首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment with UV-C of tomato fruit on the vine was conducted using a mobile unit that was designed to be conveyed between the rows of tomato plants in a commercial glasshouse. Trusses of fruit both at the ripe and mature green phase were treated with UV-C doses of 3 and 8 kJ/m2. Ripe fruit were picked 8 h after treatment and kept at room temperature for up to 16 d during which colour development and texture were monitored and compared to untreated controls. Mature green fruit treated on the vine with UV-C doses of 3 or 8 kJ/m2 showed only a slight loss in green pigmentation in contrast to the tomato colour index (TCI) of control fruit which increased sharply 5 d after treatment. The TCI of ripe fruit treated with UV-C at a dose of 8 kJ/m2 showed a lag of 10 d before increasing to a final value comparable to that of untreated fruit. Fruit treated with a dose of 3 kJ/m2 did not display a lag but the increase in TCI occurred at a lower rate than for the controls. Firmness remained higher in fruit treated with the highest UV-C dose compared to fruit treated with the lower UV-C dose and controls. Fruit covered with UV impermeable film on the same plants as those that had received a UV-C dose of 3 kJ/m2 had become ripe by day 6 in a manner similar to that of the controls. By contrast, fruit from trusses adjacent to those that had been treated with a UV-C dose of 8 kJ/m2 remained green over the same period of time. Ripe fruit treated as described above were inoculated with spores of Penicillium digitatum after UV-C treatment and their firmness monitored over 12 d. A dose response effect was found with fruit treated at the highest dose remaining firmer than those treated at the lower dose and the controls.  相似文献   

2.
The influence of aqueous 1-methylcyclopropene (1-MCP) concentration, immersion duration, and solution longevity on the ripening of early ripening-stage tomato (Solanum lycopersicum L.) has been investigated. Tomato fruit at the breaker-turning stage were fully immersed in aqueous 1-MCP at 50, 200, 400 and 600 μg L−1 for 1 min, quickly dried, and then stored at 20 °C. Ethylene production, respiration, surface color development, and rate of accumulation of lycopene and polygalacturonase (PG) activity were suppressed and/or delayed in fruit exposed to aqueous 1-MCP. Suppression of ripening was concentration dependent, with maximum inhibition in response to 1 min immersion occurring at concentrations of 400 and 600 μg L−1. Climacteric ethylene peaks were delayed approximately 6, 7, and 9 d and respiration was strongly suppressed in fruit treated with aqueous 1-MCP at 200, 400, and 600 μg L−1, respectively, compared with control fruit. Fruit firmness, lycopene content, PG activity, and surface hue of fruit treated at the three higher levels remained strongly suppressed compared with control. Skin hue values and pericarp lycopene content in response to treatment at the subthreshold 50 μg L−1 provided evidence for differential ripening suppression in external versus internal tissues. Maximum delay of softening and surface color development in response to 50 μg L−1 aqueous 1-MCP occurred following immersion periods of between 6 and 12 min. Factors affecting fruit penetration by aqueous 1-MCP and mechanisms contributing to recovery from 1-MCP-induced ripening inhibition are discussed.  相似文献   

3.
Measurements of canopy reflectance may provide a fast and non-destructive tool for monitoring canopy properties in precision agriculture. A substantial gain for practical use may be achieved by further developing multi-spectral and -temporal techniques of canopy reflectance analyses in order to combine several applications like site-specific fertilizer application, disease control, and prediction of harvesting date or yield forecast, in future. For this purpose, seasonal courses of canopy properties and vegetation indices of winter oilseed rape (Brassica napus L. cv. ‘Lirajet’) and spring barley (Hordeum vulgare L. cv. ‘Barke’) were investigated simultaneously in 3-year field experiments from 2002 to 2005. Canopy properties like shoot fresh matter, shoot dry matter, shoot-N content and shoot water content of both crops were related to traditional vegetation indices of the visual (VIS) and the near infra-red (NIR) spectral bands. Typically, closer relationships between canopy characteristics and vegetation indices were found at higher wavelength bands. The index R850 introduced here for the first time allows predicting quantitative growth properties directly at the field level. The results of the current study show that the use of vegetation indices of the NIR and its determination over the entire growth period will substantially improve the application of canopy reflectance measurements in agriculture.  相似文献   

