首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three experiments were conducted to evaluate influences of supplemental alfalfa quality on intake and use of low-quality meadow grass roughages (MG) by beef cattle. In Exp. 1, 15 steers (250 kg) were assigned to three treatments: 1) MG (5.2% CP), no supplement; 2) MG plus high-quality alfalfa (18.8% CP); and 3) MG plus low-quality alfalfa (15.2% CP). High- and low-quality alfalfa supplements were fed at .45 and .55% BW, respectively. Total DMI was greater (P < .01) for alfalfa-supplemented steers than for MG. Likewise, intake of digestible DM, DM digestibility (DMD), and ruminal ammonia level were greater (P < .01) for supplemented steers. In Exp. 2, 96 pregnant Hereford x Simmental cows (537 kg; body condition [BC] score 4.86) were assigned to the same treatments as in Exp. 1. For d 0 to 42, cows grazed on 19.1 ha of stockpiled MG (4,539 kg/ha; 6.8% CP), whereas, on d 43 to 84, cows received MG hay (5.2% CP). Supplemented cows gained more BW (P < .01), BC score (P < .01), and had heavier calf birth weight (P < .01) than nonsupplemented cows. However, there were no treatment effects (P > .10) on cow cyclicity, pregnancy rate, or calving interval. In Exp. 3, 90 pregnant Angus x Hereford cows (475 kg; BC score 4.59) were assigned to three treatments: 16.1%, 17.8% or 20.0% CP alfalfa supplement, with levels of .63, .55, and .50% of BW, respectively. Weight gain and BC score for the 84-d study displayed a quadratic response (P < .10), yet represented only 7 kg BW and .2 units of BC score. In conclusion, alfalfa hay supplementation was effective in increasing DMI and digestibility. However, alfalfa hay quality did not dramatically affect BW, BC score, and(or) calf birth weight, when fed on an isonitrogenous basis.  相似文献   

2.
Two experiments were conducted to evaluate the impacts of increasing levels of supplemental soybean meal (SBM) on intake, digestion, and performance of beef cattle consuming low-quality prairie forage. In Exp. 1, ruminally fistulated beef steers (n = 20; 369 kg) were assigned to one of five treatments: control (forage only) and .08, .16, .33, and .50% BW/d of supplemental SBM (DM basis). Prairie hay (5.3% CP; 49% DIP) was offered for ad libitum consumption. Forage OM intake (FOMI) and total OM intake (TOMI) were increased (cubic, P = .01) by level of supplemental SBM, but FOMI reached a plateau when the daily level of SBM supplementation reached .16% BW. The concomitant rises in TOMI and OM digestibility (quadratic, P = .02) resulted in an increase (cubic, P = .03) in total digestible OM intake (TDOMI). In Exp. 2, spring-calving Hereford x Angus cows (n = 120; BW = 518 kg; body condition [BC] = 5.3) grazing low-quality, tall-grass-prairie forage were assigned to one of three pastures and one of eight treatments. The supplemental SBM (DM basis) was fed at .08, .12, .16, .20, .24, .32, .40, and .48% BW/d from December 2, 1996, until February 10, 1997 (beginning of the calving season). Performance seemed to reach a plateau when cows received SBM at approximately .30% BW/d. Below this level, cows lost approximately .5 unit of BC for every .1% BW decrease in the amount of supplemental SBM fed. Providing supplemental SBM is an effective means of improving forage intake, digestion, and performance of beef cattle consuming low-quality forages.  相似文献   

