首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract

To evaluate the hypothesis that plant-mediated oxygen supplies decrease methane (CH4) production and total global warming potential (GWP) in a tropical peatland, the authors compared the fluxes and dissolved concentrations of greenhouse gases [GHGs; CH4, carbon dioxide (CO2) and nitrous oxide (N2O)] and dissolved oxygen (DO) at multiple peatland ecosystems in Central Kalimantan, Indonesia. Study ecosystems included tropical peat swamp forest and degraded peatland areas that were burned and/or drained during the rainy season. CH4 fluxes were significantly influenced by land use and drainage, which were highest in the flooded burnt sites (5.75 ± 6.66 mg C m?2 h?1) followed by the flooded forest sites (1.37 ± 2.03 mg C m?2 h?1), the drained burnt site (0.220 ± 0.143 mg C m?2 h?1), and the drained forest site (0.0084 ± 0.0321 mg C m?2 h?1). Dissolved CH4 concentrations were also significantly affected by land use and drainage, which were highest in the flooded burnt sites (124 ± 84 μmol L?1) followed by the drained burnt site (45.2 ± 29.8 μmol L?1), the flooded forest sites (1.15 ± 1.38 μmol L?1) and the drained forest site (0.860 ± 0.819 μmol L?1). DO concentrations were influenced by land use only, which were significantly higher in the forest sites (6.9 ± 5.6 μmol L?1) compared to the burnt sites (4.0 ± 2.9 μmol L?1). These results suggest that CH4 produced in the peat might be oxidized by plant-mediated oxygen supply in the forest sites. CO2 fluxes were significantly higher in the drained forest site (340 ± 250 mg C m?2 h?1 with a water table level of ?20 to ?60 cm) than in the drained burnt site (108 ± 115 mg C m?2 h?1 with a water table level of ?15 to +10 cm). Dissolved CO2 concentrations were 0.6–3.5 mmol L?1, also highest in the drained forest site. These results suggested enhanced CO2 emission by aerobic peat decomposition and plant respiration in the drained forest site. N2O fluxes ranged from ?2.4 to ?8.7 μg N m?2 h?1 in the flooded sites and from 3.4 to 8.1 μg N m?2 h?1 in the drained sites. The negative N2O fluxes might be caused by N2O consumption by denitrification under flooded conditions. Dissolved N2O concentrations were 0.005–0.22 μmol L?1 but occurred at < 0.01 μmol L?1 in most cases. GWP was mainly determined by CO2 flux, with the highest levels in the drained forest site. Despite having almost the same CO2 flux, GWP in the flooded burnt sites was 20% higher than that in the flooded forest sites due to the large CH4 emission (not significant). N2O fluxes made little contribution to GWP.  相似文献   

2.
ABSTRACT

The specific mechanism by which nitrogen application affects nodulation and nitrogen fixation in legume crops remains uncertain. To further study the effects of nitrogen application on soybean nodulation and nitrogen accumulation, three consecutive tests were performed during the VC-V4, V4-R1 (10 days), and R1-R2 (10 days) growth periods of soybean. In a dual-root soybean system, seedlings on one side were watered with a nutrient solution containing NH4+ or NO3? as the N source (N+ side), and those on the other side were watered with a nitrogen-free nutrient solution (N- side). During the VC-R2 period, on the N+ side, high nitrogen treatment inhibited nodule growth and nitrogenase activity (EC 1.18.6.1), and the inhibition was significantly increased with increasing high nitrogen supply time (10 days, 20 days). When the high nitrogen treatment time reached 20 days, the specific nitrogenase activity (C2H4 μmol?1 g?1 nodule dry mass h?1) was similar to that in the low nitrogen treatment, indicating that the nitrogen fixation capacity per gram of dry mass nodules was almost the same. Therefore, it is assumed that long-term high nitrogen treatment mainly reduces nitrogen fixation by reducing the nodule number. The effect of nitrogen concentration on the roots on the N+ side was greater than that on the N- side. Taken together, these results indicate that nitrogen application affects a contact-dependent local inhibition of root nodule growth, nitrogenase activity, and nitrogen accumulation. The whole plant systematically regulates specific nitrogenase activity, and high nitrogen inhibition is recoverable.  相似文献   