4.
Summary Intraspecific variation for osmotic adjustment in sunflower was examined using a collection of 33 genotypes of different origin which were exposed to water stress at the 8-leaf stage. Changes in osmotic adjustment with ontogeny were also evaluated in the pre- and post-anthesis phases using seven genotypes drawn from this collection. Estimates of osmotic adjustment were derived from measurements of leaf relative water content (RWC) and osmotic potential () during a period in which the soil was allowed to dry out gradually. The degree of osmotic adjustment, expressed as the value of RWC for a of –1.7 MPa (RWCe), was derived from the ln RWC/ln relationship. Both monophasic and biphasic ln RWC/ln relationships were found. Irrespective of the form of the relationship, all genotypes at the 8-leaf stage showed some degree of osmotic adjustment. This was also true for the cultivars included in the subset examined in pre- and post-anthesis phases. Significant differences (P=0.05) in RWCe were found between extreme genotypes in all three phases.Significant (P=0.05) linear relationships were found between RWCe measured in the 8-leaf stage and that measured in the pre- and post-anthesis phases, establishing the viability of measurements in the 8-leaf stage as a means of selection for osmotic adjustment in later developmental stages. Genotype rank order was stable (P=0.01) across the three ontogenetic phases examined.Abbreviations ETp potential evapotranspiration - osmotic potential - RWC relative water content - RWCe value of RWC for a of –1.7 MPa  相似文献   

5.
The treated seeds (control, KNO3 and hydropriming) of sunflower (Helianthus annuus L.) cultivar Sanbro were evaluated at germination and seedling growth for tolerance to salt (NaCl) and drought conditions induced by PEG-6000 at the same water potentials of 0.0, −0.3, −0.6, −0.9 and −1.2 MPa. Electrical conductivity (EC) values of the NaCl solutions were 0.0, 6.5, 12.7, 18.4 and 23.5 dS m−1, respectively. The objective of the study was to determine factors responsible for germination and early seedling growth due to salt toxicity or osmotic effect and to optimize the best priming treatment for these stress conditions.

Results revealed that germination delayed in both solutions, having variable germination with different priming treatments. Germination, root and shoot length were higher but mean germination time and abnormal germination percentage were lower in NaCl than PEG at the same water potential. Seeds were able to germinate at all concentrations of NaCl but no seed germination was observed at −1.2 MPa of PEG treatments. NaCl had less inhibitor effect on seedling growth than the germination. It was concluded that inhibition of germination at the same water potential of NaCl and PEG resulted from osmotic effect rather than salt toxicity. Hydropriming increased germination and seedling growth under salt and drought stresses.  相似文献   


6.
The effects of low temperature on sucrose content and activities of key enzymes related to sucrose metabolism in cotton (Gossypium hirsutum L.) fibre were investigated. Two cotton cultivars, Kemian 1 and Sumian 15, were grown in the field at two sowing dates in 2006 and three sowing dates in 2007, the differences of environmental conditions during fibre development period (from flowering date to boll opening date) for different sowing dates were primarily on temperature. Low temperatures (MDTmin of 21.1, 20.5 and 18.1 °C) in late sowing dates (25 May/10 June) prolonged the fibre development period, and had significant effect on cellulose synthesis and sucrose metabolism. Results showed that, under low temperature, sucrose content was increased, cellulose content and sucrose transformation rate were decreased, and the variability of cellulose content and sucrose transformation rate through sowing dates in Sumian 15 was more than that in Kemian 1. The measurable activities of sucrose phosphate synthase (SPS), sucrose synthase (SuSy) and acid/alkaline invertases in sucrose metabolism were affected by low temperatures. Under low temperatures, activities of SuSy and invertase in sucrose degradation were increased, and two cultivars had the similar change. In contrast, the activity of SPS in sucrose synthesis was lower than the activity in developing fibre at normal environmental condition, and the time to peak activity was delayed, SPS activity in response to temperatures differed between two cultivars. The results indicated that restrained cellulose synthesis and sucrose metabolism under low temperature were mainly attributed to the changed activities of enzymes (SPS, SuSy and invertase), and the difference of cellulose synthesis and sucrose metabolism in response to temperature in fibre cells for two cotton cultivars was mainly determined by the level of SPS activity.  相似文献   