3.
Two gestating cow winter grazing trials and two lactating cow drylot trials were conducted to evaluate the use of a slowly degraded protein source in corn plant diets for mature beef cows. Gestating beef cows grazing cornstalks were supplemented with .86 kg/(cow.d) of a 20% crude protein equivalent (CPE) pellet (DM basis). In Trial 1 cows fed diets containing 80% dehydrated alfalfa meal (high DEHY) gained more weight (P less than .05) than those fed diets containing 40% dehydrated alfalfa meal (low DEHY) or urea but not more than the cows fed soybean meal (SBM); however, no differences among treatments were observed in Trial 2. Four lactation diets composed of ground corncobs and corn silage were supplemented with either urea, SBM, or two levels of dehydrated alfalfa meal (DEHY) as N sources. The same amount of supplemental N was fed in both trials, consisting of .31 kg of natural protein for the SBM and low DEHY treatments or .42 kg for high DEHY. Ammoniated corncobs replaced 35% of the ground corncobs in Trial 4. Diets were calculated to contain (DM basis) 55% TDN and 9% CPE in Trial 3 and 11% CPE in Trial 4. In Trial 3, lactating cows supplemented with DEHY gained more weight (P less than .10) than those fed the urea supplement but not more than those fed SBM. Gains by cows fed the urea- and SBM-supplemented diets were not different (P greater than .10). Cow weight gains in Trial 4 were not affected by type of protein supplementation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Two experiments were conducted to evaluate performance and forage utilization characteristics of beef cattle fed ammoniated wheat straw (AWS) unsupplemented except for minerals or supplemented with energy and protein. In Exp. 1, 194 crossbred beef cows (BW = 472 kg) in late gestation were allotted by weight, breed type, and age during two consecutive winters to 12 drylot pens (three pens/treatment) for a 60-d feeding trial. The AWS (3% NH3 wt/wt) was tubground through a 7.6-cm screen, and cows were allowed ad libitum access to the AWS. In Exp. 2, 16 ruminally fistulated Angus x Hereford steers (BW = 300 kg) were blocked by weight and randomized to treatments in a 35-d intake-digestion trial. Daily supplementation treatments in both experiments were Control, no supplemental energy or protein; LSG, 1.36 kg of sorghum grain (SG); HSG, 2.72 kg of SG; and SG + SBM, 1.02 kg of SG + .34 kg of soybean meal (SBM). All animals received .23 kg of mineral mixture formulated to meet a pregnant cow's mineral requirements. Supplements LSG and SG + SBM were fed to provide the same daily ME, and HSG and SG + SBM were fed to provide the same daily CP. Cows were managed as one group during and after calving. In Exp. 1, all supplements increased gain (P less than .01) vs Control, and cows fed SG + SBM had higher (P = .05) gains than those fed LSG. The SG + SBM supplement increased (P less than .01) change in cow body condition score compared with LSG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Three experiments were conducted to evaluate effects of supplemental protein vs energy level on dormant forage intake and utilization. In Exp. 1, 16 ruminally cannulated steers were blocked by weight (avg wt = 242 kg) and assigned randomly to a negative control or to one of three isocaloric supplement treatments fed at .4% BW: 1) control, no supplement (NS); 2) 12% CP, low protein (LP); 3) 28% CP, moderate protein (MP); 4) 41% CP, high protein (HP). In Exp. 2 and 3, 16 ruminally cannulated steers were blocked by weight (avg wt = 332 kg, Exp. 2; 401 kg, Exp. 3) and assigned randomly to a 2 x 2 factorial arrangement of treatments. The treatments contrasted low (LP) and high (HP) levels of supplemental protein (.66 g CP/kg BW vs 1.32 g CP/kg BW) with low (LE) and high (HE) levels of supplemental ME (9.2 kcal/kg BW vs 18.4 kcal/kg BW). In Exp. 1, forage DMI as well as ruminal DM and indigestible ADF fill at 4 h postfeeding were greater (P less than .10) with the MP and HP steers than with control and LP steers. Total DM digestibility increased (P less than .10) for supplemented steers (35.5% for control vs 47.3 for supplemented steers); however, LP depressed (P less than .10) NDF digestibility. In Exp. 2, forage DMI, indigestible ADF flow and liquid flow were depressed (P less than .10) in LP-HE supplemented steers. In Exp. 3, HP steers had greater (P less than .10) forage DMI, indigestible ADF fill values (4 h postfeeding), liquid volume and tended (P = .11) to have greater ruminal DM fill (4 h postfeeding). In summary, increased levels of supplemental protein increased intake and utilization of dormant tallgrass-prairie forage (less than 3% CP). Increasing supplemental energy without adequate protein availability was associated with depressed intake and digestibility.  相似文献   

6.
Two experiments were conducted to evaluate the impacts on forage use and beef cattle performance of incorporating divergent wheat milling by-products in a 30% CP supplement. The by-products were wheat bran (high fiber) and second clears (high starch). The by-products were added as 1) 100% wheat bran; 2) 67% wheat bran, 33% second clears; or 3) 33% wheat bran, 67% second clears to constitute approximately 47 to 49% of the supplement. In Exp. 1, 90 Hereford x Angus cows (BW = 554 kg) grazing winter, tallgrass-prairie range were fed the supplement treatments (2.27 kg/cow daily) from early December 1997 until calving (average calving date = 3/11/98). Cumulative BW and condition changes from trial initiation through calving were not significantly different among treatments. Similarly, significant treatment effects on cow pregnancy rates as well as calf birth weights, ADG, and ending weights were not evident. In Exp. 2, 16 ruminally fistulated Hereford x Angus steers (BW = 484 kg) were blocked by weight and assigned to one of the same three supplement treatments or to a negative control (forage only). Steers had ad libitum access to tallgrass-prairie hay (76.4% NDF, 3.1% CP) and were fed supplement at the same rate (relative to BW) as the cows in Exp. 1. Forage OM, NDF, and digestible OM intakes were lower (P < 0.01) for the negative control than for supplemented steers but were not significantly different among the supplemented steers. Digestion of OM was lower (P = 0.03) for the negative control than for supplemented steers, although significant treatment differences were not evident among the supplemented groups. Digestion of NDF was not affected (P = 0.49) by treatment. Within the context of the amount of supplemental protein offered, changes in the combination of wheat milling by-products in the supplement did not affect cow performance or intake and digestion of low-quality forage.  相似文献   

