首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an incubation experiment with flooded rice soil fertilized with different N amounts and sampled at different rice stages, the methane (CH4) and carbon dioxide (CO2) production in relation to soil labile carbon (C) pools under two temperature (35°C and 45°C) and moisture (aerobic and submerged) regimes were investigated. The field treatments imposed in the wet season included unfertilized control and 40, 80 and 120 kg ha?1 N fertilization. The production of CH4 was significantly higher (27%) under submerged compared to aerobic conditions, whereas CO2 production was significantly increased under aerobic by 21% compared to submerged conditions. The average labile C pools were significantly increased by 21% at the highest dose of N (120 kg ha?1) compared to control and was found highest at rice panicle initiation stage. But the grain yield had significantly responded only up to 80 kg ha?1 N, although soil labile C as well as gaseous C emission was noticed to be highest at 120 kg ha?1 N. Hence, 80 kg N ha?1 is a better option in the wet season at low land tropical flooded rice in eastern India for sustaining grain yield and minimizing potential emission of CO2 and CH4.  相似文献   

2.
A field study was conducted in the sub-humid tropical region of India to examine the effect of different nitrogen (N) management strategies on nitrate leaching, nitrous oxide (N2O) emission and N use efficiency in aerobic rice. Treatments were: control (no N), 120 kg N ha?1 applied as prilled urea (PU) in conventional method, 120 kg N ha?1 applied as neem coated urea (NCU) in conventional method, N applied as PU on the basis of leaf colour chart (LCC) reading, N applied as NCU on the basis of LCC reading, and 120 kg N ha?1 applied as PU and farm yard manure (FYM) in 1:1 ratio. Results showed that 3.4–16.1 kg NO3-N ha?1 was leached below 45 cm depth and 0.61–1.12 kg N2O-N ha?1 was emitted from aerobic rice during the growing season. NCU when applied conventionally reduced nitrate-nitrogen (NO3-N) leaching and N2O emission by 18.6% and 21.4%, respectively However when applied on the basis of LCC reading NCU reduced NO3-N leaching by 39.8% as compared to PU applied in conventional method. NCU when applied on the basis of LCC reading synchronized N supply with demand and reduced N loss, which resulted in higher yield and N use efficiency.  相似文献   

3.
Field experiments were conducted during 2005–2007 to test effects of nineteen treatments on turmeric rhizome yield in Alfisol at Utukur and Inceptisol at Jagtial in India. The treatments were comprised of nitrogen (N) at 0, 60, 120 and 180 kg ha?1; phosphorus (P) at 0, 40, 80, and 120 kg ha?1; and potassium (K) at 0, 50, 100, and 150 kg ha?1. Application of 180-120-100 kg ha?1 NPK gave maximum yield of 4302 kg ha?1 in Alfisols, whereas application of 120-80-100 kg ha?1 gave 4817 kg ha?1 in Inceptisols. Regression and principal component (PC) models were calibrated through soil-plant-fertilizer variables. The regression model gave significant R2 of 0.75 in Alfisols compared to 0.88 in Inceptisols, whereas the PC model explained variance of 66.5 percent in Alfisols and 76.3 percent in Inceptisols. Regression model through PC scores gave R2 of 0.54 in Alfisols and 0.47 in Inceptisols. Maximum sustainability yield indexes of 58.8 and 55.5 percent by 180-120-120 kg ha?1 (Alfisol) and 67.1 and 60.6 percent by 120-80-100 kg ha?1 (Inceptisol) were attained based on regression and PC models respectively.  相似文献   