3.
The effect of elevated carbon dioxide (CO2) concentration on symbiotic nitrogen fixation in soybean under open-air conditions has not been reported. Two soybean cultivars (Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35) were grown to maturity under ambient (415?±?16?μmol?mol?1) and elevated (550?±?17?μmol?mol?1) [CO2] at the free-air carbon dioxide enrichment experimental facility in northern China. Elevated [CO2] increased above- and below-ground biomass by 16–18% and 11–20%, respectively, but had no significant effect on the tissue C/N ratio at maturity. Elevated [CO2] increased the percentage of N derived from the atmosphere (%Ndfa, estimated by natural abundance) from 59% to 79% for Zhonghuang 13, and the amount of N fixed from 166 to 275?kg N ha?1, but had no significant effect on either parameter for Zhonghuang 35. These results suggest that variation in N2 fixation ability in response to elevated [CO2] should be used as key trait for selecting cultivars for future climate with respect to meeting the higher N demand driven by a carbon-rich atmosphere.  相似文献   

4.
Legume cover crops are often used to build soil nitrogen (N) fertility and there is increasing interest in cover crop mixtures. The objective of this mechanistic greenhouse study was to determine the effect of cover crop community diversity and soil fertility on nitrogenase activity and nodule biomass of cowpea. Cover crops were grown for 42–53 days, aboveground biomass was harvested, and nitrogenase activity was estimated with the acetylene reduction assay. Roots were then excavated to determine nodule and root biomass. Nitrogenase activity and nodule biomass per plant were greatest in cowpea monoculture and reduced by 71–98 percent in four-species mixtures. Reduced capacity for N2 fixation was partially driven by lower cowpea biomass in mixtures. The ratio of root nodule / shoot biomass increased by 81–297 percent in low-fertility relative to high-fertility soils, which contributed to increased nitrogenase activity. Results suggest cowpea monocultures in low-fertility soils have the greatest potential for N2 fixation.  相似文献   

5.
Camelina sativa has rejuvenated as a successful oilseed crop in the recent years. It is a low-input-requiring crop with an unusual fatty acid composition. A pot experiment was conducted in rain-out shelter to investigate the effect of different nitrogen levels (N0 = 0, N1 = 50, N2 = 100, and N3 = 150 kg ha?1) on the growth and yield of two C. sativa genotypes (Australian and Canadian) under normal [100% field capacity (FC)] and water stressed (60% FC) conditions. The experiment was laid out in a completely randomized design with factorial arrangement having three replicates in the Department of Crop Physiology, University of Agriculture, Faisalabad. The results indicated that nitrogen doses and water stress levels significantly affected the growth and yield of C. sativa. Maximum values for growth indices like leaf area index (LAI), crop growth rate (CGR), leaf area duration (LAD), net assimilation rate (NAR), and yield attributes were observed under N2 treatment (100 kg ha?1) followed by the treatment in which nitrogen was applied at the rate of 50 kg ha?1. However, growth and yield components significantly reduced under water stress conditions (60% FC). Of both the genotypes, Australian Camelina performed better as compared to Canadian Camelina under both non-stress and drought stress conditions.  相似文献   

6.
Abstract

We studied the effect of crop residues with various C:N ratios on N2O emissions from soil. We set up five experimental plots with four types of crop residues, onion leaf (OL), soybean stem and leaf (SSL), rice straw (RS) and wheat straw (WS), and no residue (NR) on Gray Lowland soil in Mikasa, Hokkaido, Japan. The C:N ratios of these crop residues were 11.6, 14.5, 62.3, and 110, respectively. Based on the results of a questionnaire survey of farmer practices, we determined appropriate application rates: 108, 168, 110, 141 and 0 g C m?2 and 9.3, 11.6, 1.76, 1.28 and 0 g N m?2, respectively. We measured N2O, CO2 and NO fluxes using a closed chamber method. At the same time, we measured soil temperature at a depth of 5 cm, water-filled pore space (WFPS), and the concentrations of soil NH+ 4-N, NO? 3-N and water-soluble organic carbon (WSOC). Significant peaks of N2O and CO2 emissions came from OL and SSL just after application, but there were no emissions from RS, WS or NR. There was a significant relationship between N2O and CO2 emissions in each treatment except WS, and correlations between CO2 flux and temperature in RS, soil NH+ 4-N and N2O flux in SSL and NR, soil NH+ 4-N and CO2 flux in SSL, and WSOC and CO2 flux in WS. The ratio of N2O-N/NO-N increased to approximately 100 in OL and SSL as N2O emissions increased. Cumulative N2O and CO2 emissions increased as the C:N ratio decreased, but not significantly. The ratio of N2O emission to applied N ranged from ?0.43% to 0.86%, and was significantly correlated with C:N ratio (y = ?0.59 ln [x] + 2.30, r 2 = 0.99, P < 0.01). The ratio of CO2 emissions to applied C ranged from ?5.8% to 45% and was also correlated with C:N ratio, but not significantly (r 2 = 0.78, P = 0.11).  相似文献   

