首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flavonoid composition of immature leaves of pak choi [Brassica rapa L. ssp. chinensis L. (Hanelt.)] was investigated. Flavonol aglycone content was measured in 11 pak choi varieties, indicating significant differences (P < 0.05) in content between varieties and relatively high contents of kaempferol and isorhamnetin. Levels of quercetin ranged from 3.2 to 6.1 mg/100 g of dry weight (DW), whereas levels of isorhamnetin and kaempferol were significantly higher (8.1-35.1 and 36.0-102.6 mg/100 g of DW, respectively). A large number of glycoside and hydroxycinnamic acid derivatives of quercetin, kaempferol, and isorhamnetin were identified in cv. 'Shanghai' by LC/UV-DAD/ESI-MS/MS. The UV-DAD data allowed identification of hydroxycinnamic acid derivatives, but detailed MS/MS fragmentations were required for the structure elucidation. Pak choi could be a potentially important source of dietary flavonols, in particular, kaempferol and isorhamnetin.  相似文献   

2.
3.
Twenty-eight polyphenols (11 flavonoid derivatives and 17 hydroxycinnamic acid derivatives) were detected in different cultivars of the Chinese cabbage pak choi ( Brassica campestris L. ssp. chinensis var. communis) by HPLC-DAD-ESI-MS(n). Kaempferol was found to be the major flavonoid in pak choi, glycosylated and acylated with different compounds. Smaller amounts of isorhamnetin were also detected. A structural determination was carried out by (1)H and (13)C NMR spectroscopy for the main compound, kaempferol-3-O-hydroxyferuloylsophoroside-7-O-glucoside, for the first time. Hydroxycinnamic acid derivatives were identified as different esters of quinic acid, glycosides, and malic acid. The latter ones are described for the first time in cabbages. The content of polyphenols was determined in 11 cultivars of pak choi, with higher concentrations present in the leaf blade than in the leaf stem. Hydroxycinnamic acid esters, particularly malic acid derivatives, are present in both the leaf blade and leaf stem, whereas flavonoid levels were determined only in the leaf blade.  相似文献   

4.
The effect of plant-derived humic acid (PDHA) and coal-derived humic acid (CDHA) on wheat growth was tested on two alkaline calcareous soils in pots. Humic acid derived from plant and coal materials was applied at the rate 0 (control), 50 and 100 kg/ha to wheat in pots carrying two soils viz. clayey loam soil and sandy loam soil separately. Data was collected on plant growth parameters such as spike weight, grain and straw weight, and plant nutrients (macronutrients and micronutrients). Results showed that spike weight increased by 19%, 15%, and 26%, and 11% with application of PDHA at the rate of 50 and 100 mg/kg in clayey loam and sandy loam soil, respectively. Grain yield show an increase of 21% and 11% over control with application of PDHA and CDHA at the rate of 50 mg/kg on both soils, respectively, and 10% and 22% with application of PDHA and CDHA at the rate of 100 mg/kg on both soils.  相似文献   

5.
An experiment was conducted to assess the effect of different extraction of compost extracts on pak choi (Brassica rapa cv. chinensis) under two fertilizer regimes. Aerated compost extract (ACE) and non-aerated compost extract (NCE) were prepared and all treatments (ACE + organic fertilizer, NCE + organic fertilizer, ACE + inorganic fertilizer, NCE + inorganic fertilizer) were conducted in randomized block design. Soil microbiological analysis after treatment was done. Plants grown with ACE + inorganic fertilizers yielded maximum in fresh, dry weight, and N mineral content compared to others. Plants receiving NCE + organic fertilizers produced a higher phenolic content, whereas antioxidant capacity was observed maximum at NCE + inorganic fertilizers. Soil microbiological analysis significantly increased in yeast and nitrogen fixing bacteria count at ACE + organic fertilizers. The co-application of inorganic fertilizers and compost extract had a significant effect on vegetative growth, quality of the pak choi, and soil fertility.  相似文献   