4.
Abstract

To determine the relationships between microbial biomass nitrogen (N), nitrate–nitrogen leaching (NO3-N leaching) and N uptake by plants, a field experiment and a soil column experiment were conducted. In the field experiment, microbial biomass N, 0.5 mol L?1 K2SO4 extractable N (extractable N), NO3-N leaching and N uptake by corn were monitored in sawdust compost (SDC: 20 Mg ha?1 containing 158 kg N ha?1 of total N [approximately 50% is easily decomposable organic N]), chemical fertilizer (CF) and no fertilizer (NF) treatments from May 2000 to September 2002. In the soil column experiment, microbial biomass N, extractable N and NO3-N leaching were monitored in soil treated with SDC (20 Mg ha?1) + rice straw (RS) at five different application rates (0, 2.5, 5, 7.5 and 10 Mg ha?1 containing 0, 15, 29, 44 and 59 kg N ha?1) and in soil treated with CF in 2001. Nitrogen was applied as (NH4)2SO4 at rates of 220 kg N ha?1 for SDC and SDC + RS treatments and at a rate of 300 kg N ha?1 for the CF treatment in both experiments. In the field experiment, microbial biomass N in the SDC treatment increased to 147 kg N ha?1 at 7 days after treatment (DAT) and was maintained at 60–70 kg N ha?1 after 30 days. Conversely, microbial biomass N in the CF treatment did not increase significantly. Extractable N in the surface soil increased immediately after treatment, but was found at lower levels in the SDC treatment compared to the CF treatment until 7 DAT. A small amount of NO3-N leaching was observed until 21 DAT and increased markedly from 27 to 42 DAT in the SDC and CF treatments. Cumulative NO3-N leaching in the CF treatment was 146 kg N ha?1, which was equal to half of the applied N, but only 53 kg N ha?1 in the SDC treatment. In contrast, there was no significant difference between N uptake by corn in the SDC and CF treatments. In the soil column experiment, microbial biomass N in the SDC + RS treatment at 7 DAT increased with increased RS application. Conversely, extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT decreased with increased RS application. In both experiments, microbial biomass N was negatively correlated with extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT, and extractable N was positively correlated with cumulative NO3-N leaching. We concluded that microbial biomass N formation in the surface soil decreased extractable N and, consequently, contributed to decreasing NO3-N leaching without impacting negatively on N uptake by plants.  相似文献   

5.
Dry direct-seeded aerobic rice (DSR) is an emerging attractive alternative to traditional puddled transplanted rice (PTR) production system for reducing labour and irrigation water requirements in the Indo-Gangetic plains (IGP) of India. The fertilizer N requirement of DSR grown with alternate wetting and drying water management may differ from that of PTR grown under continuous flooding due to differences in N dynamics in the soil/water system and crop growth patterns. Limited studies have been conducted on optimizing N management and application schedule for enhanced N use efficiency in DSR. Therefore, field experiments were conducted over 3 years in NW India to evaluate the effects of N rate and timing of its application on crop performance and N use efficiency. Interaction effects of four N rates (0, 120, 150, and 180 kg ha?1) as urea and four schedules of N application on yield and N use efficiency were evaluated in DSR. The N schedules included N application in three equal split doses (0, 35 and 63, and 14, 35 and 63 days after sowing, DAS) and four equal split doses (0, 28, 49 and 70; 14, 28, 49 and 70 DAS). There was no significant interaction between N rate and schedules on grain yield. Significant response to fertilizer N was observed at 120 kg N ha?1 and economic optimum dose for three equal split doses and skipping N at sowing was 130 kg N ha?1. Highest mean grain yield of 6.60 t ha?1 was obtained when N was applied in three equal split doses at 14, 35 and 63 DAS which was about 8.5% higher compared with N applied in four equal split doses at 14, 28, 49 and 70 DAS. Under the best N application schedule, agronomic N use efficiency (26 kg grain kg?1), recovery efficiency (49%) and physiological efficiency (53 kg kg?1) were comparable to the values reported in Asia for PTR. Results from our study will help to achieve high yields and N use efficiency in DSR to replace resource intensive PTR.  相似文献   

