首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Few studies on free lipids in total solvent extracts from soil clay fractions directly measured by gas chromatography–mass spectrometry (GC/MS) have been reported so far. In this study, we aimed to examine the free lipids in the clay fraction separated from a Fluvisol profile on which sewage sludge was deposited 6 years ago and provide information on the sources, diagenetic processes and organic pollutants derived from the sludge. Clay fractions were separated from the four horizons of a Fluvisol and analysed for the biochemically stable lipid pool. The GC/MS analysis of the lipid fraction showed that lipid signatures were dominated by alkanes (C17–C33), alkanoic acids (C12–C18), alkanols (C14–C30), aromatic acids and phthalate esters. Sources of lipids show predominant bacterial contribution as shown by the alkane, fatty acids and n-alkanol distributions. The preservation of lipids of microbial origin in the clay fraction was revealed by the presence of even number, branched alkanes and short-chain and branched fatty acids. These results imply that similar pedogenic processes took place in this soil profile affected by hydromorphic conditions with some quantitative changes in the clay lipid compositions between different soil horizons. Some aromatic acids and xenobiotics such as phthalates were detected in the lipid extracts of the clay fractions in depth (0–85 cm) of the soil profile, which has implications for pollution of soils and ground waters in situations of sewage sludge deposition.  相似文献   

2.

Purpose

To assess how the rates of humus formation and humification are affected by land use and age of ecosystems, this study investigated soil development in two post-mining chronosequences (spoil heaps formed from open-cast coal mining near Sokolov, Czech Republic). The following characteristics were measured: content, composition, and properties of humic acids; organic carbon (C) and total nitrogen (N) contents; pH; and amorphous iron content.

Materials and methods

Two chronosequences were studied. One consisted of unreclaimed spontaneously revegetated spoils (3, 12, 20, and 40 years old). The other consisted of heaps that were reclaimed by planting alder in graded heaps (7, 15, 20, 30, and 40 years old). Humus and iron contents as well as pH were determined, and humic acids were extracted for detailed chemical analyses (C, H, N, 13C-NMR, and pyrolysis mass-spectrometry).

Results and discussion

C and N accumulated faster in the reclaimed sites than in the unreclaimed sites; organic matter accumulation results in the decrease of pH in all soils and in spontaneous sites also increase of amorphous iron content. Humic acids (HA) and fulvic acids (FA) increased with the site age in both chronosequences. The CHA/CFA was higher in the reclaimed soils than in the unreclaimed soils, and the CHA/CFA ratio increased with age in the unreclaimed soils. Humic acid aromaticity was higher in the reclaimed site than in the unreclaimed sites but increased with the age of unreclaimed sites. H and O content decreased with age of reclaimed soils. Humification led to an increase in HA caloricity in the reclaimed sites but not in unreclaimed sites because of the influence of residual wax-type substances in the unreclaimed sites. Degree of HA oxidation (ω) for the reclaimed plots was similar to that in typical zonal soils but was highly variable in unreclaimed soils.

Conclusions

Relative to spontaneous revegetation in the unreclaimed sites, reclamation increased the rates of humus accumulation, humification, and humus acid transformations. The differences between reclaimed and unreclaimed sites, however, decreased with site age and were very small in 40-year-old sites. These differences correspond to the rapid colonization of the reclaimed sites and the slow colonization of the unreclaimed sites by soil biota.  相似文献   

3.
Investigations of plant and soil lipids at an upland moorland site revealed certain similarities in composition. In all lipid samples the polar compound fraction was the largest and the paraffinic the smallest. The range (C16–36) and pattern of alkanes in the soil were also similar to those of the surface vegetation, both demonstrating a definite predominance of Codd components. A slight peak in the alkanes identified was seen in the region C27–C30. The pattern of alkanes in the water running into the soil was quite different, and was not seen to influence the spectrum detected in the soil. Incubation of soil samples with and without added succinate, although causing a drop in lipid content, did not produce many significant changes in the soil alkanes. Plant-derived alkanes in the soil appeared to be resistant to microbial alteration under the experimental conditions employed. The origin of alkanes in an ancient sediment, the underlying shale, was not so clear since the carbon preference index was around unity. It seemed possible that microbial activity might have altered the spectrum of alkanes in the sediment during ageing.  相似文献   