6.
Three greenhouse pot experiments were conducted with four different nitrogen (N) treatments (80, 160, 240, and 320 kg ha (-1)) in combination with three sulfur (S) treatments (10, 20, and 60 kg ha (-1)) to study the effects of combined N and S supply on glucosinolate concentration and composition in turnip roots. Total glucosinolate concentration varied widely from 9.7 (N 320S 10) to 91.6 (N 160S 60) mg (100 g) (-1) root fresh weight (FW) and individual glucosinolate concentrations were increased with increasing S supply regardless of the N treatment, whereas enhanced N supply (160 - 320 N ha (-1)) at the high S level (60 kg ha (-1)) did not affect total glucosinolate concentration. In contrast, assumingly attributed to the individual glucosinolate biosynthesis concentration of N-containing tryptophan-derived indole glucosinolate was highest with increased N supply, whereas S-containing methionine-derived aromatic and aliphatic glucosinolates decreased with increasing N supply combined at low S level (10-20 kg ha (-1)).  相似文献   

7.
Journal of Soils and Sediments - This study aims to assess the effect of amendment of an alkaline Zn, Cd-contaminated soil with compost of wheat straw biochar (CB) (4, 8, 12, and 18%) and sludge...  相似文献   

8.
Corm size is the most important factor in production of replacement corms and flower yield of saffron. The aim of this study was to investigate the effect of nutrition and irrigation managements on saffron corms characteristics in the experimental field of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2013–2015. The experiment was carried out as split-split plot based on a Randomized Complete Block Design with 18 treatments and three replications. Experimental factors were: 1- superabsorbent (SA) [application and no-application of superabsorbent (non-SA)], 2- irrigation intervals [irrigation every 2, 3 and 4 weeks] and 3- nutrition management [humic acid, mycorrhiza (Glomus intraradices) and control]. The results showed that the highest total weight of replacement corms per clone in sum of two years was obtained in non-SA application, two weeks irrigation intervals and humic acid treatment. The corm/tunic weight ratio decreased by increasing the irrigation intervals and this index in two weeks irrigation intervals was 31% more than four weeks irrigation intervals. Application of nutritional treatments increased the number of saffron replacement corms per clone in all of the weight categories (0-3, 3–6, 6–9 and more than 9 g) on averaged 5, 40, 36 and 25%, respectively compared with control treatment in both years. Results showed that the replacement corms yield in large weight groups was on average 34% higher in the second year than the first year. Finally, application of SA, organic and bio fertilizers and four weeks irrigation intervals improved most of criteria and yield of saffron replacement corms.  相似文献   

9.
植物NAC (矮牵牛NAM基因、拟南芥ATAF1/2和CUC2基因)转录因子CUP-SHAPED COTYLEDON(CUC)亚家族成员在植物茎尖分生组织形态建成、器官边界分离、叶发育方面发挥着重要作用.采用基因同源克隆的方法获得了白菜(Brassica rapa ssp.chinensis)基因BrcCUC3,并转化拟南芥(Arabidopsis thaliana)做了初步的功能鉴定.研究结果表明,白菜Brc CUC3的编码区长1 008 bp,编码335个氨基酸,基因结构分析显示BrcCUC3包含3个外显子、2个内含子,内含子剪接位点符合GT-AG规则.氨基酸序列分析表明,BrcCUC3蛋白具有典型的植物NAC domain结构域.BrcCUC3编码区氨基酸序列与其它植物的CUC3蛋白有很高的一致性,尤其与甘蓝(Brasica oleracea)、萝卜(Raphanus sativus)和拟南芥CUC3蛋白高度一致,一致性分别达到98%,97%和83%.在不同物种CUC3的系统进化树上,BrcCUC3归属于双子叶植物分支的十字花科亚组,由不同植物20条CUC3编码区氨基酸序列所建立的系统进化树与真实的植物进化基本一致.荧光定量PCR分析结果表明,BrcCUC3在白菜叶深裂株系叶片中的表达量比叶全缘叶片中的高.利用根癌农杆菌(A grobacterium tumefaciens)浸花法转化拟南芥,获得了转BrcCUC3基因的拟南芥植株.过表达BrcCUC3的转基因拟南芥呈现叶缘出现裂刻、主枝增加的新表型.初步说明该基因参与叶形和主枝的发育调控,为揭示白菜叶形发育分子调控机制和通过基因工程创制植物叶形新种质提供分子依据.  相似文献   