7.
Effect of supplementation frequency and supplemental urea level on forage use (Exp. 1) and performance (Exp. 2 and 3) of beef cattle consuming low-quality tallgrass-prairie were evaluated. For Exp. 1 and 2, a 2 x 2 factorial treatment structure was used, such that two supplements (30% CP) containing 0 or 30% of supplemental degradable intake protein (DIP) from urea were fed daily or on alternate days. In Exp. 1 and 2, supplement was fed at 0.41% BW daily or at 0.83% BW (DM basis) on alternate days. For Exp. 3, a 2 x 4 factorial treatment structure was used, such that four supplements (40% CP) containing 0, 15, 30, or 45% of supplemental DIP from urea were fed daily or 3 d/wk. Supplements were group-fed at 0.32% BW daily or at 0.73% BW (DM basis) 3 d/wk. In Exp. 1, 16 Angus x Hereford steers (initial BW = 252 kg) were blocked by BW and assigned to treatment. Urea level x supplementation frequency interactions were not evident for forage intake, digestion, or rate of passage. Forage OM intake (OMI) and total digestible OMI (TDOMI) were not significantly affected by treatment. Total-tract digestion of OM (P = 0.03) and NDF (P = 0.06) were greater for steers supplemented daily. In Exp. 2, 48 Angus x Hereford cows (initial BW = 490 kg) grazing winter tallgrass prairie were used. Significant frequency x urea interactions were not evident for BW and body condition (BC) change; similarly, the main effects were not substantive for these variables. In Exp. 3, 160 Angus x Hereford cows (initial BW = 525 kg) grazing dormant, tallgrass prairie were used. Supplement refusal occurred for cows fed the highest urea levels, particularly for cows fed the supplement with 45% of the DIP from urea 3 d/wk, and supplement refusal increased closer to calving. A frequency x urea interaction (P = 0.02) was observed for prepartum BW changes. As supplemental urea level increased, prepartum BW loss increased quadratically (P = 0.02); however, a greater magnitude of loss occurred when feeding supplements containing > or = 30% of DIP from urea 3 d/ wk. Cumulative BC change followed a similar trend. In conclusion, moderate protein (< or = 30% CP) supplements with < or = 30% of supplemental DIP from urea can be fed on alternate days without a substantive performance penalty. However, infrequent feeding of higher protein (> 30% CP) supplements with significant urea levels (> 15% of DIP from urea) may result in decreased performance compared with lower urea levels.  相似文献   

8.
Two trials were conducted to evaluate the effects of corn in protein supplements fed to cattle receiving low-quality forages. In Trial 1, four ruminally cannulated steers (avg BW 500 kg) and four intact steers (avg BW 270 kg) were used in a replicated latin square to determine intake and digestibility fo a low-quality meadow hay (4.3% CP) when fed no supplement (NS), 1.12 g CP/kg BW (PS), 1.12 g CP/kg BW with corn supplying 1.98 g starch/kg BW (PLC) or 1.12 g CP/kg BW with corn supplying 3.96 g starch/kg BW (PHC). Hay DMI decreased (P = .001) and total diet DMI increased (P = .001) quadratically as supplemental corn increased. Diet DM digestibility increased (P = .004) and forage DM and hemicellulose digestibility decreased (P less than or equal to .018) quadratically as level of corn in the diet increased. In Trial 2, 135 cows received either ear corn (1.16 kg TDN and 127 g CP.hd(-1).d(-1), ear corn plus protein (1.16 kg TDN) and 290 g CP g CP.hd(-1).d(-1) or protein (.72 kg TDN and 290 g CP.hd(-1.d(-1) while grazing native Sandhills winter range for 112 d and while receiving hay (10% CP) during the following 60-d calving period. Cows that received ear corn lost (P less than .001) more weight than cows fed ear corn plus protein supplement, which lost more weight than cows fed only protein supplement (-54, -18 and 6 kg, respectively) during the 112-d winter grazing period. Cows that received ear corn and ear corn plus protein gained more (P less than .001) weight during calving and summer grazing (after supplement wa withdrawn) than protein-supplemented cows. Reproductive performance was not affected (P greater than .705) by treatments.  相似文献   