4.
Previous studies examining organic compounds that may cause water‐repellent behaviour of soils have typically focussed on analysing only the lipophilic fraction of extracted material. This study aimed to provide a more comprehensive examination by applying single‐ and sequential‐accelerated solvent extraction (ASE), separation and analysis by GC/MS of the total solvent extracts of three soils taken from under eucalypt vegetation with different degrees of water repellency. Water repellency increased in all the soils after extraction with DCM/MeOH (95:5), but was eliminated with iso‐propanol/ammonia (95:5). Quantities of major lipid compound classes varied between solvents and soils. Iso‐propanol/ammonia (95:5) solvent released saccharides, glycerol, aromatic acids and other polar organic compounds, which were more abundant in fractionated extracts from the single extraction and the third step sequential ASE extraction, than in the extracts from the DCM/MeOH ASE solvent. Dominant compounds extracted from all soils were long‐chain alkanols (>C22), palmitic acid, C29 alkane, β‐sitosterol, terpenes, terpenoids and other polar compounds. The soil with the lowest repellency lacked >C18 fatty acids and had the lowest concentrations of alkanols (C26,C28 and C30) and alkanes (C29, C31), but a greater abundance of more complex polar compounds than the more repellent soils. We therefore speculate that the above compounds play an important role in determining the water repellency of the soils tested. The results suggest that one‐stage and sequential ASE extractions with iso‐propanol/ammonia and subsequent fractionation of extracts are a useful approach in providing a comprehensive assessment of the potential compounds involved in causing soil water repellency.  相似文献   

5.
6.
Soil heating, as for example experienced during vegetation fires, often increases soil water repellency; however, no detailed analysis of the soil chemical changes associated with this increase has been conducted to date. Here we characterize the changes in organic compound composition associated with heat‐induced increases in water repellency for three Australian eucalypt‐forest soils (one sandy loam, two sands). Laboratory heating (300°C) strongly increased water drop penetration times (WDPTs) in all soils. Soils were extracted by accelerated solvent extraction (ASE) with an iso‐propanol/ammonia mixture (IPA/NH3 95:5) and pure iso‐propanol (IPA). Extracts were fractionated into less and more polar fractions and analysed by GC‐MS. Water repellency was eliminated in unheated and heated soils by IPA/NH3, but not by pure IPA. Before heating, total solvent extracts were dominated by n‐alkanols, terpenoids, C16 acid, C29 alkane, β‐sitosterol and polar compounds. After heating, dominant compounds were aromatic acids, aldehydes, levoglucosan, simple sugars and glycosides. Heating resulted in a sharp absolute decrease of homologous aliphatic series of alkanols and alkanes, a shift of fatty acid signature to members <C20 and an increase in total content of aromatic compounds. Heating also caused the formation of complex high‐molecular‐weight compounds detected in the more polar fractionated extracts and low‐molecular‐weight oxo‐ and hydroxyacids and aromatics in the IPA/NH3 solvent. We speculate that these compounds in conjunction with fatty acids of <C12 interact with organic and mineral soil surfaces and cause the observed strong increases in soil water repellency following heating.  相似文献   

7.
The metal content was determined in soil and vegetation around the eastern zone of the disused sulphur and copper mines at Avoca (southeast Ireland). A 250 m × 250 m grid survey was conducted covering a total area of 4 km2. The mining belt was in the centre of the investigated site and was sampled separately. Iron, Zn, Cu and Cd concentrations in soil and plant material were determined, in addition to soil organic matter content and soil pH. Soil samples taken from the spoil showed elevated Cu and Cd concentrations, and low soil pH and organic matter content. At least 50 per cent of the agricultural sites examined around the East Avoca Mine showed elevated soil Cu and Cd concentrations, whereas Zn and Fe soil concentrations were within the range for unpolluted soils. None of the vegetation analysed had elevated Zn, Cd, Fe or Cu concentrations. Overall there was no indication of serious metal contamination in either soils or vegetation surrounding the mine in spite of extensive dust deposition during open-pit mining activity 15–30 years ago. However, a plume of elevated Cu in the soil was identified, which originated from a large spoil heap and had been spread for some 2·0 km by the prevailing wind.  相似文献   

8.