7.
Two (di)haploids (2n = 2x = 24) and nine tetraploids (2n = 4x = 48) obtained from Solanum tuberosum through anther culture were characterized for nDNA variation, phenotypic variation and nuclear microsatellite polymorphism. Androgenic (di)haploids were also characterized for late blight resistance. The (di)haploid C-13 was derived from Indian tetraploid potato cv. Kufri Chipsona-2, while D4 from TPS (true potato seed) parental line JTH/C-107, which is an interspecific hybrid between Indian tetraploid cv. Kufri Jyoti and diploid (2n = 2x = 24) cultivated species S. phureja Juz. & Buk. IVP-35. C-13 and D4 (both male-fertile) could be distinguished from their corresponding tetraploid anther donors based on plant height, shoot number, terminal leaflet length and width, leaf ratio, anther length, pollen diameter and corolla width and radius. A complete reversal of flower color occurred in D4, and C-13 was highly resistant to late blight. Most interestingly, about 3–7% increase in nDNA content occurred in most of the anther-derived tetraploids. Both the androgenic (di)haploids and their anther donors had unique genotypes at the microsatellite loci POTM1-2, STM0015 and STM0019b. However, the nine anther-derived tetraploids shared the same allelic profiles with their anther donor JTH/C-107 at all the microsatellite loci, except at STM0019a where they were characterized by the absence of a standard donor allele (186-bp). A typical (di)haploid-specific allele was detected for the locus STWAX-2 where the standard donor alleles were replaced by a 230-bp allele in both C-13 and D4. The over-expression of microsatellite variation in D4 that also shows triallelic profiles at the microsatellite loci POTM1-2 and STM0015 can perhaps be attributed to its chimeric structure, which might have been formed through incomplete fusion of two different pro-embryos during the first steps of microspore division.  相似文献   

8.
Grain legumes, especially peas, could play a key role in organic cropping systems. They could provide nitrogen (N) to the system via N2 fixation and produce grain rich in protein while improving soil N for the succeeding crop. Thus, maximising N2 fixation and optimising grain N production together with N contribution to soil is a challenging issue for organic pea crops. However, pest, disease and weed infestation are less easy to control in organic systems than in conventional systems. Therefore, the effects of weed infestation and pea weevil (Sitona lineatus L.) attacks on N nutrition and N2 fixation of organic pea crops were examined by on-farm monitoring over two years. The magnitude of the net contribution of the crops to the soil N balance in relation to their productivity was also assessed. In many situations, weed infestation together with pea weevil damage severely limited the nitrogen nutrition and grain yield. Percentage of N derived from fixation (%Ndfa) increased with weed biomass because weeds appeared more competitive than peas for soil N. But %Ndfa decreased with pea weevil leaf damage score. The interaction between these two biotic factors affected N yields and the net contribution of the crops to soil N. This latter ranged from −133 kg N ha−1 to 69 kg N ha−1 depending on %Ndfa and nitrogen harvest index (NHI). Optimising both grain N and net balance would require a reduction in root nodule damage by weevil larvae in order to maximise %Ndfa and a reduction in the NHI through the choice of cultivar and/or suitable crop management.  相似文献   

9.
Successful castor (Ricinus communis L.) cropping in Greece depends on the yielding ability and yield stability of the cultivars (hybrids or inbreds) as well as the reliability of production systems. The adaptation and yielding ability of 19 modern castor oil genotypes were studied for 3 years in two sites of Northern Greece. Genotypes combining high seed and oil yield and desirable morphological characteristics were tested for 2 or 3 years, whereas the rest were tested for 1 year only. The growing period in both locations was long enough for ripening the first raceme and a number of secondary racemes depending on the genotypes. The plant height was dependent mainly on the genotypes but also was affected by the site and the year of the experimentation and ranged from 79 to 278 cm. The seed yield varied between 2.5 and 5.0 Mg ha−1, values that are among the highest reported in the literature. The seed yield was higher in the site where plants produced and ripened more secondary racemes. The seed oil content was dependent mainly on the genotype and ranged from 44.5 to 54.2%. The oil yield followed the changes in seed yield. The variation in seed yield between years was low and in most genotypes less than 20%. Results indicate that the castor oil crop was satisfactorily adapted in the area.  相似文献   