9.
Three experiments were conducted to evaluate the response of supplementing primiparous heifers based on the metabolizable protein (MP) system during pregnancy and lactation. In Exp. 1, 12 pregnant, March-calving heifers (432 +/- 10 kg) grazing Sandhills range were randomly allotted to one of two treatments: supplementation based on either the MP system (MPR) or the CP system (CPR). Supplements were fed to individual heifers from October to February and no hay was offered. Grazed forage organic matter intake (FOMI) was measured in November, January, and February. In Exp. 2, 18 heifers (424 +/- 8 kg) were randomly allotted to one of three treatments: 1) supplementation based on the MP system with hay fed in January and February (average 2.0 kg/d; MPR/hay), 2) supplementation based on the CP system, with hay fed in January and February (CPR/hay), or 3) supplementation based on the MP system, with no hay fed (MPR/no hay). Supplements were fed from October to February, and FOMI was measured in December and February. In Exp. 3, lactating 2-yr-old cows (394 +/- 7 kg) maintained on meadow hay were supplemented to meet either 1) MP requirements (LMPR) or 2) degradable intake protein requirements (LDIPR). Body weight (BW) and body condition score change, hay intake, and milk production were measured. In Exp. 1, grazed FOMI decreased (P = 0.0001) from 1.9% of BW in November to 1.2% in February, but no differences among treatments were detected for FOMI or BW change. In Exp. 2, grazed FOMI declined (P = 0.0001) from 1.7% of BW in December to 1.1% in February, with no differences among treatments. Heifers on the MPR/hay and CPR/hay treatments had higher (P = 0.0018) total intake (grazed forage + hay intake) in February (1.7% BW) than the MPR/no hay heifers (1.1% BW). Heifers on the MPR/no hay treatment had a lower weight (P = 0.02) and tended (P = 0.11) to have a lower BCS than heifers on other treatments. In Exp. 3, the LMPR cows had higher (P = 0.02) ADG than LDIPR cows (0.41 and 0.14, respectively), but treatment did not affect milk production. Organic matter hay intake averaged 2.4% of BW. We conclude that supplementation to meet MP requirements had little benefit to heifer performance during gestation, but increased weight change during lactation. Because grazed forage intake decreased from 1.9 to 1.1% of BW with advancing gestation, supplemental energy is necessary to reduce weight and condition loss of gestating hefiers grazing dormant Sandhills range.  相似文献   

10.
Two experiments were conducted to determine the dietary value of pellets containing kenaf (Hibiscus cannabinus cv. 'Everglade 41') hay. Averaged across both experiments, kenaf pellets contained 82.6% kenaf hay, 16.6% liquid molasses, and 0.8% mineral oil. The chemical composition of the kenaf pellet was 12.6% crude protein (CP), 41.2% neutral detergent fiber (NDF), and 14.4% acid detergent fiber (ADF). In Exp. 1 (digestion and N balance trial), 18 lambs (body weight [BW] = 36.4 kg) were blocked by BW. Lambs were randomly assigned within a block to Diet 1 (59.5% corn and 40.5% alfalfa pellet), Diet 2 (59.7% corn, 28.4% alfalfa pellets, and 11.9% kenaf pellets), or Diet 3 (59.6% corn, 16.5% alfalfa pellets, and 23.9% kenaf pellets). Diets were formulated so that CP was the first-limiting nutrient. Each diet was limit-fed at 2.4% of BW. Replacing alfalfa pellets with kenaf pellets tended to decrease (P = 0.10) CP and ADF intakes, but increased (P = 0.01) DM digestibility. Diet had no effect (P = 0.33) on N balance. In Exp. 2 (dry matter [DM] intake trial), 32 lambs (BW = 30.4 kg) were blocked by gender and BW. Within a block, lambs were randomly assigned to one of four diets in a 2 x 2 factorial arrangement. Main effects were hay (bermudagrass or fescue) and supplemental protein source (kenaf or alfalfa pellets). Lambs were housed in individual pens with ad libitum access to the assigned hay. Supplemental protein was fed (185 g of DM) once daily. Hay intake was measured weekly for 8 wk. Lambs consumed more (P = 0.002) fescue than bermudagrass hay (743 vs 621 g/ d). Lambs fed fescue hay gained weight more rapidly (P = 0.001) than lambs fed bermudagrass hay (120 vs 72 g/d). Hay intake and ADG were similar (P = 0.90) for lambs fed alfalfa or kenaf pellets. Kenaf hay mixed with molasses and mineral oil can be formed into a pellet. In the diets used in this experiments, kenaf pellets can replace alfalfa pellets in diets fed to lambs without altering forage intake, gain, or N retention.  相似文献   