10.
The overall objective of this study was to determine whether growing season, water supply, and their interaction influence glucosinolate (GSL) concentration and composition in turnip roots (Brassica rapa ssp. rapifera L.). Field experiments on a loamy soil in Großbeeren, Germany, were conducted in the spring‐summer (SS), summer‐autumn (SA), and autumn‐winter (AW) growing seasons. Each experiment included three water‐supply treatments with 25%, 50%, and 75% of available soil water (ASW) as lower thresholds. We found that the total GSL concentration in turnip roots was 1774–3221 μmol (kg fresh matter [FM])–1 and the dominant GSL was aromatic gluconasturtiin (GST) with concentrations of 1004–1628 μmol (kg FM)–1 in turnip roots. Total, aliphatic, and some specific individual GSLs in turnip roots were significantly influenced by water supply, growing season, and their interaction, due to the variations of the root sulfur (S) concentration, climatic conditions, or both. The influence of water supply on GSL concentration was modified by growing season, which in turn influenced S concentration in turnips. In the SS season, the 25%‐ASW water treatment enhanced concentrations of total GSLs by 52% and 47%, aliphatic GSLs by 60% and 131%, and aromatic GSLs by 47% and 21% when compared to the 50%‐ and 75%‐ASW water treatments, respectively. No reduction of root yield was observed, although the shoot yield was reduced by limited water supply. In SA and AW, total GSL concentration did not change under different water‐supply levels, but concentration of individual aliphatic and indole GSLs did. Based on these results, growers can adjust their irrigation and S‐fertilization practices to growing season in order to optimize turnip quality in terms of GSL concentration and composition, while still obtaining higher root yield and enabling better resource utilization.  相似文献   

11.
The effects of calcium and humic acid on seed germination, growth and macro- and micro-nutrient contents of tomato (Lycopersicon esculentum L.) seedlings in saline soil conditions were evaluated. Different levels of humic acid (0, 500, 1000 and 2000 mg kg?1) and calcium (0, 100, 200 and 400 mg kg?1) were applied to growth media treated with 50 mg NaCl kg?1 before sowing seeds. Seed germination, hypocotyl length, cotyledon width and length, root size, shoot length, leaf number, shoot and root fresh weights, and shoot and root dry weights of the plant seedlings were determined. Macro- and micro-nutrient (N, P, K, Ca, Mg, S, Cu, Fe, Mn and Zn) contents of shoot and root of seedlings were also measured. Humic acid applied to the plant growth medium at 1000 mg kg?1 concentration increased seedling growth and nutrient contents of plants. Humic acid not only increased macro-nutrient contents, but also enhanced micro-nutrient contents of plant organs. However, high levels of humic acid arrested plant growth or decreased nutrient contents. Levels of 100 and 200 mg kg?1 Ca2+ application significantly increased N, Ca and S contents of shoot, and N and K contents of root.  相似文献   

12.
Efficacy of 1?mM humic (HA) and salicylic (SC) acids on SC 260 and SC 705 corn seedlings to alleviate drought stress via polyethylene glycol was studied via hydroponics at Shiraz University, Iran in a factorial, randomized design, with four replicates each. Under stress, SC 260 had higher electrolyte leakage compared to SC 705, and exogenous application of HA combined with SA decreased SC 705 electrolyte leakage. As a general trend, photosynthetic pigment content, relative water content, root and shoot length, mean number and diameter of central and peripheral root metaxylem, and K+ accumulation were higher in SC 705 treated with HA and SA compared to SC 260. Application of HA with SA could be an effective and low cost approach to ensure seedling establishment and plant growth in fields affected by soil drought in the early season, especially for the SC 705 corn hybrid in semi-arid regions.  相似文献   

13.
钼对小白菜抗坏血酸氧化还原的影响   总被引:4,自引:1,他引:4  
采用盆栽试验研究了钼对小白菜抗坏血酸含量、氧化还原状态及相关酶活性的影响。结果表明,各施钼水平均提高了小白菜产量、抗坏血酸总量以及还原型抗坏血酸(ASC)含量。随着施钼水平的提高,抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)、脱氢抗坏血酸还原酶(DHAR)活性均呈上升的趋势;抗坏血酸氧化酶(AAO)活性逐渐下降。表明施用钼肥能够促进小白菜抗坏血酸氧化还原及再生循环过程,从而提高了抗坏血酸的含量。  相似文献   

14.