6.
The combined seeding and cropping of non-leguminous and leguminous cover crops during the cold fallow season is recommended as an important agronomic practice to improve total biomass productivity and soil fertility in mono-rice (Oryza sativa L.) cultivation system. However, application of plant residues as green manure can increase methane (CH4) emission during rice cultivation and affect rice quality and productivity, but its effects are not well examined. In this field study, the mixture of barley (Hordeum vulgare R.) and hairy vetch (Vicia villosa R., hereafter, vetch) seeds with 75 % recommended dose (RD 140 kg ha?1) and 25 % RD (90 kg ha?1), respectively, were seeded after rice harvesting in late November, 2010, and harvested before rice transplanting in early June 2011. Total aboveground biomass was 36 Mg ha?1 (fresh weight basis with 68 % moisture content), which was composed with 12 Mg ha?1 of barley and 24 Mg ha?1 of vetch. In order to determine the optimum recycling ratio of biomass application that can minimize CH4 emission without affecting rice productivity, different recycling ratios of 0, 25, 50, 75, and 100 % of the total harvested biomass were incorporated as green manure 1 week before rice transplanting in a typical temperate paddy soil. The same rates of chemical fertilizers (N–P2O5–K2O?=?90–45–58 kg ha?1) were applied in all treatments. Daily mean CH4 emission rates and total CH4 fluxes were significantly (p?<?0.05) increased with increasing application rates of cover crop biomass. Rice productivity also significantly (p?<?0.05) increased with biomass application, but the highest grain yield (53 % increase over the control) was observed for 25 % recycling. However, grain quality significantly (p?<?0.05) decreased with increasing cover crop application rates above 25 % recycling ratio, mainly due to extended vegetative growth periods of rice plants. Total CH4 flux per unit grain yield, an indicator used to simultaneously compare CH4 emission impact with rice production, was not statistically different between 25 % biomass recycling ratio and the control but significantly increased with increasing application rates. Conclusively, the biomass recycling ratio at 25 % of combined barley and vetch cover crops as green manure might be suitable to sustain rice productivity without increasing CH4 emission impact in mono-rice cultivation system.  相似文献   

7.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

8.
Excessive nitrogen (N) fertilizer application is common in the central Zhejiang Province area, China. A three-year (2009–11) experiment was conducted to determine the optimum N application rate for this area by studying the effects of various N rates on rice (Oryza sativa L.) yield, N-use efficiency (NUE), and quality of paddy field water. Results showed that no significant yield differences were observed under N rates from 180 to 315 kg ha?1. The NUE could be improved by reducing N application rates without significantly decreasing yield. Due to high ammonia (NH4+-N) and nitrate (NO3N) concentrations, 5–7 days after N application was a critical stage for reducing N pollution. The N rate for the greatest yield was 176 kg ha?1, accounting for 65 percent of the conventional N rate (270 kg ha?1). The N-rate reduction in this area may be necessary for maintaining high yield, improving NUE, and reducing environmental pollution.  相似文献   

9.
Abstract

Dry seeding has been identified as an option for increasing cropping intensity and productivity in rainfed ricelands. Managing drought and nutrients are important for increasing yield, but the interactive effects of drought and nutrients on dry-seeded rice (Oryza sativa L.) growth have not been systematically investigated. Two experiments were carried out in 1994 and 1995 to analyze the effects of N fertilizer rate and the use of controlled-release fertilizers (CRFs) on the growth and yield of dry-seeded rice grown on a silty clay loam (Typic Tropaquept) subjected to water stress at different crop stages. In both years, in the main plots, rice was subjected to water stress at four different stages of development. The subplots were designed to compare the effect of the application of prilled urea and CRFs Osmocote (1994) and Polyon 12 (1995). Four N rates (0, 60, 120 and 180 kg ha?1) were imposed on rice in the sub-subplots (1994 only). The N fertilizer source did not affect any of the measured parameters. Irrespective of the N the fertilizer rates, grain yield and total dry matter accumulation of rice plants stressed at the flowering stage (WSFL, 1994) and panicle initiation stage (WSPI, 1995) were significantly lower than those of well-watered plants and plants stressed at the vegetative stage. Water stress during the grain-filling stage reduced the grain yield in 1995 when the stress was severe. Application of N fertilizer increased the yield compared with zero N in all water treatments, except for the WSFL plants whose yield did not change. The WSFL treatment also significantly reduced agronomic N-use efficiency.  相似文献   