7.
Cultivars of Triticum aestivum, T. durum, and Secale cereale were grown at low (2 μM) and sufficient (500 μM) phosphorus (P) under ambient carbon dioxide (380 μmol mol?1; aCO2) and elevated CO2 (700 μmol mol?1, eCO2) to study responses of cereal species in terms of growth and P utilization efficiency (PUE) under P x CO2 interaction. Dry matter accumulation increased under eCO2 with sufficient P. Nevertheless, dry matter accumulated at eCO2 with low-P was similar to that obtained at aCO2 with sufficient P. Leaf area was 43% higher under eCO2 with sufficient P. Significant increase in lateral root density, length and surface area were noted at low-P under eCO2. Phosphorus use efficience (PUE) increased by 59% in response to eCO in low-P plants. Thus, eCO2 can partly compensate effect of low-P supply because of improved utilization efficiency. Among cereals, durum wheat was more suitable in terms of PUE under high CO2 and limiting P supply.  相似文献   

8.
A pot experiment was carried on ‘Manzanillo’ olives transplants included three levels of nitrogen (N) (N1=25, N2=50 and N3=75 g N plant?1 year?1) and four levels of cobalt (Co) (B1=zero, B2=10, B3=20 and B4=30 ppm Co). Generally, fertilizing with 50 g N plant?1 year?1 gave the highest significant value than those of other treatments in all vegetative growth characters. Vegetative growth was gradually increased by increasing cobalt up to 20 ppm and 30 ppm levels. Regarding the combination between nitrogen and cobalt levels in most cases, the best treatment was N2 x B3, which gave the highest values of vegetative growth characters. The combinations of nitrogen and cobalt created slightly more variable and increased effects on the macro and micronutrient contents of ‘Manzanillo’ olives transplants.  相似文献   

9.
Quantitative measurements of plant growth characteristics, forage production, nitrogen (N) fixation, and soil N accumulation by white clover were determined in a field experiment at the subhumid hilly region of Rawalakot, Azad Jammu and Kashmir (AJK). Three indigenous and two exotic ecotypes of white clover were used in the study. Indigenous ecotypes were collected from three different locations (i.e., Tollipir, Banjosa, and Rawalakot), whereas exotic ecotypes (NuSiral and Irrigation) were collected from New South Wales Agricultural Research and Advisory Station, Australia. Data were collected for two seasons (spring 2004–autumn 2004). Total average values for height, number of stolons, length of stolons, number of leaves, and leaf area were 13–50 cm, 9–20, 2–4 cm, 23–81, and 7–16 cm2, respectively. The morphological characteristics of exotic ecotypes were significantly higher than the indigenous ecotypes, and the percentage increase in different plant characteristics was +6% to 214%. Total herbage dry‐matter yield (DMY) in the indigenous and exotic ecotypes varied between 0.5–2.3 and 3.6–4 Mg ha?1, respectively. All the ecotypes showed substantial nodulation potential, and the number of nodules in plant roots ranged from 65 to 119, confirming the presence of indigenous Rhizobium population in the soil. The N contents of harvested herbage of white clover were 2.3–3.0% compared to 0.85% in the grass, and the estimated rates of N2 fixation were 26 kg N ha?1 in the indigenous to 79 kg N ha?1 in the exotic ecotypes. Amount of N2 fixed was strongly correlated with DMY, suggesting that crop DM can be used as an indicator of N2 fixation in white clover. Protein content of white clover was 14–19%, compared to 5% in the indigenous grass species. Total organic carbon (C) and N in control soil were 8.5 and 0.75 g kg?1, which increased significantly to 13.1 and 0.93 g kg?1 in soil under white clover. It is concluded that white clover has substantial potential for growth and establishment in the subhumid hilly regions and can be used to recuperate degraded soils because of its ability to sustain high level of pasture production and increase the N status of soil. These benefits could be of particular use for small‐scale resource‐poor farmers.  相似文献   