Purpose

Water management affects the bioavailability of cadmium (Cd) and arsenic (As) in the soil and hence their accumulation in rice grains and grain yields. However, Cd and As show opposite responses to soil water content, but information, particularly on irrigation, is missing on a field scale. The purpose of the present study was therefore to find a water management regime that can lower accumulation of both Cd and As in grain without yield loss.

Materials and methods

Two rice (Oryza sativa L.) cultivars, A16 and A159, with different grain Cd accumulation capacities were employed in field plot experiments with four water management regimes comprising aerobic, intermittent, conventional practice and flooded. The dynamics of Cd and As bioavailability in the soil and Cd and As concentrations in roots, straw and grains were determined at the early tillering, full tillering, panicle initiation, filling and maturity stages of crop growth.

Results and discussion

The lower water content regimes (aerobic and intermittent) mostly led to higher soil HCl-extractable Cd than the higher soil water content regimes (conventional and flooded). HCl-extractable As in contrast was favoured by the higher soil water content treatments. Conventional and flooded irrigation accordingly gave higher plant As concentrations but lower Cd compared to aerobic and intermittent irrigation. Cd concentrations in roots and straw of both varieties increased with growth stage, especially in aerobic and intermittent regimes, while As concentrations in plants showed little change or a slight decrease. As the water irrigation volume increased from aerobic to flooded, brown rice Cd decreased from 1.15 to 0.02 mg?kg?1 in cultivar A16 and from 1.60 to 0.05 mg?kg?1 in cultivar A159, whereas brown rice As increased. Aerobic and flooded treatments produced approximately 10–20 % lower grain yields than intermittent and conventional treatments. Cultivars with low Cd accumulation capacity show higher brown rice grain As than those with high Cd uptake capacity.

Conclusions

Of the four water management regimes, the conventional irrigation method (flooding maintained until full tillering followed by intermittent irrigation) ensured high yield with low Cd and As in the brown rice and so remains the recommended irrigation regime.  相似文献   

15.
Cadmium (Cd) is a common impurity in phosphate fertilizers and application of phosphate fertilizer may contribute to soil Cd accumulation. Changes in Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input were investigated in this study. A field experiment was conducted on Haplaquept to investigate the influence of calcium superphosphate on extractable and total soil Cd and on growth and Cd uptake of different Komatsuna (Brassica rapa L. var. perviridis) cultivars. Four cultivars of Komatsuna were grown on the soil and harvested after 60 days. The superphosphate application increased total soil Cd from 2.51 to 2.75?mg?kg?1, 0.1?mol?L?1 hydrochloric acid (HCl) extractable Cd from 1.48 to 1.55?mg?kg?1, 0.01?mol?L?1 HCl extractable Cd from 0.043 to 0.046?mg?kg?1 and water extractable Cd from 0.0057 to 0.0077?mg?kg?1. Cd input reached 5.68?g?ha–1 at a rate of 240?kg?ha–1 superphosphate fertilizer application. Superphosphate affected dry-matter yield of leaves to different degrees in each cultivar. ‘Nakamachi’ produced the highest yield in 2008 and ‘Hamami No. 2’ in 2009. Compared with the control (no phosphate fertilizer), application of superphosphate at a rate of 240?kg?ha–1 increased the Cd concentration in dry leaves by 0.14?mg?kg?1 in ‘Maruha’, 1.03?mg?kg?1 in ‘Nakamachi’, 0.63?mg?kg?1 in ‘SC8-007’ in 2008, and by 0.19?mg?kg?1 in Maruha’, 0.17?mg?kg?1 in ‘Hamami No. 2’, while it decreased by 0.27?mg?kg?1 in ‘Nakamachi’ in 2009. Field experiments in two years demonstrated that applications of different levels of calcium superphosphate did not influence Cd concentration in soil and Komatsuna significantly. However, there was a significant difference in Cd concentration of fresh and dry Komatsuna leaves among four cultivars in 2008 and 2009. The highest Cd concentration was found in the ‘Nakamachi’ cultivar (2.14?mg?kg?1 in 2008 and 1.91?mg?kg?1 in 2009). The lowest Cd concentration was observed in the ‘Maruha’ cultivar (1.51?mg?kg?1?dry weight (DW)) in 2008 and in the ‘Hamami No. 2’ cultivar (1.56?mg?kg?1?DW) in 2009. A decreasing trend in Cd concentration was found in ‘Nakamachi’, followed by ‘SC8-007’, ‘Hamami No. 2’ and ‘Maruha’ successively. It is necessary to consider a low-uptake cultivar for growing in a Cd polluted soil. In these two years’ results, ‘Maruha’ cultivar was the lowest Cd uptake cultivar compared to the others.  相似文献   