10.
Abstract

The dramatic increases in rice productivity and cultivation intensity through the implementation of green revolution (GR) technology using high yielding varieties (HYVs) of rice and chemical fertilizers were not long lasting in Indonesia. The stagnancy of rice productivity in recent years without any scientific reasons presents a challenge for agronomists and soil scientists in Indonesia. This study describes the effects of long-term intensive rice cultivation on the change in available silica (Si) in sawah soil. The term sawah refers to a leveled and bounded rice field with an inlet and an outlet for irrigation and drainage. Soil samples collected by Kawaguchi and Kyuma in 1970 and new samples taken in 2003 from the same sites or sites close to the 1970 sites were analyzed and compared. From 1970 to 2003, the average content of available Si decreased from 1,512 ± 634 kg SiO2 ha?1 to 1,230 ± 556 kg SiO2 ha?1 and from 6,676 ± 3,569 kg SiO2 ha?1 to 5,894 ± 3,372 kg SiO2 ha?1 in the 0–20 cm and 0–100 cm soil layers, respectively. Cultivation intensity differences between seedfarms planted with rice three times a year and non-seedfarms rotating rice and upland crops appeared to affect the changing rates of available Si within the study period. In the 0–20 cm soil layer, the average content of available Si decreased from 1,646 ± 581 kg SiO2 ha?1 to 1,283 ± 533 kg SiO2 ha?1 (?22%) and from 1,440 ± 645 kg SiO2 ha?1 to 1,202 ± 563 kg SiO2 ha?1 (?17%) in seedfarms and non-seedfarms, respectively. Differences in topographical position also influenced the decreasing rate of available Si in this study. Using similar management practices and cultivation intensity, upland sampling sites lost more Si compared with lowland sites. Planted rice under a rain fed system with no Si addition from rain water in an upland position may be a reason for the higher loss of Si, particularly in non-seedfarms. The Si supply from irrigation water might have contributed to the slowdown in the decreasing rate of available Si in Java sawah soils.  相似文献   

11.
Swine lagoon sludge is commonly applied to soil as a source of nitrogen (N) for crop production but the fate of applied N not recovered from the soil by the receiver crop has received little attention. The objectives of this study were to (1) assess the yield and N accumulation responses of corn (Zea mays L.) and wheat (Triticum aestivum) to different levels of N applied as swine lagoon sludge, (2) quantify recovery of residual N accumulation by the second and third crops after sludge application, and (3) evaluate the effect of different sludge N rates on nitrate (NO3-N) concentrations in the soil. Sludge N trials were conducted with wheat on two swine farms and with corn on one swine farm in the coastal plain of North Carolina. Agronomic optimum N rates for wheat grown at two locations was 360 kg total sludge N ha?1 and the optimum N rate for corn at one location was 327 kg total sludge N ha?1. Residual N recovered by subsequent wheat and corn crops following the corn crop that received lagoon sludge was 3 and 12 kg N ha?1, respectively, on a whole-plant basis and 2 and 10 kg N ha?1, respectively, on a grain basis at the agronomic optimum N rate for corn (327 kg sludge N ha?1). From the 327 kg ha?1 of sludge N applied to corn, 249 kg N ha?1 were not recovered after harvest of three crops for grain. Accumulation in recalcitrant soil organic N pools, ammonia (NH3) volatilization during sludge application, return of N in stover/straw to the soil, and leaching of NO3 from the root zone probably account for much of the nonutilized N. At the agronomic sludge N rate for corn (327 kg N ha?1), downward movement of NO3-N through the soil was similar to that for the 168 kg N ha?1 urea ammonium nitrate (UAN) treatment. Thus, potential N pollution of groundwater by land application of lagoon sludge would not exceed that caused by UAN application.  相似文献   