10.
Response of N2 fixation to elevated CO2 would be modified by changes in temperature and soil moisture because CO2 and temperature or water availability has generally opposing effects on N2 fixation. In this study, we assessed the impacts of elevated CO2 and temperature interactions on nitrogenase activities, readily mineralizable C (RMC), readily available N (NRN) contents in an alluvial and a laterite rice soil of tropical origin. Soil samples were incubated at ambient (370 μmol mol-1) and elevated (600 μmol mol-1) CO2 concentration at 25oC, 35oC, and 45oC under non-flooded and flooded conditions for 60 days. Elevated CO2 significantly increased nitrogenase activities and readily mineralizable C in both alluvial and laterite soils. All these activities were further stimulated at higher temperatures. Increases in nitrogenase activity as a result of CO2 enrichment effect over control were 16.2%, 31.2%, and 66.4% and those of NRN content were 2.0%, 1.8%, and 0.5% at 25oC, 35oC and 45oC, respectively. Increases in RMC contents were 7.7%, 10.0%, and 10.6% at 25°C, 35°C and 45°C, respectively. Soil flooding resulted in a more clear impact of CO2 enrichment than the non-flooded soil. The results suggest that in tropical rice soils, elevated CO2 increased readily available C content in the soil, which probably stimulates growth of diazotrophic bacteria with enhanced N2 fixation and thereby higher available N.  相似文献   

11.
The interaction between water availability in the soil and fertilizer application rates often strongly affects crop growth. In the current study, the quality of fresh fruit and antioxidant enzymes of tomato crops (Lycopersicon esculentum Mill) were investigated under different irrigation (low water content [Wl]: 50 ~ 60% field moisture capacity (FMC); moderate [Wm]: 70 ~ 80% FMC; and high [Wh]: 90 ~ 100% FMC) and fertilizer conditions (deficit fertilizer [Fl]: 195 kg ha?1 nitrogen (N) + 47 kg ha?1 phosphorus pentoxide (P2O5) and moderate [Fm]: 278 kg ha?1 N + 67 kg ha?1 P2O5) in a solar greenhouse. The results showed that the quality of fresh fruits and the antioxidant enzyme activities in the leaves and fruits were related to the water content in the soil. Deficit irrigation improved the fruit quality and 50 ~ 60% FMC combined with fertilizer application rates of 195 kg ha?1 N + 47 kg ha?1 P2O5 is recommended for tomato crop cultivation under greenhouse conditions.  相似文献   

12.
Abstract

Growth response of a halophyte species, Suaeda salsa (L.) Pall, to graded NaCl concentrations was examined under water culture conditions. Growth increased with increasing NaCl concentration from 2 to 200 mol m?3, but decreased at NaCl concentrations above 200 mol m?3. Maximum growth was attained at 50 to 200 mol m?3. The role of Na and Cl in the growth stimulation by NaCl was examined by growing S. salsa in nutrient solutions with or without Na and Cl separately at 5 and 50 mol m?3. The growth stimulation induced by Cl was greater than that induced by Na, and Na did not significantly induce growth stimulation. The effect of Na or Cl on O2 evolution from leaves was examined under 5 and 50 mol m?3 concentrations using an oxygen electrode. Oxygen evolution from leaves in –Cl treatments was smaller than that in +Cl treatments both at 5 and 50 mol m?3. The O2 evolution in Na treatments with Cl was similar to that at NaCl. These results indicated that the mechanism of growth stimulation induced by Cl was mainly an increased photosystem II of photosynthesis in leaves. The contribution of Na on the growth stimulation of S. salsa by NaCl was smaller than Cl.  相似文献   

