
本项目为一种新型的抗菌自洁性纳米日用瓷,即采用纳米技术的方法将纳米TiO2为基本组分的光学半导体纳米薄膜固定于陶瓷、玻璃和卫生洁具等物品或商业产品的表面,从而赋予它们具有杀菌和自清洁表面的功能,使得这些产品得以提升档次和更新换代。目前,在多相光催化反应所应用的光化学半导体纳米催化剂中,TiO2以其无毒、催化活性高、稳定性好  相似文献   

6.
山东一公司生产出一种低辐射夹层防盗玻璃。夹层玻璃是在两层或多层玻璃之间夹上特殊的中间膜,再经高温高压制成的一体化深加工玻璃。这种夹层玻璃具有很强的耐冲击力,这是因为特殊的中间膜具有  相似文献   

7.
累托石是一种层状硅酸盐粘土矿物,晶形呈鳞片状,具有蒙皂石层和云母层的1:1规则间层结构,层间距2.4nm,当水分子或有机阳离子进入层间后,层间距可增大至4.5nm以上,在机械化学力作用下,可以剥离出纳米级厚度的鳞片。因此,累托石又称作一种天然纳米矿物。  相似文献   

8.
目前,国内外已有的透明防火玻璃分两种:一种是在普通玻璃的内表面涂上偶联剂,经灌注固化后,制成透明防火玻璃成品;另一种是在普通玻璃表面涂布一层防火保护层。但是它们共同的缺点是不能耐较高的温度,且前者厚而笨重。  相似文献   

9.
冬暖夏凉纳米服装一件衣服,用可以调控温度的“超级开关”材料制作,夏天吸汗降温,冬天防寒保暖。据悉,中国科学院化学研究所成功地通过调节“光”和“温度”,实现了纳米结构表面材料超疏水与超亲水之间的可逆转变,制备出了超疏水/超亲水“开关”材料,在功能纳米界面材料研究领域取得了重要进展。  相似文献   

10.
纳米二氧化硅/脲醛树脂性能的研究   总被引:11,自引:0,他引:11  
探讨纳米SiO2 表面处理、加入方式、用量对纳米SiO2 脲醛树脂性能的影响。结果表明 :采用KH - 5 5 0硅烷偶联剂处理纳米SiO2 表面 ,用间歇式超声波震荡法将其加入脲醛树脂中 ,能有效改善树脂性能。当纳米SiO2 用量 <1 5 %时 ,用量越大 ,树脂的胶合强度越高 ,游离甲醛含量越低 ,粘度越大 ,固化时间不变。用纳米SiO2 (用量1% ) 脲醛树脂 (F U摩尔比 1 2 )压制胶合板、刨花板、中密度纤维板 ,板的各项性能指标都超过国家标准要求 ,甲醛释放量达到E1 级水平。同时 ,通过红外光谱和X射线光电子能谱初步探索了纳米SiO2 对脲醛树脂的增强机制  相似文献   

11.
基于天然遗态材料植物叶片表面特殊形态及功能特性的启发,如荷叶微纳米结构的超疏水自洁特性、玫瑰花瓣微纳米结构的超疏水粘附特性。研究采用软印刷技术,分别以新鲜和干燥的玫瑰花瓣作为模板,通过聚二甲基硅氧烷(PDMS)成功地转印制备了类玫瑰状超疏水竹材表面。扫描电镜(SEM)表明,类玫瑰花瓣表面形貌在制备超疏水竹材中起着非常重要的作用。玫瑰花瓣的干燥或潮湿可能使玫瑰表面具有不同的微/纳米结构,具有不同的间距值,表现出不同的高粘附性或低粘附性。新鲜的玫瑰花瓣乳突结构具有超疏水和高粘附性表面;然而,干燥的玫瑰花瓣的乳突结构中具有超疏水和低粘性表面。类玫瑰状竹材的成功制备,可有效防止水分侵入竹材,延长竹子在不同领域的使用寿命。针对玫瑰花瓣的超疏水特性,可有效提高竹材的附加值,也将为竹/木材的疏水改性提供了一个新的研究方向。  相似文献   

12.
光控润湿性转换的抑菌性木材基银钛复合薄膜   总被引:1,自引:0,他引:1  
以水热法和银镜法在木材表面制备出Ag-Ti O2复合微纳米结构薄膜,并通过有机物氟硅烷修饰使木材表面具有超疏水性。采用场发射扫描电子显微镜(FE-SEM)、X射线衍射能谱(XRD)、傅立叶变换红外光谱仪(FTIR)和接触角测试等方法对木材表面进行了分析和表征。研究结果显示,经氟硅烷修饰后的Ag-Ti O2负载的木材表面具有良好的紫外光驱动润湿性转换的特性,即光照前为超疏水性(152.8°)和亲油性(25°),光照一段时间后转变为超疏油性(150.2°)和亲水性(26.2°)。这是由于氟硅烷受到紫外光照射后会光致分解破坏一部分的烷基链,并在紫外光的激发下产生亲水基团所致。同时,与单纯Ti O2负载的木材相比,Ag-Ti O2复合薄膜中银纳米颗粒赋予了木材良好的抑菌性能,可提高木材的生物耐久性。以上研究为木材润湿性转换的智能化设计和多功能化设计开辟了新的途径。  相似文献   