16.
It is well known that plants are capable of taking up intact amino acids. However, how the nitrogen (N) rates and N forms affect amino acid uptake and amino acid nutritional contribution for plant are still uncertain. Effects of the different proportions of nitrate (NO3?), ammonium (NH4+) and 15N-labeled glycine on pakchoi seedlings glycine uptake were investigated for 21 days hydroponics under the aseptic media. Our results showed that plant biomass and glycine uptake was positively related to glycine rate. NO3? and NH4+, the two antagonistic N forms, both significantly inhibited plant glycine uptake. Their interactions with glycine were also negatively related to glycine uptake and glycine nutritional contribution. Glycine nutritional contribution in the treatments with high glycine rate (13.4%–35.8%) was significantly higher than that with low glycine rate (2.2%–13.2%). The high nutritional contribution indicated amino acids can serve as an important N source for plant growth under the high organic and low inorganic N input ecosystem.  相似文献   

17.
胡克玲  朱祝军 《核农学报》2010,24(4):840-845
以小白菜"上海青"为试验材料,研究了喷施蔗糖和葡萄糖对小白菜生长和硫代葡萄糖苷含量的影响。结果显示,蔗糖和葡萄糖喷施对小白菜地上部鲜重和干重均没有显著影响,喷施蔗糖均能够显著增加小白菜总脂肪族硫代葡萄糖苷、总吲哚族硫代葡萄糖苷和总硫代葡萄糖苷含量,其中,0.1mol/L蔗糖喷施显著提高了3-丁烯基硫代葡萄糖苷和吲哚-3-甲基硫代葡萄糖苷含量,0.2mol/L蔗糖喷施显著增加了吲哚-3-甲基硫代葡萄糖苷和4-甲氧基吲哚-3-甲基硫代葡萄糖苷含量。0.2mol/L葡萄糖喷施显著增加总硫代葡萄糖苷及单个硫代葡萄糖苷含量。蔗糖和葡萄糖喷施均有增加总吲哚族硫代葡萄糖苷相对百分含量的趋势。研究表明外源喷施糖对小白菜硫代葡萄糖苷含量和组成具有显著的影响。  相似文献   