11.
Two experiments were conducted to evaluate wheat middlings as a supplement for cattle consuming dormant bluestem-range forage. Effects of supplement type and amount were evaluated in Exp. 1, which consisted of feeding supplements of soybean meal:grain sorghum (22:78) or two different amounts of wheat middlings. Sixteen ruminally fistulated steers were blocked by weight (BW = 374 +/- 8.3 kg) and assigned randomly to the following treatments: 1) control, no supplement (NS); 2) soybean meal:grain sorghum (SBM/GS) formulated to contain the same CP concentration (21%) and fed to provide a similar energy level (3.5 Mcal of ME/d); 3) a supplement of 100% wheat middlings fed at a low level (LWM); and 4) 100% wheat middlings fed at twice the amount of LWM (7 Mcal of ME/d; HWM). The influence of different supplemental CP concentrations in a wheat middlings-based supplement was evaluated in Exp. 2. Sixteen ruminally fistulated steers were blocked by weight (BW = 422 +/- 8.1 kg) and assigned randomly to the following treatments: 1) control, no supplement (NS); 2) 15% CP; 3) 20% CP; and 4) 25% CP supplements. These supplements consisted of 60% wheat middlings and various ratios of soybean meal and grain sorghum to achieve the desired CP concentration. In Exp. 1, SBM/GS and HWM supplements increased (P less than .10) and LWM tended to increase (P = .16) forage DMI compared with NS. All supplements in Exp. 1 increased (P less than .10) DM digestibility, ruminal DM fill, and ruminal indigestible ADF (IADF) passage rate compared with NS, although the greatest response in fill and passage was observed with HWM. In Exp. 2, forage DMI, DM digestibility, NDF digestibility, ruminal DM and IADF fill, IADF passage rate, and fluid dilution rate were increased (P less than .01) by supplementation. Forage DMI, ruminal IADF passage rate, and fluid dilution rate increased quadratically (P less than .10), and NDF digestibility, ruminal DM and IADF fill increased linearly (P less than .10) with increased supplemental CP concentration. These experiments indicate that wheat middlings performed similarly to a SBM/GS supplement of equal CP concentration, when both were fed to provide a similar amount of energy daily. Additionally, use of poor-quality range forage was enhanced when wheat middlings-based supplements were formulated to contain a CP concentration of 20% or greater.  相似文献   

12.
Two experiments were conducted to evaluate the influence of supplemental protein concentration on the intake and utilization of dormant range forage by beef cattle. In Exp. 1,97 pregnant Hereford x Angus cows (avg wt = 454 kg) were assigned randomly to three isocaloric treatment supplements: 1) low protein (LP), 13% CP; 2) moderate protein (MP), 25% CP; and 3) high protein (HP), 39% CP. In Exp. 2, 15 ruminally and 12 esophageally cannulated steers (avg wt = 319 and 355 kg, respectively) were assigned randomly to LP, MP and HP treatments and were used in a 22-d winter grazing trial to evaluate forage intake and utilization characteristics. In Exp. 1, cow body condition (BC) and BW changes responded in linear (P less than .01) and quadratic (P less than .01) fashions to increasing protein concentration, with MP and HP displaying the least BC and BW loss from trial initiation (d 1) through d 84. From d 84 to calving (avg calving date = d 120), only the HP supplement continued to be effective in minimizing BC loss (P less than .01). Calf birth weight tended (P = .17) to increase in a linear fashion to increasing supplemental protein concentration, but calf ADG and cow reproductive efficiency were unaffected (P greater than .10). In Exp. 2, forage OM intake responded in a quadratic fashion (P less than .10), with the MP treatment having the highest NDF digestibility and ruminal OM fill. In conclusion, beef cow BC and BW losses during the winter grazing period were minimized with increasing supplemental CP concentration. Intake and utilization of dormant forage by steers were improved with moderate (26%) levels of CP in the supplement.  相似文献   