13.
防沾雨水玻璃薄膜防沾雨水玻璃薄膜是以聚氨脂为基体材料,添加适当比例的疏水剂、固化剂和其他的溶剂等充分均匀混合成融溶液体,再通过稀释过滤,喷射到玻璃表面,干燥后即在玻璃表面形成一层无色透明、粘附良好的薄膜。此薄膜光滑平整,不影响玻璃外观和透明度,而雨水...  相似文献   

14.
主要介绍了几丁质分子C2和C6位经修饰后在适当的条件下经过机械处理成功转化为纳米晶须/纤维的方法及原理。通过对几丁质晶体表面的修饰使其带上高密度电荷并配合连续的机械作用是几丁质纳米纤维切实有效的制备方法。几丁质C6羟基通过TEMPO-触媒氧化可选择性转化为羧基,进一步在碱性环境中形成高密度表面负电荷,伴随着机械作用最终能分散成单离的具有一定纳米级尺寸的纤维。根据类似的原理,几丁质在碱作用下发生脱乙酰反应除去C2位的部分乙酰基,暴露出的氨基在酸性溶液中形成正电荷并被进一步分散成纳米纤维。  相似文献   

15.
传统弧面印刷只局限于外弧表面小面积丝印.随着家电产品的迅速发展,用在家电上的曲面玻璃彩色油墨不可能丝印在玻璃基片的外表面,原因是印刷在外弧面的彩色油墨没有颜色鲜艳的质感,而且丝印在外弧表面该彩色油墨层无法保证产品的印刷涂层不被腐蚀、脱落.这就要求我们对丝网印刷进行改进,把彩色油墨印刷在玻璃基片的内表面,装在家电产品上,达到截然不同的效果.  相似文献   

16.
综观制作纳米复合功能涂料的技术,均存在纳米功能粉体的表面分散和不稳定性,尤其是纳米粒子在涂料成膜后被颜填料和成膜聚合物包覆和封闭,造成纳米材料功效差,利用率低和质量不稳定。本文提供一种制造和施工简便、易控制,纳米材料利用率高、成本低,实用性强的分装式纳米复合功能涂料的制造方法。分装式纳米复合功能涂料的制造方法,包括如下步骤和工艺:1.A组份制备其特征是把功能互补的纳米TiO2、ZnO、SiO2按一定比例加入到水介质中,固体份含量1.0%~5.0%。其中纳米TiO2为主催化剂,占固体份30%~80%,锐钛矿晶型,粒径7至8nm。纳米ZnO2起…  相似文献   

17.
随着建筑、装饰美学的不断发展,对建筑、装饰玻璃提出了越来越高的要求。既要求它具有适当的采光功能和良好的视线遮蔽效果,又要求它具有一定的节能性和色彩缤纷、绚丽的装饰效果。普通透明玻璃显然无法满足这些要求。镀膜玻璃是在玻璃表面涂镀一层或多层金属、合金或金属化合物薄膜,以改变玻璃  相似文献   

18.
纤维素纳米纤维在生物医用产品、增强材料、过滤吸附材料、柔性电极材料和储能器件等领域具有广阔的应用前景。静电纺丝法是目前能直接且连续制备微纳米纤维的主要方法之一,由于纤维素中极强的氢键网络导致的高结晶度,使得直接使用纤维素静电纺丝制备纳米纤维较难。笔者以微晶纤维素、纸浆纤维素为研究对象,通过氯化锂/二甲基乙酰胺(LiCl/DMAc)溶剂体系溶解并进行活化处理,加入不同含量聚丙烯腈(PAN)对纤维素进行静电纺丝制备纤维素纳米纤维,探究纤维素类型、N,N-二甲基甲酰胺(DMF)活化处理前后、PAN加入量对纤维素溶解性、纺丝液性参数和纺丝效果影响。结果表明:DMF活化处理可有效提升纤维素在LiCl/DMAc溶剂体系中的溶解性,在相同溶解温度下获得更加均匀透明的纤维素溶液。在该溶剂体系下,纺丝液黏度、电导率和表面张力分别高于1 300 mPa·s、2 000μs/cm和34.5 mN/m,可获得连续的电纺纤维素纳米纤维。活化微晶纤维素纳米纤维膜比活化纸浆纤维素纳米纤维膜表面更光滑且纤维直径分布更均匀。活化微晶纤维素与PAN质量比为2∶8时可获得表面光滑无珠状物,纤维均一程度高,直径分布小(185~245 nm)的纤维素纳米纤维膜。  相似文献   

19.
纳米TiO_2处理木材的表面疏水性能初探   总被引:2,自引:0,他引:2  
为改善木材的疏水性能,先采用二氧化钛(TiO2)溶胶进行处理,再分别用低表面能物质硬脂酸、十六烷基三甲氧基硅烷(HDTMS)进行改性处理。结果表明,改性试样表面负载有纳米级TiO2颗粒,表面修饰了低表面能物质;改性试样的水接触角较未处理材大幅提高;HDTMS比硬脂酸显示出更优良的疏水性能。  相似文献   

20.
《技术与市场》2007,(3):9-9
一件衣服,用可以调控温度的“超级开关”材料制作,夏天吸汗降温,冬天防寒保暖。据悉,中国科学院化学研究所成功地通过调节“光”和“温度”,实现了纳米结构表面材料超疏水与超亲水之间的可逆转变,制备出了超疏水/超亲水“开关”材料,在功能纳米界面材料研究领域取得了重要进展。[第一段]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号