13.
Soil microbes are frequently limited by carbon (C), but also have a high phosphorus (P) requirement. Little is known about the effect of P availability relative to the availability of C on soil microbial activity. In two separate experiments, we assessed the effect of P addition (20 mg P kg?1 soil) with and without glucose addition (500 mg C kg?1 soil) on gross nitrogen (N) mineralization (15N pool dilution method), microbial respiration, and nitrous oxide (N2O) emission in a grassland soil. In the first experiment, soils were incubated for 13 days at 90% water holding capacity (WHC) with addition of NO3? (99 mg N kg?1 soil) to support denitrification. Addition of C and P had no effect on gross N mineralization. Initially, N2O emission significantly increased with glucose, but it decreased at later stages of the incubation, suggesting a shift from C to NO3? limitation of denitrifiers. P addition increased the N2O/CO2 ratio without glucose but decreased it with glucose addition. Furthermore, the 15N recovery was lowest with glucose and without P addition, suggesting a glucose by P interaction on the denitrifying community. In the second experiment, soils were incubated for 2 days at 75% WHC without N addition. Glucose addition increased soil 15N recovery, but had no effect on gross N mineralization. Possibly, glucose addition increased short-term microbial N immobilization, thereby reducing N-substrates for nitrification and denitrification under more aerobic conditions. Our results indicate that both C and P affect N transformations in this grassland soil.  相似文献   

14.
Water scarcity and nitrate contamination have caused considerable attention to environmental matters. Water and nitrogen interactions have critical impacts on their use efficiency, plant growth, and quality. In a field experiment, a combination of three water treatments and three nitrogen rates was applied to determine their interactive effects on the growth of spinach. Soil water supply that was too low [W3N1 (the combination of water treatment 3 and nitrogen treatment 1), W3N2] could cause an increase in nitrate content. Oxalate contents would increase when water and nitrogen were either inadequate (W3N0, W3N1) or too high (W2N2). The most profit from spinach was obtained in plots that received water treatment 2 and nitrogen fertilizer 78 kg N ha?1. However, considering nitrogen treatments could affect the nitrate and oxalic acid, application of water treatment 2 and 39 kg N ha?1 nitrogen fertilizer could get better spinach quality.  相似文献   

15.
Abstract

To assess their impacts on net global warming, total greenhouse gas emissions (mainly CO2, N2O and CH4) from agricultural production in arable land cropping systems in the Tokachi region of Hokkaido, Japan, were estimated using life cycle inventory (LCI) analysis. The LCI data included CO2 emissions from on-farm and off-farm fossil fuel consumption, soil CO2 emissions induced by the decomposition of soil organic matter, direct and indirect N2O emissions from arable lands and CH4 uptake by soils, which were then aggregated in CO2-equivalents. Under plow-based conventional tillage (CT) cropping systems for winter wheat, sugar beet, adzuki bean, potato and cabbage, on-farm CO2 emissions from fuel-consuming operations such as tractor-based field operations, truck transportation and mechanical grain drying ranged from 0.424 Mg CO2 ha?1 year?1 for adzuki bean to 0.826 Mg CO2 ha?1 year?1 for winter wheat. Off-farm CO2 emissions resulting from the use of agricultural materials such as chemical fertilizers, biocides (pesticides and herbicides) and agricultural machines were estimated by input–output tables to range from 0.800 Mg CO2 ha?1 year?1 for winter wheat to 1.724 Mg CO2 ha?1 year?1 for sugar beet. Direct N2O emissions previously measured in an Andosol field of this region showed a positive correlation with N fertilizer application rates. These emissions, expressed in CO2-equivalents, ranged from 0.041 Mg CO2 ha?1 year?1 for potato to 0.382 Mg CO2 ha?1 year?1 for cabbage. Indirect N2O emissions resulting from N leaching and surface runoff were estimated to range from 0.069 Mg CO2 ha?1 year?1 for adzuki bean to 0.381 Mg CO2 ha?1 year?1 for cabbage. The rates of CH4 removal from the atmosphere by soil uptake were equivalent to only 0.020–0.042 Mg CO2 ha?1 year?1. From the difference in the total soil C pools (0–20 cm depth) between 1981 and 2001, annual CO2 emissions from the CT and reduced tillage (RT) soils were estimated to be 4.91 and 3.81 Mg CO2 ha?1 year?1, respectively. In total, CO2-equivalent greenhouse gas emissions under CT cropping systems in the Tokachi region of Hokkaido amounted to 6.97, 7.62, 6.44, 6.64 and 7.49 Mg CO2 ha?1 year?1 for winter wheat, sugar beet, adzuki bean, potato and cabbage production, respectively. Overall, soil-derived CO2 emissions accounted for a large proportion (64–76%) of the total greenhouse gas emissions. This illustrates that soil management practices that enhance C sequestration in soil may be an effective means to mitigate large greenhouse gas emissions from arable land cropping systems such as those in the Tokachi region of northern Japan. Under RT cropping systems, plowing after harvesting was omitted, and total greenhouse gas emissions from winter wheat, sugar beet and adzuki bean could be reduced by 18%, 4% and 18%, respectively, mainly as a result of a lower soil organic matter decomposition rate in the RT soil and a saving on the fuels used for plowing.  相似文献   