18.
【目的】 腐植酸可提高磷肥的肥效,对于其在磷肥中适宜添加量的研究可为我国磷肥的增效减量提供依据。【方法】 将腐植酸增效剂按1%、5%、10%和20%的比例添加到磷酸一铵中,制成四种腐植酸磷肥试验产品(HP1、HP2、HP3和HP4),利用土柱栽培试验研究在等磷量(施P2O5量0.1g/kg干土)投入及等肥料重量(施磷肥实物量0.16g/kg干土,即施P2O5量分别减少1%、5%、10%、20%)投入情况下,腐植酸磷肥对玉米产量、磷素吸收利用及土壤速效磷含量的影响。【结果】 1)在等磷量施用情况下,与普通磷肥(P)相比,四种腐植酸磷肥处理玉米籽粒产量增加4.5%~13.6%,且腐植酸添加量越大产量越高,均显著高于普通磷肥处理;在等肥料重量施用下,随着腐植酸磷肥施入P2O5量的减少,玉米籽粒产量逐渐降低,当P2O5施用量减少20%时籽粒产量与普通磷肥处理相比仍未显著降低。2)腐植酸磷肥处理在等磷量施用下较普通磷肥处理可显著提高玉米籽粒磷吸收量和地上部吸磷总量,分别增加6.0%~15.4%和6.3%~14.0%,但秸秆磷吸收量无显著变化;当腐植酸磷肥施入P2O5量减少20%时籽粒磷吸收量和地上部磷吸收总量会显著低于普通磷肥处理。3)与普通磷肥处理相比,在等磷量施用下,腐植酸磷肥的表观利用率提高5.9~13.1个百分点,农学利用率、偏生产力分别提高26.5%~79.1%、4.5%~13.5%,且均达到显著水平。4)施入腐植酸后主要影响050cm土层的土壤速效磷含量,其中1530cm土层速效磷含量增加最为显著,与普通磷肥处理相比增加18.1%~36.6%。【结论】 腐植酸增效剂在1%~20%的添加比例范围内对磷肥均具有较好的增效作用,可提高玉米产量、磷素吸收量及磷肥利用效率,并可提高土壤中的速效磷含量,且腐植酸添加量越大效果越好;利用腐植酸的增效作用来减少磷肥施用量是可行的,在当前磷肥施用量的基础上可减少磷肥用量20%左右而保证玉米不减产。  相似文献   

19.
Abstract

Field trials were performed to investigate the effects of humic acid (HA) and multinutrient foliar fertilizer “Micro Power” (MP) coupled with farmer’s practices ( FP ), addressed in single and/or split dose frames at different plant phenological stages on various vegetative, reproductive, and physiological attributes of citrus trees (Citrus reticulata cv. kinnow mandarin). The results exhibited a profound response of treatments on various growth parameters (32.5% increase in plant height, 22.2% increase in fruit set branch?1, 5.25% decrease in fruit drop percentage, 89.81% increase in fruit yield (kg), etc.) of citrus trees when compared to the control (FP). Likewise, a significant positive response was observed regarding various plant physiological parameters (leaf nutrients, total chlorophyll content, etc.) and physicochemical characteristics (ascorbic acid, total sugars, etc.) of citrus fruits. This study confirmed the reproducibility of HA and MP applications to improve the yield/quality of citrus and can lead to an organically sustainable citriculture.  相似文献   

20.
Aluminum (Al) tolerance and phosphate absorption in rape and tomato were compared under water culture and field conditions. The relative growth rate in the Al treatment compared with -A1 treatment was similar in the two crops under water culture conditions, while under field conditions, the growth rate was 2- to 3-fold higher in rape than in tomato in spite of the higher Al concentration in the soil solution than in the culture solution. The relative amount of phosphate absorbed in the Al treatment compared with - Al was not appreciably different between rape and tomato under water culture conditions, while under field conditions, it was 3- to 6-fold larger in rape than in tomato. The exudation rate of citric acid by roots was much higher in rape than in tomato. The plant growth, root elongation, and amount of phosphate absorbed in rape were inhibited in the 150 µM Al in the culture solution. However, the inhibition was alleviated by the addition of 200 µM citric acid or 500 µM malic acid. The P concentration in the culture solution decreased by the presence of Al as aluminum phosphate. However, addition of citric and malic acids increased the amount of phosphate released from the precipitated aluminum phosphate. In conclusion, one of the mechanisms for the higher Al tolerance and larger phosphate absorption in rape than in tomato under field conditions was ascribed to the higher concentration of exuded citric acid by Al in the rhizosphere. It was suggested that the exudation of citric acid might contribute to the detoxification of Al and to the increase phosphate availability in the rhizosphere in rape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号