Purpose

Re-establishment of soil nitrogen (N) capital is a priority in mine rehabilitation. We aimed to evaluate the effects of biochar addition on improving mine spoil N pools and the influence of elevated CO2 concentration on mine rehabilitation.

Materials and methods

We assessed the effects of pinewood biochar, produced at three temperatures (650, 750 and 850 °C, referred as B650, B750 and B850, respectively), on mine spoil total N concentrations with five different plant species, including a tree species (Eucalyptus crebra), N-fixing shrubs (Acacia floribunda and Allocasuarina littoralis) and C3 and C4 grasses (Austrodanthonia tenuior and Themeda australis) incubated at ambient (400 μL L?1) and elevated (700 μL L?1) atmospheric CO2 concentrations, as well as the effects of elevated CO2 on mine rehabilitation.

Results and discussion

Soil total N significantly improved following biochar incorporation under all plant species (P < 0.05) except for T. Australis. E. crebra had the highest soil total N (0.197%, 0.198% and 0.212% for B650, B750 and B850, respectively). Different from the negligible influence of elevated CO2 on soil properties under the grasses and the N-fixing shrubs, elevated CO2 significantly increased soil water and hot water extractable organic C (WEOC and HWEOC, respectively) and decreased total C under E. crebra, indicating that the nutrient demands were not met.

Conclusions

Biochar addition showed the potential in mine rehabilitation in terms of improving soil N pool, especially with E. crebra. However, it would be more difficulty to rehabilitate mine spoils in future with the rising atmospheric CO2 concentration.
  相似文献   

9.
Soil characteristics regulate various belowground microbial processes including methanogenesis and, consequently, affect the structure and function of methanogenic archaeal communities due to change in soil type which in turn influences the CH4 production potential of soils. Thus, five different soil orders (Alfisol, Entisol, Inceptisol, Podzol and Vertisol) were studied to assess their CH4 production potential and also the methanogenic archaeal community structure in dryland irrigated Indian paddy soils. Soil incubation experiments revealed CH4 production to range from 178.4 to 431.2 μg CH4 g-1 dws in all soil orders as: Vertisol<Inceptisol<Entisol<Podzol<Alfisol. The numbers of methanogens as quantified using real-time quantitative polymerase chain reaction (qPCR) targeting mcrA genes varied between 0.06 and 72.97 (×106 copies g-1 dws) and were the highest in Vertisol soil and the least in Alfisol soil. PCR-denaturing gradient gel electrophoresis (DGGE)-based approach targeting 16S rRNA genes revealed diverse methanogenic archaeal communities across all soils. A total of 43 DGGE bands sequenced showed the closely related groups to Methanomicrobiaceae, Methanobacteriaceae, Methanocellales, Methanosarcinaceae, Methanosaetaceae and Crenarchaeota. The composition of methanogenic groups differed among all soils and only the Methanocellales group was common and dominant in all types of soils. The highest diversity of methanogens was found in Inceptisol and Vertisol soils. Methane production potential varied significantly in different soil orders with a positive relationship (p?<?0.05) with methanogens population size, permanganate oxidizable C (POXC) and CO2 production. The present study suggested that CH4 production potential of different soils depends on physicochemical properties, methanogenic archaeal community composition and the population size.  相似文献   

10.

Purpose

This study aimed to assess the effects of biochar on improving nitrogen (N) pools in mine spoil and examine the effects of elevated CO2 on soil carbon (C) storage.

Materials and methods

The experiment consisted of three plant species (Austrostipa ramossissima, Dichelachne micrantha, and Lomandra longifolia) planted in the N-poor mine spoil with application of biochar produced at three temperatures (650, 750, and 850 °C) under both ambient (400 μL L?1) and elevated (700 μL L?1) CO2. We assessed mine spoil total C and N concentrations and stable C and N isotope compositions (δ13C and δ15N), as well as hot water extractable organic C (HWEOC) and total N (HWETN) concentrations.

Results and discussion

Soil total N significantly increased following biochar application across all species. Elevated CO2 induced soil C loss for A. ramossissima and D. micrantha without biochar application and D. micrantha with the application of biochar produced at 750 °C. In contrast, elevated CO2 exhibited no significant effect on soil total C for A. littoralis, D. micrantha, or L. longifolia under any other biochar treatments.