13.
Our objectives were to compare the effects of sources of supplemental N on ruminal fermentation of dried citrus pulp (DCP) and performance of growing steers fed DCP and bahiagrass (Paspalum notatum) hay. In Exp. 1, fermentation of DCP alone was compared with that of isonitrogenous mixtures of DCP and solvent soybean meal (SBM), expeller soybean meal (SoyPLUS; SP), or urea (UR). Ground (1 mm) substrates were incubated in buffered rumen fluid for 24 h, and IVDMD and fermentation gas production kinetics and products were measured. Nitrogen supplementation increased (P < 0.10) ruminally fermentable fractions, IVDMD, pH, and concentrations of NH3 and total VFA, but reduced the rate of gas production (P < 0.10) and the lag phase (P < 0.01). Supplementation with UR vs. the soy-based supplements increased ruminally fermentable fractions (P < 0.05) and concentrations of total VFA (P < 0.10) and NH3 (P < 0.01), but these measures were similar (P > 0.10) between SBM and SP. In Exp. 2, 4 steers (254 kg) were fed bahiagrass hay plus DCP, or hay plus DCP supplemented with CP predominantly from UR, SBM, or SP in a 4 x 4 Latin square design, with four 21-d periods, each with 7 d for DMI and fecal output measurement. Nitrogen-supplemented diets were formulated to be isonitrogenous (11.9% CP), and all diets were formulated to be isocaloric (66% TDN). Intake and digestibility of DM, N, and ADF were improved (P < 0.05) by N supplementation. Compared with UR, the soy-based supplements led to greater (P < 0.05) DM and N intakes and apparent N and ADF digestibilities. Plasma glucose and urea concentrations increased (P < 0.10) with N supplementation and were greater (P < 0.01) for the soy-based supplements than for UR. Intake, digestibility, and plasma metabolite concentrations were similar (P > 0.1) for SBM and SP. In Exp. 3, 24 steers (261 kg) were individually fed bahiagrass hay plus DCP (control), or hay plus DCP supplemented with CP predominantly from UR or SBM. Over 56 d, DMI and ADG were greatest (P < 0.05) in steers fed SBM. Nitrogen supplementation increased (P < 0.05) DMI, ADG, and G:F. However, SBM supplementation produced greater (P < 0.05) DMI and ADG and similar (P > 0.05) G:F compared with UR supplementation. We conclude that supplemental N is important to optimize ruminal function and performance of growing steers fed forage diets supplemented with DCP. Diets with supplemental N mainly from SBM improved diet digestibility and animal performance beyond that achieved by UR.  相似文献   

14.
Three studies were conducted to evaluate the feeding value of slice alfalfa hay in feedlot diets. In Exp. 1, 108 steer calves (183.1 +/- 1.2 kg initial BW; 6 pens/treatment) were used in a completely randomized design to evaluate the effect of baling method on performance and morbidity of newly received calves. The study lasted 28 d. Treatments consisted of a 65% concentrate receiving diet containing 1) ground or 2) slice alfalfa hay. Steer calves were fed daily at 0800 h. Animals also received long-stem sudangrass hay the first 7 d. Steers were weighed on d 0, 16, and 28. Feed, sudangrass hay, or feed plus sudangrass hay intakes were not affected (P > 0.25) by treatment. Conversely, ADG from d 0 to 16 was greater (P < 0.001) for slice than ground (1.27 vs. 0.81 +/- 0.067 kg/d, respectively) and from d 0 to 28 (1.23 vs. 0.91 +/- 0.042 kg/d, respectively). In addition, G:F was greater (P < 0.001) for slice than ground hay from d 0 to 16 (0.39 vs. 0.25 +/- 0.021), and from d 0 to 28 (0.31 vs. 0.24 +/- 0.013 for slice and ground, respectively). Moreover, morbidity (40.5 +/- 3.9%; P = 0.20) and retreatment rates (30.7 +/- 7.5%; P = 0.14) were similar for slice and ground. In Exp. 2, 176 crossbred steers (393.9 +/- 10.8 kg initial BW) were used in an 84-d feeding experiment (4 pens/treatment) in a randomized complete block experimental design with a 2 x 2 factorial arrangement of treatments to evaluate effects of alfalfa baling method (ground or slice) and forage level (8 or 14%) on growth performance. Experimental diets were based on steam-flaked corn. Daily BW gain was greater (P = 0.10) for steers consuming ground compared with the slice hay diet. A baling method x forage level interaction (P = 0.07) was observed for DMI. Baling method did not (P = 0.98) influence DMI with 8% roughage level. But with 14% roughage, DMI was greater (P = 0.02) for steers consuming ground hay than the slice diet. The G:F ratio was affected (P = 0.03) only by forage level (0.194 vs. 0.182 +/- 0.003 for 8 and 14% roughage, respectively). In Exp. 3, 4 ruminally cannulated mixed-breed steers were used in a 4 x 4 Latin square design to evaluate effects on digestive function. No baling method effects (P >or= 0.16) were detected for DM, OM, CP, or NDF intakes or DM, OM, and NDF total tract digestibility. Digestibility of NDF and OM were greater (P 相似文献   