10.
烤烟不同部位烟叶主要化学成分与叶长的关系   总被引:17,自引:0,他引:17  
采集我国南方烟区166份烤烟品种K326不同部位叶样品, 研究烤烟主要化学成分与叶片长度的关系。结果表明: 烟碱、总氮、还原糖、钾、氯、氮碱比、糖碱比、钾氯比、叶长在样品间存在广泛的变异; 氯含量和钾氯比在部位间差异不显著, 叶长、烟碱含量、氮碱比和糖碱比在部位间差异显著; 总氮、还原糖含量在中部、下部叶间差异未达到显著水平, 但二者均与上部叶差异显著; 上部、中部叶的钾含量差异不显著, 但二者均与下部叶差异显著; 在一定范围内, 烤烟上部叶烟碱、总氮和钾含量随叶长的增加而增加, 氮碱比随叶长的增加而降低; 中部叶烟碱、还原糖、钾含量和钾氯比随叶长的增加而增加, 氯含量和氮碱比随叶长的增加而降低; 下部叶还原糖含量、糖碱比和钾氯比随叶长的增加而增加, 烟碱、总氮和氯含量随叶长的增加而下降。叶长63.0 cm对上部叶的烟碱、总氮含量和糖碱比与下部叶的钾、氯含量均是一个较为敏感的长度。  相似文献   

11.
Summary High and low molecular weight glutenin subunit (HMW-GS and LMW-GS) compositions of 270 European spelts, 15 Iranian spelts and 25 bread wheat cultivars were analyzed by one- and two-dimensional gel electrophoresis. The results revealed a total of 22 HMW-GS alleles (4 at Glu-A1, 11 at Glu-B1 and 7 at Glu-D1) and 32 allele combinations among the three Glu-1 loci. Two major genotypes of HMW-GS: 1, 13+16, 2+12 and 1, 6.1+22.1, 2+12 were found to occur in Central European spelt wheat cultivars and landraces at higher frequencies of 35 and 28%, respectively. The Glu-B1 locus displayed the greatest variation and genetic diversity index (H) was 0.69 whereas Glu-A1 and Glu-D1 showed H index values of 0.26 and 0.19, respectively. The dendrogram constructed by HMW and LMW glutenin subunit bands revealed that European spelts form a separated cluster from common wheat suggesting that spelt and common wheat form distinct groups. In addition, all 15 Iranian spelt land variety accessions differed from European spelts and possessed similar HMW-GS alleles to common wheat. Because of a wider polymorphism Central European spelt wheats are an important genetic reserviour for improving common wheat quality. Both authors contributed equally to this work  相似文献   

12.
Low temperature is a serious abiotic stress affecting rice production in subtropical and temperate areas. In this study, cold tolerance of rice at the germination and seedling stages were evaluated using one recombinant inbred line (RIL) population derived from a cross between Daguandao (japonica), with highly cold-tolerant at the seedling stage, and IR28 (indica), with more cold-tolerant at the germination stage, and the quantitative trait loci (QTL) mapping was conducted using the multiple interval mapping (MIM) approach. Continuous segregation in low temperature germinability (LTG) and cold tolerance at the seedling stage (CTS) were observed among the RIL populations. Most RILs were moderately susceptible or tolerant at the germination stage, but were susceptible at the seedling stage. No significant relationship was found in cold tolerance between the germination and seedling stages. A total of seven QTLs were identified with limit of detection (LOD) >3.0 on chromosomes 3, 8, 11 and 12, and the amount of variation (R 2) explained by each QTL ranged from 5.5 to 22.4%. The rice LTG might be regulated by two minor QTLs, with the CTS controlled by one major QTL [qCTS8.1 (LOD = 16.1, R 2 = 22.4%)] and several minor loci. Among these loci, one simultaneously controls LTG (qLTG11.1) and CTS (qCTS11.1). Several cold-tolerance-related QTLs identified in previous studies were found to be near the QTLs detected here, and three QTLs are novel alleles. The alleles from Daguandao at six QTLs increased cold tolerance and could be good sources of genes for cold tolerance. In addition, only one digenic interaction was detected for CTS, with a R 2 value of 6.4%. Those major or minor QTLs could be used to significantly improve cold tolerance by marker-assisted selection (MAS) in rice.  相似文献   