Conclusions

Biochar application is a promising means to improve N retention and thus, reduce environmentally harmful N fluxes in mine spoil. However, elevated CO2 exhibited no significant effects on increasing soil total C, which indicated that mine spoil has limited potential to store rising atmospheric CO2.
  相似文献   

11.
Desert soils are infertile, and the ability to improve them by P-fertilization is limited by the solubility of phosphate. We aimed to understand the function of phosphate solubilizing bacteria and the mechanisms behind phosphate solubilization in desert soils. Vegetated and barren desert soils, mine spoil and a fertile temperate grassland loam were sampled. Bacteria and fungi were isolated and identified, and their phosphate-solubilizing abilities were measured in vitro. The release of plant available PO4, SO4, NO3 and NH4 from desert soils did not compare with that of a grassland soil. Desert soils had substantially lower solubilization than grassland, 162 and 99–121 µg PO4-P g?1 dry soil, respectively. Phosphate-solubilizing bacteria and fungi were inhabiting the soils. Si addition increased phosphate solubilization of fungi by 50%. The isolated microbes were shown, using 31P nuclear magnetic resonance (NMR) analysis, to rapidly take-up both intracellular and extracellular phosphate during the phosphate solubilizing process. Desert soil had potentially active microbial populations that are capable to solubilize inorganic phosphorus; S and Si as the limiting factors. Acidification as the main mechanism to solubilize mineral phosphate was not as evident in our desert soils as in former studies dealing more fertile soils.  相似文献   

12.
The aliphatic biopolyesters cutins and suberins have been suggested to significantly contribute to the stable pool of soil organic matter (SOM), and to be tracers for the above- or belowground origin of plant material. Contrary to other plant-derived aliphatic molecules found in the lipid fraction of soils, the stable isotope derived estimates of turnover of cutins and suberins have never been studied in soils. The aim of this study was to analyse the dynamics of shoot- and root-derived biomarkers in soils using a wheat and maize (C3/C4) chronosequence, where changes in the natural 13C abundance can be used to evaluate the incorporation of new carbon into SOM at the molecular level. The relative distribution of aliphatic monomers in wheat and maize roots and shoots suggested that α,ω-alkanedioic acids can be considered as root-specific markers and mid-chain hydroxy acids as shoot-specific markers.The contrasting distribution of the plant-specific monomers in plants and soils might be explained by different chemical mechanisms leading to selective degradation or stabilization of some biomarkers. The changes of the 13C isotopic signatures of these markers with years of maize cropping after wheat evidenced their contrasted behaviour in soil. After 12 years of maize cropping, shoot markers present in soil samples probably originated from old C3 vegetation suggesting that new maize cutin added to soils was mostly degraded within a year. The reasons for long-term stabilization of shoot biomarkers remain unclear. By contrast, maize root markers were highly incorporated into SOM during the first six years of maize crop, which suggested a selective preservation of root biomass when compared to shoots, possibly due to physical protection.  相似文献   

13.
Reclaimed coal mine lands have the potential to sequester atmospheric carbon (C); however, limited information exists for the western USA coalfields. This study was carried out on two chronosequences (BA‐C3 grasses and DJ‐shrubs) of reclaimed sites at two surface coal mines to determine the effects of vegetation, soil texture, and lignin content on soil total organic carbon (TOC) accumulations. In the BA chronosequence, TOC increased over 26 years at an average rate of 0·52 Mg C ha−1 yr−1 in the 0–30 cm depth and was significantly correlated with clay content. Comparison between < 1 and 16‐year‐old stockpile soils indicated TOC content did not differ significantly. In the DJ chronosequence, TOC content in the 0–30 cm depth declined from 31·3 Mg ha−1 in 5‐year‐old soils to 23·4 Mg ha−1 in 16‐year‐old soils. The C:N ratios suggested that some (up to 2·0 per cent) of the TOC was potentially derived from coal particles in these reclaimed soils. Soil total N (TN) contents followed a similar trend as TOC with TOC and TN concentrations strongly correlated. Lignin contents in TOC of all reclaimed soils and topsoil stockpiles (TSs) were higher than that of nearby undisturbed soils, indicating the recalcitrant nature of TOC in reclaimed soils and/or possibly the slow recovery of lignin degrading organism. Results indicated that TOC accumulations in DJ were largely controlled by its composition, particular lignin content. In BA sites TOC accumulation was strongly influenced by both clay and lignin contents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