15.
We evaluated the effect of forage quality on response of cattle to supplementation with cooked molasses blocks. In Exp. 1, 175 heifers had ad libitum access to prairie hay (5.2% CP, DM basis). Treatments were a 2 x 3 factorial: supplementation with 0 or 1.96 kg/d of alfalfa DM, and supplementation with no cooked molasses block or with a low-protein or a high-protein cooked molasses block (14.4 and 27.5% CP, respectively, DM basis). There were no significant interactions between alfalfa and cooked molasses block for intake or gain. Forage intake and ADG were increased (P < 0.05) by alfalfa supplementation. Heifers fed high-protein cooked molasses blocks gained more (P < 0.05) weight than those fed low-protein cooked molasses blocks or no cooked molasses block. Heifers fed high-protein cooked molasses blocks ate more (P < 0.05) forage than those fed low-protein cooked molasses blocks, with heifers fed no cooked molasses block being intermediate. In Exp. 2, responses to cooked molasses blocks containing 33% CP (DM basis) were measured in 18 steers fed: 1) brome (8.4% CP), 2) alfalfa (19.2% CP), or 3) brome supplemented with 1.93 kg/d of alfalfa DM. Forages were available ad libitum. Forage DM intake was not affected by cooked molasses block and was greater (P < 0.05) for alfalfa than the alfalfa/brome mix, which in turn was greater (P < 0.05) than brome. Digestibility of DM was greater (P < 0.05) for alfalfa than brome or the alfalfa/brome mix and was not affected by cooked molasses block supplementation. Supplementation with cooked molasses blocks had only small effects on intake and digestion of medium- to high-quality forages, but it improved gains and feed efficiencies of heifers fed prairie hay ad libitum, with or without supplemental alfalfa.  相似文献   

16.
The objective of two experiments was to correlate plasma levels of urea N (PUN) and the percentage of urine N in the form of urea (UUN) to weight gain in response to different dietary protein regimens for growing Angus steers. In Exp. 1, 60 steers (302 kg BW) were assigned to various levels of dietary N (control plus supplemental N to provide from 100 to 400 g more crude protein daily) within two sources of supplemental N (soybean meal [SBM] or a mixture of two parts corn gluten meal:one part blood meal [CGM:BM]). In Exp. 2, 27 steers (229 kg BW) were fed two levels of SBM, and half of the steers received growth-promoting implants. Steers were housed in groups of 12 and fed individually for 84 d in both experiments. Corn silage was fed at a restricted rate to minimize orts. Jugular blood and urine samples were collected during the experiments. In Exp. 1, maximal ADG of steers fed SBM (1.0 kg) was reached with 671 g/d total crude protein, or 531 g/d metabolizable protein. Maximal ADG of steers fed CGM:BM (0.91 kg) was reached with 589 g/d total crude protein, or 539 g/d metabolizable protein. The DMI was higher (P < 0.07) for steers fed SBM (6.37 kg/d) than for steers fed CGM:BM (6.14 kg/d). Increasing ruminal escape protein from 36% (SBM) to 65% (CGM:BM) of CP decreased (P < 0.05) endogenous production of urea, as evidenced by lower concentrations of urea in blood and lower UUN. In Exp. 2, increasing supplemental protein from 100 to 200 g/d increased (P < 0.05) ADG and PUN. Implants lowered (P < 0.05) UUN, particularly at the higher level of supplemental protein. Protein supplementation of growing steers can be managed to maintain acceptable ADG yet decrease excretion of urea in the urine.  相似文献   

17.
Two experiments were conducted to quantify the impact on forage use and performance of varying supplementation frequency of cattle consuming forage diets across a range of frequencies. In both experiments, a common supplement was used that contained a relatively high concentration of CP (43%) and was fed at the following frequencies: 1) 2 d/wk; 2) 3 d/wk; 3) 5 d/wk; and 4) 7 d/wk. In Exp. 1, 120 Hereford x Angus cows (BW = 537 kg) grazing winter tallgrass-prairie range were supplemented at the various frequencies from December 7 until calving (average calving date = 3/7/99). All treatments provided the same quantity of supplement on a weekly basis (12.74 kg, as-fed) but divided the amount delivered on a given day equally among the number of supplementation events for that treatment. Less BW was lost from December 7 through calving (linear effect, P = 0.02) as frequency of supplementation increased, but the magnitude of difference in weight change was relatively small. Body condition responded similarly through early February (linear effect, P = 0.02), although treatment effects were not as distinct at calving (cubic effect, P = 0.11). In Exp. 2, 16 ruminally fistulated Hereford x Angus steers (BW = 257 kg) were blocked by weight and assigned to one of the four frequencies of supplementation. Steers were offered tallgrass prairie hay (73.5% NDF, 4.8% CP) ad libitum and were supplemented at a rate (relative to BW) similar to that of the cows in Exp. 1. Increasing frequency of supplementation increased (linear effect, P < or = 0.02) forage OM intake, OM and NDF digestion, and digestible OM intake. However, the most prominent differences in forage OM intake tended (cubic effect, P = 0.07) to occur with the two extreme frequencies of supplementation. In conclusion, forage use was improved with an increased frequency of supplementation, but the impact on performance is not likely to be large unless extreme differences in frequency occur.  相似文献   