16.
Tropical legume cover crops are important components in cropping systems because of their role in improving soil quality. Information is limited on the influence of nitrogen (N) fertilization on growth of tropical legume cover crops grown on Oxisols. A greenhouse experiment was conducted to evaluate the influence of N fertilization with or without rhizobial inoculation on growth and shoot efficiency index of 10 important tropical cover crops. Nitrogen treatment were (i) 0 mg N kg?1 (control or N0), (ii) 0 mg N kg?1 + inoculation with Bradyrhizobial strains (N1), (iii) 100 mg N kg?1 + inoculation with Bradyrhizobial strains (N2), and (iv) 200 mg N kg?1 of soil (N3). The N?×?cover crops interactions were significant for shoot dry weight, root dry weight, maximal root length, and specific root length, indicating that cover crop performance varied with varying N rates and inoculation treatments. Shoot dry weight is considered an important growth trait in cover crops and, overall, maximal shoot dry weight was produced at 100 mg N kg?1 + inoculation treatment. Based on shoot dry-weight efficiency index, cover crops were classified as efficient, moderately efficient, and inefficient in N-use efficiency. Overall, the efficient cover crops were lablab, gray velvet bean, jack bean, and black velvet bean and inefficient cover crops were pueraria, calopo, crotalaria, smooth crotalaria, and showy crotalaria. Pigeonpea was classified as moderately efficient in producing shoot dry weight.  相似文献   

17.

Purpose

The mineralization/immobilization of nutrients from the crop residues is correlated with the quality of the plant material and carbon compartments in the recalcitrant and labile soil fractions. The objective of this study was to correlate the quality and quantity of crop residues incubated in the soil with carbon compartments and CO2-C emission, using multivariate analysis.

Materials and methods

The experiment was conducted in factorial 4?+?2?+?5 with three replicates, referring to three types of residues (control, sugarcane, Brachiaria, and soybean), and two contributions of the crop residues in constant rate, CR (10 Mg ha?1 residue), and agronomic rate, AR (20, 8, and 5 Mg ha?1 residue, respectively, for sugarcane, soybean, and Brachiaria), evaluated five times (1, 3, 6, 12, and 48 days after incubation). At each time, we determined the CO2-C emission, nitrogen and organic carbon in the soil, and the residues. In addition, the microbial biomass and water-soluble, labile, and humic substance carbons fractionated into fulvic acids, humic acids and humin were quantified.

Results and discussion

Higher CO2-C emissions occurred in the soil with added residue ranging from 0.5 to 1.1 g CO2-C m?2 h?1 in the first 6 days of incubation, and there was a positive correlation with the less labile organic soil fractions as well as residue type. In the final period, after 12 days of soil incubation, there was a higher relation of CO2-C emission with carbon humin. The sugarcane and soybean residue (20 Mg ha?1) promoted higher CO2-C emission and the reduction of carbon residue. The addition of residue contributed to an 82.32 % increase in the emission of CO2-C, being more significant in the residue with higher nitrogen availability.