The work presents study results on the formation of humus horizons, the accumulation of organic carbon and nitrogen as well as humus composition in successional and reclaimed soils in a sand mine cast in southern Poland. Research plots were designed in chronosequence: 5, 17, 20 and 25 years. Increased thickness of humus horizon and accumulation of organic carbon was reported both in successional soils and in reclaimed soils. However, in corresponding age groups of reclaimed soils these characteristics were two times as high as in successional soils. The estimated accumulation rate of organic carbon (Corg) was three times higher and total nitrogen (Nt) five times higher in reclaimed soils than in successional soils. In both types of soils there was an increase in the amount of carbon trapped with humic and fulvic acid (CHa + CFa) and structure of humic acids. Studies indicated that reclamation treatment significantly accelerated soil-formation in opencast sand mine.  相似文献   

15.
Soil profiles under beech, spruce and a grassland have been analysed to study the evolution of natural n-alkanes in pollution-free ecosystems. The soils had all developed on granitic bedrock, at an altitude of 1300–1500 m in the region of Mont-Lozère (southern Massif-Central, France). In contrast to the grassland soil, the two forest soils both possessed a well-developed acidic moder humus-type horizon. This could be subdivided as follows: fresh litter (OL), fragmentation (OF) and humification (OH) layers; two litters, one fresh (OL1) and one old (OL2) could actually be distinguished in the beech forest soil. The n-alkane signature of the parent plants was preserved in the top litter. Immediately underneath, in the OF layer(s) the original n-alkane signatures were progressively but rapidly replaced by a common signature composed of n-C27 and n-C25 with larger proportions of the former than of the latter. These two hydrocarbons were most probably produced in situ by fungi. These results appear to illustrate the action of soil microorganisms which metabolize the inherited n-alkanes and produce new compounds of the same family. Unlike the alkanes and the low molecular weight fatty acids ≤ C20 (which increase greatly in the OL2 layer under beech as a result of intense microbial activity), the heavy fatty acids (> C20) show no significant change in the organic horizon.  相似文献   

16.
The aim of this work was to investigate the influence of the organic matter on copper and lead adsorption in soils with different physiochemical and mineralogical attributes. Suspensions (pH 6.0) of a Latosol, a Neosol and a Vertisol containing increasing amounts of copper or lead were used to obtain sorption isotherms while identical experiments were carried out with the soils previously treated with H2O2 to remove organic matter (OM). For the undisturbed soils, L-type and H-type isotherms were predominant for copper and lead respectively, showing that lead interacts more strongly with adsorption sites. For both metals, the non-linear Freundlich adsorption model revealed higher concentration of adsorption sites for Vertisol due to 2:1 clays. For the OM-removed soils, C-type isotherms were observed for copper with the permanence of less stable and more homogeneous sites. For this metal, a high correlation (R2 = 0.997) was observed between the decrease of adsorbent sites and the loss of organic carbon, evidencing the central role of organic matter on copper complexation, while lead may be able to interact efficiently with both organic matter and soil minerals.  相似文献   

17.
Data on the total carbon content and on the composition of humic substances extracted from the technogenic soils and substrates of dumped mine rocks are analyzed. It is shown that two types of humic substances are formed upon the oxidation of sulfidic rocks and their overgrowing with vegetation. The first type is represented by humic substances originating in the course of transformation of plant remains. The second type includes humic substances formed due to the oxidation of coal particles; these humic substances are characterized by a higher Cha/Cfa ratio. The role of humic acids in decreasing the mobility of aluminum ions in the strongly acid mine substrate is experimentally confirmed.  相似文献   