13.
Accumulation of sludge-borne copper (Cu) by field-grown maize and its distribution between the different plant organs was studied in detail in a long-term sewage sludge field trial. Since 1974, field plots on a coarse sandy soil have been amended each year with farmyard manure (FYM) at a rate of 10 t dry matter (DM) ha−1 year−1 and with sewage sludge at the two levels of 10 t DM ha−1 year−1 (SS 10) and 100 t DM ha−1 per 2 years (SS 100). All field plots have been cropped annually with maize. In 1993, five replicate plants per treatment were examined at six different growth stages from seedling to grain maturity. Each plant was separated into at least 12 different parts and the Cu content of each was determined. Regarding growth parameters, no visible deleterious effects on plant development due to the different soil treatments could be observed, although the dry matter yield of roots and stalks of SS 100-treated plants was significantly reduced. Significantly increased Cu concentrations of up to 60 mg Cu kg−1 DM in the roots of young SS 100-grown maize plants and of up to 20 mg Cu kg−1 DM in the upper leaves at silage stage were found. No critical Cu amounts were reached in the grains until harvest.  相似文献   

14.
The selection of cultivars for the predominant cropping systems of small farms in the tropics depends to a large extent on the information obtained by testing their performance across the different systems. The main objective of this experiment was to measure the genotype × cropping system (G × CS) interaction for yield and selected agronomic traits of climbing beans (Phaseolus vulgaris L.) grown as sole crop and intercropped with two morphologically contrasting maize (Zea mays L.) cultivars. A secondary objective was to identify the most efficient and productive bean–maize intercrop combinations. Seven climbing bean genotypes were grown as sole crop and intercropped with two maize varieties, BH 140 (Mix. 1) and Guto (Mix. 2), in a factorial arranged Randomized Complete Block Design with three replications at Bako Agricultural Research Center in western Ethiopia. Main effects due to genotype and cropping system (except days to flowering) were significant for all bean traits considered. The genotypes × cropping system interaction terms were also significant for the number of seeds per pod, 100-seed weight, harvest index and seed yield. While bean seed yield significantly correlated with the number of seeds per pod (in Mix. 1) and with harvest index (in both mixtures), positive and significant correlations occurred with the number of pods per plant and 100-seed weight under sole cropping system. The correlation between bean seed yields of Mix. 1 and Mix. 2 and between Mix. 2 and sole crop were positive and significant. No such relationship was found between Mix. 1 and sole crop. The results suggest that selection of suitable climbing bean cultivars for intercropping with maize varieties predominantly grown in the area should be made under the associated culture of the two crops. Intercropping contributed to a significant reduction in seed yield of the bean genotypes due mainly to its adverse effects on the numbers of pods per plant and seeds per pod. The index tLER1 identified most bean–maize genotype combinations of Mix. 2 as biologically more efficient system than Mix. 1. On the other hand, tLER2 values of more than 1.00 for all treatments of Mix. 2 demonstrated higher overall productivity of the intercrop system when the bean genotypes were grown in association with a late-maturing and high yielding maize hybrid BH 140.  相似文献   