12.
Leaf color chart (LCC) guides fertilizer nitrogen (N) application to rice as per requirement of the crop on the basis of a critical leaf color. Two field experiments were conducted to evaluate the effect of silicon (Si) and LCC based N management in aerobic rice. Following LCC-based N management, from 60 to 90 kg N ha?1 and 75 to 100 kg N ha?1 with 10–40% and 25–30% less fertilizer N was used without any reduction in yield as compared to the package of practices of 100 (50 kg N ha?1 as basal + two split of 25 kg N ha?1) kg N ha?1 respectively, during both the seasons. The highest grain yield was noticed with 90 kg N ha?1 (30 kg N ha?1 as basal + LCC-3) and 100 kg N ha?1 (50 kg N ha?1 as basal + two split of 25 kg N ha?1) along with the application of calcium silicate (CaSiO3) at 2 t ha?1 as sources of Si and on par with 60 kg N ha?1 (no basal + LCC-3) and 75 kg N ha?1 (30 kg N ha?1 as basal + LCC-3), respectively, during the season in 2008 and 2009. Higher fertilizer N use efficiency was recorded with Si and need-based N management using LCC-3 rather than recommended dose of fertilizer N.  相似文献   

13.
Effect of potassium (K) fertilization (0, 20, 40, 60, 80 and 100 kg K ha?1) on yield, nitrogen (N) and K nutrition of Boro (dry season) rice and apparent soil K balance was studied. Experiment was conducted at Bangladesh Rice Research Institute (BRRI) regional station farm, Habiganj, Bangladesh during 2007–2008 to 2009–2010 in a wetland rice ecosystem under haor area. Cropping pattern was Boro–Fallow–Fallow. A popular rice variety BRRI dhan29 was tested in a randomized complete block design with three replications. Results indicated that BRRI dhan29 maintained an average grain yield of 5.19 t ha?1 year?1 without K fertilization. Potassium fertilization significantly increased the grain yield to 6.86 t ha?1 year?1. Quadratic equations best explained the progressive increase of rice yield with increasing K rates. Optimum dose of K in 3 years ranged from 78 to 93 kg ha?1. Internal N use efficiency of rice decreased with increasing K rates. However, K use efficiency was inconsistent. Apparent K balance study revealed that application of 100 kg K ha?1 was not able to maintain a positive K balance in soil under wetland ecosystem with Boro–Fallow–Fallow cropping system. However, K fertilization decreased the negativity of K balance in soil.  相似文献   

14.
Agricultural soils are a primary source of anthropogenic trace gas emissions, and the subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. A field experiment was carried out in an ephemeral wetland in central Zimbabwe in order to determine the effect of cattle manure (1.36% N) and mineral N fertilizer (ammonium nitrate, 34.5% N) application on N2O fluxes from soil. Combined applications of 0 kg N fertilizer + 0 Mg cattle manure ha?1 (control), 100 kg N fertilizer + 15 Mg manure ha?1 and 200 kg N fertilizer + 30 Mg manure ha?1 constituted the three treatments arranged in a randomized complete block design with four replications. Tomato and rape crops were grown in rotation over a period of two seasons. Emissions of N2O were sampled using the static chamber technique. Increasing N fertilizer and manure application rates from low to high rates increased the N2O fluxes by 37–106%. When low and high rates were applied to the tomato and rape crops, 0.51%, 0.40%, and 0.93%, 0.64% of applied N was lost as N2O, respectively. This implies that rape production has a greater N2O emitting potential than the production of tomatoes in wetlands.  相似文献   