18.
A winter grazing experiment was conducted to evaluate the effects of stocking rate and corn gluten feed supplementation on forage mass and composition and the BW and BCS of bred 2-yr-old cows grazing stockpiled forage during winter. Two 12.2-ha blocks containing Fawn, endophyte-free, tall fescue and red clover were each divided into 4 pastures of 2.53 or 3.54 ha. Hay was harvested from the pastures in June and August of 2003 and 2004, and N was applied at 50.5 kg/ha at the initiation of stockpiling in August. On October 22, 2003, and October 20, 2004, twenty-four 30-mo-old Angus-Simmental and Angus cows were allotted by BW and BCS to strip-graze for 147 d at 0.84 or 1.19 cow/ha. Eight similar cows were allotted to 2 dry lots and fed tall fescue-red clover hay ad libitum. Corn gluten feed was fed to cows in 2 pastures to maintain a mean BCS of 5 (9-point scale) at each stocking rate and in the dry lots (high supplementation level) or when weather prevented grazing (low supplementation level) in the remaining 2 pastures at each stocking rate. Mean concentrations of CP in yr 1 and 2 and IVDMD in yr 2 were greater (P < 0.10) in hay than stockpiled forage over the winter. At the end of grazing, cows fed hay in dry lots had greater (P < 0.05) BCS in yr 1 and greater (P < 0.10) BW in yr 2 than grazing cows. Grazing cows in the high supplementation treatment had greater (P < 0.10) BW than cows grazing at the low supplementation level in yr 1. Cows in the dry lots were fed 2,565 and 2,158 kg of hay DM/cow. Amounts of corn gluten feed supplemented to cows in yr 1 and 2 were 46 and 60 kg/ cow and did not differ (P = 0.33, yr 1; P = 0.50, yr 2) between cows fed hay or grazing stockpiled forage in either year. Estimated production costs were greater for cows in the dry lots because of hay feeding.  相似文献   

19.
A grazing study was conducted at the Eastern Colorado Research Center (ECRC) to evaluate the use of locally available protein sources as supplements for beef cows grazing native winter range. The four treatments were as follows: 1) alfalfa hay to supply 182 g/d CP (Alfalfa); 2) a mixture of alfalfa hay and cull Great Northern Beans to each supply 91 g/d CP (Alfalfa/Beans); 3) distillers dried grains to supply 182 g/d CP (DDG); and 4) a mixture of DDG and cull Great Northern Beans to each supply 91 g/d CP (DDG/Beans). Pregnant, multiparous, spring calving crossbred cows (n = 112; 566 ± 59 kg) were randomly assigned to one of four treatments within one of two replicates. Supplemental CP was increased to 273 g/d ca. 60 d before calving. Cow BW change was affected by treatment (P<0.05); cows fed the Alfalfa supplement gained BW during the trial, whereas cows fed the other three supplements lost BW. Cows in the Alfalfa group also lost less (P<0.05) body condition during the trial period compared with cows fed a DDG or cows in the DDG/Beans group. However, calf birth BW, calf weaning BW, and subsequent cow pregnancy rate were unaffected (P>0.05) by treatment. Feeding cull Great Northern Beans to supply one-half of the supplemental CP reduced feed costs with little effect on subsequent cow performance. In this study, DDG was a less desirable source of supplemental protein because of higher cost and a lower percentage of degradable intake protein (DIP).  相似文献   

20.
Two experiments, using Angus x Hereford spring-calving beef cows in mid- or late lactation nursing Simmental-sired calves, were conducted to evaluate the relative value of a corn gluten meal-blood meal mixture (CGM-BM; 50% of supplemental protein from each source). In Exp. 1 (78 d), cows in late lactation were assigned to one of three treatments: control at 8.2% CP (C), soybean meal at 10.4% CP (SBM), or CGM-BM at 10.3% CP. Diets were calculated to be isocaloric at 55% TDN. In Exp. 2 (65 d), cows in mid-lactation were assigned to four treatments: urea, SBM, low CGM-BM (LM), and high CGM-BM (HM). Diets in Exp. 2 were isonitrogenous (9.5% CP) and isocaloric (55% TDN). Diets in both experiments were based on ammoniated wheat straw and corn silage. Weight gains of cows and cow-calf pairs were greater (P less than .06) when protein was supplemented in Exp. 1. Gains were lower for cows fed urea (P less than .03) in Exp. 2 but were similar when cows were supplemented with SBM vs either the low or the high level of CGM-BM. Performance of calves did not differ among dietary treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号