Conclusions

This study shows that the quality and quantity of residue added to soil affects the carbon sequestration and CO2-C emission. In the first 6 days of incubation, there was a higher CO2-C emission ratio which correlates with the less stable soil carbon compartments as well as residue. In the final period of incubation, there is no effect of quality and quantity of residue added to soil on the CO2-C emission.
  相似文献   

18.
Soybean (Glycine max L. Merr.) cvs. Akisengoku and Peking, and cowpea (Vigna unguiculata Walp.) cv. Kegonnotaki were inoculated with Bradyrhizobium japonicum AlO17, Shinorhizobium fredii USDAI93, and B. sp. Vigna MAFF03-03063, respectively and were cultured hydroponically with supply of CO2-free air, 3dm3 m-3 CO2 air, or 25 dm3 m-3 CO2 air to study the effects of the CO2 concentration in the rhizosphere on plant growth, nodulation, and nitrogen fixation. Increase of the CO2 concentration in the rhizosphere led to the increase of the plant dry weight in the symbiosis between Peking and USDAI93, and that between Kegonnotaki and MAFF03-03063. On the other hand, dry matter accumulation in the symbiosis between Akisengoku and AI017 decreased under the supply of 25 dm3 m-3 CO2 air aimed at increasing the CO2 concentration in the rhizosphere beyond the optimum CO2 concentration for growth. Nodule mass and nodule number per plant were highest in Akisengoku, followed by Kegonnotaki and lowest in Peking. Also the increase of the CO2 concentration in the rhizosphere led to the increase of the nodule mass and number in Kegonnotaki, while no changes were observed in Akisengoku and Peking. Biological nitrogen fixation (BNF) was highest in Akisengoku, followed by Kegonnotaki, and lowest or near zero in Peking. BNF in Akisengoku and Kegonnotaki showed a similar tendency to that of dry matter accumulation. BNF of Peking was especially low under the supply of CO2-free air, and it increased with the increase of the CO2 concentration in the rhizosphere. For the symbiosis of Bradyrhizobium strains with soybean and cowpea, the most suitable CO2 concentration for N2 fixation and plant growth was estimated to be about 10 dm3 m-3, while for the symbiosis of S. fredii with soybean, the value was estimated to be above 30 dm3 m-3.  相似文献   

19.
This study compared the growth, nodulation, phosphorus use efficiency and nitrogen (N2) fixation by six recombinant inbred lines (RILs) of Phaseolus vulgaris (RILs 147, 28, 83, 34, 7, and 104). These RILs were inoculated with Rhizobium tropici CIAT899 and grown in an aerated nitrogen-free nutrient solution at deficient versus sufficient phosphorous supplies (75 vs. 250 μmol P plant?1 week?1) in a glasshouse. Our results show that plant growth, nodulation, and symbiotic nitrogen fixation were significantly affected by P deficiency for all RILs, whereas this adverse effect was more pronounced in RILs 147, 83, 28 and 7 than in RILs 34 and 104. Under P deficiency, RILs 34 and 104 showed higher efficiency than other RILs in the use of P for their symbiotic N nutrition. It is concluded that P utilization efficiency may be a useful selection criterion for genotypic adaptation of N2-fixing legumes to low P soils.  相似文献   

20.
A field experiment was conducted for eight years at ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India to study the skipping effect of P application on productivity, profitability and sustainability of rice-wheat cropping system. Rice yield and biomass were 8.35% and 6.6% higher where cowpea was grown after wheat compared to rice-vegetable pea-wheat crop sequence, respectively. Phosphorus application to rice or wheat or both crops exhibited at par rice grain yield, biomass, harvest index. Phosphorus application to both crops or only in rice crop produced maximum and significantly higher wheat yield (4.62 t ha?1) as compared to P application only to wheat (4.48 t ha?1). Eight years growing of green gram, cowpea and vegetable pea increased the organic carbon content 42.89, 16.38 and 4.57 %, respectively compared to the initial level. Skipping of P to either crop, by considering 13.5 million ha rice-wheat area, will save approximately Rs 40,500 million (Rs = Indian rupee) or US $ 623 million ($ = Rs 65) per year. Air pollution may be checked, due to saving on diesel in transportation of P fertilizer, to the tune of 60,383 tonnes of CO2 per year by reducing emission of one of important global warming gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号