15.
Applications of dairy farm effluents to land may lead to ammonia (NH3) volatilization and nitrous oxide (N2O) emissions. Nitrogen (N) transformation process inhibitors, such as urease inhibitors (UIs) and nitrification inhibitors (NIs), have been used to reduce NH3 and N2O losses derived from agricultural N sources. The objective of this study was to examine the effects of amending dairy effluents with UI (N-(n-butyl) thiophosphoric triamide (NBTPT)) and NI (dicyandiamide (DCD)) on NH3 and N2O emissions. Treatments included either fresh or stored manure and either fresh or stored farm dairy effluent (FDE), with and without NBTPT (0.25 g kg?1 N) or DCD (10 kg ha?1), applied to a pasture on a free-draining volcanic parent material soil. The nutrient loading rate of FDE and manure, which had different dry matter contents (about 2 and 11 %, respectively) was 100 kg N ha?1. Application of manure and FDE led to NH3 volatilization (15, 1, 17 and 0.4 % of applied N in fresh manure, fresh FDE, stored manure and stored FDE, respectively). With UI (NBTPT), NH3 volatilization from fresh manure was significantly (P?<?0.05) decreased to 8 % from 15 % of applied N, but the UI did not significantly reduce NH3 volatilization from fresh FDE. The N2O emission factors (amount of N2O–N emitted as a percentage of applied N) for fresh manure, fresh FDE and stored FDE were 0.13?±?0.02, 0.14?±?0.03 and 0.03?±?0.01 %, respectively. The NI (DCD) was effective in decreasing N2O emissions from stored FDE, fresh FDE and fresh manure by 90, 51 and 46 % (P?<?0.05), respectively. All types of effluent increased pasture production over the first 21 days after application (P?<?0.05). The addition of DCD resulted in an increase in pasture production at first harvest on day 21 (P?<?0.05). This study illustrates that UIs and NIs can be effective in mitigating NH3 and N2O emissions from land-applied dairy effluents.  相似文献   

16.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

17.
The continuous airflow enclosures with an acid trap method was widely used to investigate ammonia (NH3) volatilization in field; however, it could be time-consuming for the estimation of NH3 volatilization in field with the application of controlled-release urea (CRU) because NH3 volatilization with CRU application could occur during the entire crop growth period. An NH3 volatilization estimation method based on the modified Jayaweera–Mikkelsen (J-M) model combined with the Sherlock–Goh model was used to simulate NH3 volatilization in a paddy field after 255 kg N ha?1 as CRU (polymer-coated urea with the concentration of 43% nitrogen, 100% for basal) and urea (70% for basal, 30% for topdressing) during the rice growth period including flooded and non-flooded periods in Wuxi, China. Results indicated that NH3 volatilization can be modeled with the proposed measure because no significant difference (P< 0.001) was observed between the simulated values and the observed values; the correlation coefficient (r2) was 0.615 for CRU and 0.840 for urea during the flooded period, and 0.991 for CRU and 0.946 for urea during the non-flooded period. Compared with urea, NH3 volatilization was minimized by 43.2% with the application of CRU based on simulated value within the rice growth period, which was 40.40 kg N ha?1 for CRU and 78.62 kg N ha?1 for urea during the flooded period, and 5.52 kg N ha?1 for CRU and 2.33 kg N ha?1 for urea during the non-flooded period. Therefore, CRU could be a promising nitrogen fertilizer to prevent NH3 losses in the rice paddies at the investigated area.  相似文献   