15.
Sea level quinoas are grown at low altitudes in Central and Southern Chile. Both sensitivity to photoperiod and response to temperature largely determine quinoa adaptation, but crop biomass production must be quantified to evaluate agronomic performance. The objectives of this work are: (i) to characterize development effects on leaf area evolution for genotypes of sea level quinoa differing in cycle length, (ii) to quantify the extinction coefficient (k) for photosynthetically active radiation (PAR) and radiation use efficiency (RUE) from emergence up to the beginning of grain filling and (iii) to identify which crop attributes related to canopy architecture should be considered to improve biomass production. Four cultivars (NL-6, RU-5, CO-407 and Faro) were cropped in Pergamino (33°56′S, 60°35′W, 65 m a.s.l.), Argentina, at three densities (from 22 to 66 plants m−2) in two consecutive years under field conditions with adequate water and nutrient supply. Thermal time to first anthesis and maximum leaf number on the main stem were linearly correlated (r2 = 0.87; p < 0.0001). Leaf area continued to increase during the flowering phase, notably in NL-6, the earliest genotype. There were significant differences in maximum plant leaf area between cultivars. Increasing density reduced plant leaf area but effects were comparatively small. Estimated k was 0.59 ± 0.02 across genotypes and was higher (p < 0.05) for 66 plants m−2. Values for RUE changed as cumulative intercepted PAR (IPAR) increased; at initial stages of development RUE was 1.25 ± 0.09 g MJ IPAR−1, but if cumulative IPAR was higher than 107.5 ± 10.4 MJ IPAR m−2, RUE was 2.68 ± 0.15 g MJ IPAR−1. That change occurred when leaf area index (LAI) and fraction of PAR intercepted were still low and ranged from 0.61 to 1.38 and from 0.33 to 0.51, respectively. No significant association was found with any developmental stage. Our results agreed to the notion that RUE variation during pre-anthesis phases is largely determined by LAI through its effect on radiation distribution within the canopy. Biomass production could be improved if periods of interception below 50% of incoming PAR were reduced to ensure high RUE. This seems to be possible in temperate areas both by the use of late genotypes with a higher number of leaves on the main stem and by early genotypes provided adequate plant density is chosen. Early increment in LAI and overlapping of the leaf area increase period with the flowering phase are desirable strategies for earliest genotypes to maximize yield.  相似文献   

16.
Ten identical perennial ryegrass plots (cv. Frances) were sequentially harvested for first cut silage at 7 day intervals, with second cuts after 6 weeks regrowth and further cuts until the growing season ended. Total herbage dry matter and digestible organic matter yields increased and digestibility decreased with delayed cutting, as was expected. The opposite and counterbalancing response occurred at the second cut. This pattern of yield change was mirrored by changes in the amount of stem tissue, whereas leaf yield did not change significantly at the first harvest but declined at the second, in response to delayed cutting. Furthermore, stem digestibility declined at the first cycle of harvests from ca. 75 to 62–64% in the most delayed cutting treatments. In contrast, leaf digestibility remained high (ca. 70%) until after seed-head emergence but then decreased rapidly to ca. 56%. This decline may have been associated with accelerated leaf senescence and redistribution of assimilates, though this needs to be examined. It was concluded that although manipulating first harvest date determined the proportioning of yield and digestibility in the first and second cuts, the observation that the combined yield and digestibility in these two harvests did not vary substantially is an important result for farming practice.  相似文献   

17.
Maize inbred lines of different origins were grown in spring (for 2 years at early and usual sowing dates) in northeastern Switzerland (latitude 47°27′ N; 550 and 720 m a.s.l.) until five to six leaves were fully developed. Averaged over all observation periods, the group of inbred lines used in hybrids for cool temperate regions (CT lines) showed better heterotrophic and autotrophic shoot growth and faster development than the group of lines adapted to warm tropical regions (CS lines). The more efficient autotrophic shoot growth of CT lines was expressed by higher rates of relative growth (RGR) and relative leaf area expansion (RLGR) and was related to a higher net assimilation rate (NAR) and a lower leaf area ratio (LAR). CT lines had better radiation use efficiency (RUE), higher rates of net photosynthesis (PN), and lower specific leaf area (SLA) than CS lines. The greater RGR and RLGR of CT line Z 7 as compared to the CS line Penjalinan were related to a higher assimilation rate but not to a better use of carbohydrates; in Z 7 the balance between assimilation production and use resulted in a greater accumulation of soluble carbohydrates and starch. Genotypic variability existed for most growth parameters and was greatest for NAR. Growth responses of inbred lines under field conditions in spring were influenced mainly by temperature. Of all parameters, NAR was correlated best with temperature. Under decreasing temperature, RGR, RLGR, the rate of leaf appearances (RLA) and NAR decreased, whereas LAR, leaf area partitioning (LAP), and SLA increased slightly. The soluble carbohydrate content of Z 7 and Penjalinan also increased. RUE showed the best correlation with the daily minimum air temperature. Within the temperature limits of this experiment, no significant interactions were found between inbred line and temperature.  相似文献   