18.
Coal mining leads to severe land degradation and creates huge amounts of mine spoil. Coal mine spoil contains toxic polycyclic aromatic hydrocarbons (PAHs) derived from coal, which can be alleviated through revegetation with suitable tree species. The present study was aimed at evaluating the impact of different tree species (Albizia lebbeck , Cassia siamea , Delonix regia , and Dalbergia sissoo ) on the quality of coal mine spoil and changes in PAH concentration. Soil samples were collected from the revegetated coalmine overburden dumps of Jharia coalfield, Dhanbad, India and analysed by GC‐MS for 16 priority PAHs and soil quality parameters were analyzed by standard analytical protocols. Reclamation improved the biological properties of the mine spoil: microbial biomass (+59–176%), dehydrogenase activity (+46–198%), fluorescein diacetate hydrolase activity (+104–127%), phenol oxidase activity (+150–250%), and peroxidase activity (+93–181%). PAH concentration in revegetated mine spoil ranged from 0 · 51 to 1 · 35 mg kg−1, with a significance reduction in total as well as individual PAHs. For individual tree species, total PAH reduction decreased in the order: C. siamea (81 · 6%) > A. lebbeck (55 · 6%) > D. regia (51 · 9%) > D. sissoo (51 · 5%). Correlation analysis showed significant association between the degradation of PAHs and soil biological properties of revegetated site. Microbial biomass carbon and soil enzymes were negatively correlated with PAH content in the mine spoil. But microbial stress indicators like respiration/microbial carbon ratio were not correlated, which revealed no adverse effect of PAH on soil microbes. Principal component analysis revealed that most of the biological parameters were closely associated with the degradation of low molecular weight PAHs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Together with plants, soil microbial communities play an essential role in the development of stable ecosystems on degraded lands, such as postmining spoil heaps. Our study addressed concurrent development of the vegetation and soil fungal and bacterial communities in the course of primary succession in a brown coal mine spoil deposit area in the Czech Republic across a chronosequence spanning 54 years. During succession, the plant communities changed from sparse plants over grassland and shrubland into a forest, becoming substantially more diverse with time. Microbial biomass increased until the 21st year of ecosystem development and later decreased. Although there was a close association between fungi and vegetation, with fungi mirroring the differences in plant community assemblages, the development of the bacterial community was different. The early succession community in the barren nonvegetated soil largely differed from that in the older sites, especially in its high abundance of autotrophic and free‐living N2‐fixing bacteria. Later in succession, bacterial community changes were minor and reflected the chemical parameters of the soil, including pH, which also showed a minor change with time. Our results show that complex forest ecosystems developed over 54 years on the originally barren soil of the temperate zone and indicate an important role of bacteria in the initial stage of soil development. Although the arrival of vegetation affects substantially fungal as well as bacterial communities, it is mainly fungi that respond to the ongoing development of vegetation.  相似文献   

20.
《Journal of plant nutrition》2013,36(6):1169-1188
Abstract

A pot experiment was conducted to assess the effect of mineral fertilization and compost on the growth and chemical composition of ryegrass (Lolium perenne L.) grown on two Malian agricultural soils coming from Baguinéda, abbreviated as Bgda, (12°23′ S, 7°45′ W) and Gao (16°18′ N, 0°). Treatments included non‐fertilized control, NPK alone, NPK + C25, NPK + C50, NPK + C100, PK + C50, NK + C50, NP + C50, K + C50, P + C50, N + C50, and C50 alone, where NPK represents the non modified Hoagland's solution and C25, C50, and C100 represent the different rates (25, 50, and 100 T/ha) of compost. Compost and mineral fertilization significantly increased dry matter production. The application of 50 T/ha of compost alone increased the dry matter yield by 10 and 17.5% while mineral nitrogen–phosphorus–potassium (NPK) increased yield by 69.7 and 65% for Gao and Bgda, respectively. The combination of compost and mineral NPK (NPK + C25 for Gao and NPK + C50 for Bgda) affected the highest dry matter yield. For both soils, N concentrations in plants increased significantly with compost rate. Phosphorus and K concentrations in plants varied according to the soil. The application of compost increased the uptake of iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), and potassium (K from both soils). Increases in soil organic carbon, available P, calcium (Ca), magnesium (Mg), Fe, Mn, Zn, Cu, K, and pH were observed in treatments receiving compost. Therefore, compost appeared to be a good supplier of nutrients for tropical soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号