18.
Biochar application can reduce global warming via carbon (C) sequestration in soils. However, there are few studies investigating its effects on greenhouse gases in rice (Oryza sativa L.) paddy fields throughout the year. In this study, a year-round field experiment was performed in rice paddy fields to investigate the effects of biochar application on methane (CH4) and nitrous oxide (N2O) emissions and C budget. The study was conducted on three rice paddy fields in Ehime prefecture, Japan, for 2 years. Control (Co) and biochar (B) treatments, in which 2-cm size bamboo biochar (2 Mg ha?1) was applied, were set up in the first year. CH4 and N2O emissions and heterotrophic respiration (Rh) were measured using a closed-chamber method. In the fallow season, the mean N2O emission during the experimental period was significantly lower in B (67 g N ha?1) than Co (147 g N ha?1). However, the mean CH4 emission was slightly higher in B (2.3 kg C ha?1) than Co (1.2 kg C ha?1) in fallow season. The water-filled pore space increased more during the fallow season in B than Co. In B, soil was reduced more than in Co due to increasing soil moisture, which decreased N2O and increased CH4 emissions in the fallow season. In the rice-growing season, the mean N2O emission tended to be lower in B (?104 g N ha?1) than Co (?13 g N ha?1), while mean CH4 emission was similar between B (183 kg C ha?1) and Co (173 kg C ha?1). Due to the C release from applied biochar and soil organic C in the first year, Rh in B was higher than that in Co. The net greenhouse gas emission for 2 years considering biochar C, plant residue C, CH4 and N2O emissions, and Rh was lower in B (5.53 Mg CO2eq ha?1) than Co (11.1 Mg CO2eq ha?1). Biochar application worked for C accumulation, increasing plant residue C input, and mitigating N2O emission by improving soil environmental conditions. This suggests that bamboo biochar application in paddy fields could aid in mitigating global warming.  相似文献   

19.
For understanding the effects of soil salinity and nitrogen (N) fertilizer on the emergence rate, yield, and nitrogen-use efficiency (NUE) of sunflowers, complete block design studies were conducted in Hetao Irrigation District, China. Four levels of soil salinity (electrical conductivity [ECe] = 2.44–29.23 dS m?1) and three levels of N fertilization (90–180 kg ha?1) were applied to thirty-six microplots. Soil salinity significantly affected sunflower growth (P < 0.05). High salinity (ECe = 9.03–18.06 dS m?1) reduced emergence rate by 24.5 percent, seed yield by 31.0 percent, hundred-kernel weight by 15.2 percent, and biological yield by 27.4 percent, but it increased the harvest index by 0.9 percent relative to low salinity (ECe = 2.44–4.44 dS m?1). Application of N fertilizer alleviated some of the adverse effects of salinity, especially in highly saline soils. We suggest that moderate (135 kg ha?1) and high (180 kg ha?1) levels of N fertilization could provide the maximum benefit in low- to moderate-salinity and high- or severe-salinity fields, respectively, in Hetao Irrigation District and similar sunflower-growing areas.  相似文献   

20.
To evaluate the impacts of organic cropping system on global warming potentials (GWPs), field measurements of CH4 and N2O were taken in conventional and organic rice (Oryza sativa L.) cropping systems in southeast China. Rice paddies were under various water regimes, including continuous flooding (F), flooding–midseason drainage–reflooding (F-D-F), and flooding–midseason drainage–reflooding and moisture but without waterlogging (F-D-F-M). Nitrogen was applied at the rate of 100 kg N ha?1, as urea-N or pelletized, dehydrated manure product in conventional or organic rice paddies, respectively. Seasonal fluxes of CH4 averaged 4.44, 2.14, and 1.75 mg m?2 h?1 for the organic paddy plots under the water regimes of F, F-D-F and F-D-F-M, respectively. Relative to conventional rice paddies, organic cropping systems increased seasonal CH4 emissions by 20%, 23%, and 35% for the plots under the water regimes of F, F-D-F, and F-D-F-M, respectively. Under the water regimes of F-D-F and F-D-F-M, seasonal N2O-N emissions averaged 10.85 and 13.66 μg m?2 h?1 in organic rice paddies, respectively, which were significantly lower than those in conventional rice paddies. The net global warming potentials (GWPs) of CH4 and N2O emissions from organic rice paddies relative to conventional rice paddies were significantly higher or comparable under various water regimes. The greenhouse gas intensities were greater, while carbon efficiency ratios were lower in organic relative to conventional rice paddies. The results of this study suggest that organic cropping system might not be an effective option for mitigating the combined climatic impacts from CH4 and N2O in paddy rice production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号