18.
Bacterial blight (BB) of rice caused by X. oryzae pv. oryzae is a major production constraint in commercial hybrid rice production in the Philippines because most of the parental lines used in hybrid production do not carry resistance genes against the pathogen. In this study, three bacterial blight resistance genes, Xa4, Xa7 and Xa21, were introgressed to a temperature-sensitive genetic male sterile (TGMS1) line. A three-way cross of AR32-19-3-3/TGMS1//IRBB4/7 (PR36944) was made to produce 1,364 F2 plants carrying various combinations of Xa4, Xa7 and Xa21. Individual plants were characterized for reaction to bacterial blight PXO61 (race 1), PXO86 (race 2), PXO99 (race 6) and pollen sterility. Of 144 F2 plants demonstrating resistance against PXO61, PXO86 and PXO99, 22 exhibited highly resistant phenotypes with mean lesion lengths ranging from 0.37–2.97 cm. Analysis of disease reaction identified 20 potential TGMS F2 plants containing Xa4, Xa7 and Xa21 while 78 plants with Xa4 + Xa7. Phenotypic and polymerase chain reaction (PCR) analyses confirmed PR36944-450, PR36944-473 and PR36944-700 as homozygous for Xa7 and Xa21 and highly resistant to all three Xoo races. Fertility of PR36944-450 and PR36944-700 was restored at permissive temperature in a growth chamber. BB-resistant TGMS lines should facilitate breeding two-line hybrids in the tropics.  相似文献   

19.
Ahipa (Pachyrhizus ahipa) is a legume crop, which produces carbohydrate-rich tuberous roots and seeds rich in protein and oil. In the present work, we studied the effect of different agronomic practices and climatic conditions on root and seed yield in order to make a preliminary assessment of the yield potential under different managements for the ahipa crop in south-western Europe. Sowing date affected productivity when delayed, because of growth season shortening. Reproductive pruning greatly increased root yield. Increasing planting density affected root and fruit growth per plant but increased yield to a certain extent. Seed inoculation with effective rhizobia greatly increased root and seed production. Low temperature is a main factor to be considered as it reduced productivity in areas of cool nights. Ahipa has a low environmental impact and low input requirement (fertilizer, pesticides), providing an attractive alternative to traditional sources of carbohydrates for conserving non-renewable resources and maintaining farmer profitability. Competitive yields for the simultaneous production of starch, feed protein and industrial oil may be obtained with low investment using available landraces.  相似文献   

20.
利用电子克隆结合RT-PCR技术克隆获得陆地棉(Gossypium hirsutum L.)S-腺苷蛋氨酸脱羧酶(S-adenosylmethionine decarboxylase,SAMDC)基因家族3个基因,分别命名为Gh SAMDC2、Gh SAMDC3和GhSAMDC4。序列分析显示,该基因c DNA包含的upstream ORF(u ORF)和main ORF(m ORF)为植物SAMDC基因特征ORF,其中m ORF长度分别为1068 bp、1110 bp和1032 bp,分别编码355、369和343个氨基酸。聚类分析表明,Gh SAMDC2/3蛋白与可可树(Theobroma cacao)SAMDC聚为一类,且Gh SAMDC2与GhSAMDC3蛋白亲缘关系最近;Gh SAMDC4与拟南芥At SAMDC4聚为一类。实时荧光定量PCR分析表明,Gh SAMDC2在茎中表达相对较高,随着纤维发育其表达量不断增加,在纤维发育后期其表达量达到最高;Gh SAMDC2/3/4在不同的胁迫条件下表现出不同的表达模式,Gh SAMDC2受低温和干旱胁迫诱导最强烈,Gh SAMDC3响应盐胁迫显著,Gh SAMDC4受ABA诱导强烈。上述结果为进一步研究棉花SAMDC基因功能奠定了一定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号