首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand tree regeneration trajectories and the resultant coexistence of Abies with co-dominants, Picea jezoensis var. hondoensis, Tsuga diversifolia and Betula ermanii, in an old-growth subalpine forest, we investigated spatial mortality patterns during the regeneration of Abies mariesii and A. veitchii, which are abundant in the understory reflecting their shade tolerance. Regeneration of these Abies spp. from shaded understory to canopy status is affected by other canopy co-dominants. Snags of understory Abies spp. were common, suggesting that the primary mortality agent is suppression by the overstory. Although live, small Abies trees in the understory were positively associated with a Picea canopy, the long-term survival was reduced among Abies trees close to the canopy, suggesting that shading by large Picea in the overstory negatively affects understory Abies plants. The existence of shade-intolerant canopy co-dominants such as Picea and also Tsuga, which are larger and longer lived than the shade-tolerant Abies, may play an important role in preventing the Abies spp. from competitively displacing these other tree species, which are much rarer in the understory, though common in the canopy. Moreover, in spite of the fact that Betula canopies fostered recruitment and growth of Abies saplings, Abies showed no association with Betula canopy and their survival at later-stage was rather reduced near or beneath Betula canopies at the subsequent understory small tree stage. Based on spatially significant events related to tree death, this study detected such “habitat shifts” in the trajectory of tree regeneration. Accordingly, it can be concluded that careful consideration of the regeneration habitat is required for a fuller understanding of ecological processes in spatially complex old-growth forest systems.  相似文献   

2.
We evaluated effects of belowground competition on morphology of naturally established coast Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) saplings in 60- to 80-year-old thinned Douglas-fir stands in southwestern Washington. We separately quantified belowground competition from overstory and understory sources using trenching and understory removal. In this light-limited environment of 26 ± 16% (std. dev.) full sunlight, 2-year exclusion of tree root competition by trenching increased sapling stem biomass by 18%, total aboveground biomass by 21%, number of interwhorl buds by 68%, total foliar biomass by 33%, and foliar biomass on branch components over 4 years old by 143%. Belowground competition did not influence shoot:root ratio or foliar efficiency (i.e., stem growth per unit foliage biomass). Sapling needle size, specific leaf area, and internodal distance also were not affected by belowground competition; these variables were apparently a function of the low-light environment. The principal source of belowground competition was roots of overstory trees; effects of belowground competition from understory vegetation were minor. Thus, under a partial overstory, morphology of Douglas-fir regeneration was influenced by both belowground and aboveground competition from overstory trees. In this environment, understory vegetation control would not likely influence belowground competition to an extent that would affect sapling morphology.  相似文献   

3.
Understory individuals were found to form patches in a 100-year-old deciduous broad-leaved forest. The closed forest canopy was uniform, and so the light conditions at various locations across the forest floor differed little after the leaf flush of the overstory. To explain the distribution pattern in the understory, a hypothesis was proposed: in spring, the forest floor is divided into patches according to the timing of leaf flush of the overstory individuals, and the light conditions are more favorable for understory plants under the crowns of trees with later-flushing leaves. In the plot, three groups of early, intermediate, and late, were recognized in the overstory concerning the timing of leaf flush. As for the start of leaf flush, a difference of 31.6 days was recognized among tree species, and for the end of leaf flush, a difference of 40.3 days. In the spring of 1998, the relative photosynthetic-photon-flux density under an intensively studiedCastanea crenata tree (late-flushing species) usually showed higher values than that under a similarly studiedAcer mono tree (early-flushing species). Analysis of the spatial-distribution pattern using Morisita’s1δ index revealed that the understory community had an aggregated distribution. In the overstory, the late- and the intermediate-flushing-species groups showed aggregated distributions, while the early-flushing-species group showed random distribution. Spatial correlation between the understory and the overstory was analyzed by using Morisita’sRδ index. The distribution of whole understory community spatially co-occurred with that of the late-flushing-species group of the overstory. In contrast, the understory community was less developed below the members of the early-flushing-species group of the overstory. We consider that the data presented here support our hypothesis, and we suggest that the growth and survival of understory individuals were promoted in the places receiving light for long periods in spring.  相似文献   

4.
闽楠天然次生林自然更新的影响因子研究   总被引:3,自引:0,他引:3       下载免费PDF全文
[目的]分析闽楠天然次生林自然更新与环境因子之间的关系,为其科学经营及保护提供参考依据。[方法]以江西省吉安市闽楠天然次生林为研究对象,通过标准地调查获取数据,运用多元数量化模型I建立闽楠幼树幼苗重要值与环境因子的关系模型,采用单因素方差分析单个环境因子对闽楠幼树幼苗更新的影响。[结果]研究表明:密度(闽楠下种母树株数、郁闭度、株数密度)、坡位、腐殖质层厚度、坡向、林下植被盖度、凋落物层厚度是影响闽楠天然次生林自然更新的主要因素,偏相关系数在0.325 7 0.715 7之间,t检验结果为极显著或显著;模型复相关系数为0.966,F检验结果为极显著(F=30.96~(**))。[结论]闽楠下种母树株数对其幼树幼苗的更新起着最主要的作用,而郁闭度与株数密度过高或过低、凋落物层越厚、腐殖质层越薄、林下植被盖度越大均不利于其自然更新,同时,半阴坡、下坡位条件下的闽楠幼树幼苗的更新好于其它坡向与坡位。为促进闽楠幼树幼苗的自然更新,林分中闽楠下种母树应保留200株·hm~(-2)以上,以及对郁闭度、林下植被盖度及凋落物层厚度等实施相应的调控措施。  相似文献   

5.
This study was designed to answer questions about the patterns of understory diversity in managed forests of southern New England, and the factors that appear associated with those patterns. At the landscape-level, we used plot data to answer questions regarding the spatial distribution of forest understory plant species. Data from a combination of fixed area (understory vegetation) and variable radius (overstory trees) plot methods are combined with site variables for the analysis. Univariate and multivariate statistical methods are used to test for understory diversity relationships with overstory cover types and topography separately, and in combination. Analyses also test for relationships between specific understory species and cover types. In general the understory flora is dominated by four common clonal species that occur across the range of forest cover types: wild sarsaparilla (Aralia nudicaulis L.), Canada mayflower (Maianthemum candense Desf.), star flower (Trientalis borealis Raf.), and partridgeberry (Mitchella repens L.). Results also show that over story composition and structure can be used to assess understory species richness. Species richness follows a general trend among cover types of: hardwood ≥ regenerating forest, hardwood–pine, and pine ≥ mixed ≥ hardwood–hemlock > hemlock. Eastern hemlock (Tsuga canadensis L. Carriere) and mountain laurel (Kalmia latifolia L.) (which decreased in dominance from ridge to valley) both showed negative trends with understory species richness. Topographic position also appears associated with understory floristic patterns (particularly for the hardwood cover type), both in terms of species richness and compositional diversity which both increased from ridge, to midslope, to valley. However, overstory composition (covertype) appears to have a higher order influence on vegetation and mediates the role of topography. The results from this study provide foresters with a better understanding for maintaining floristic diversity and composition of the understory in managed forests.  相似文献   

6.
以内蒙古根河林业局潮查林场境内的在20世纪80年代初主伐利用后形成的兴安落叶松过伐林为研究对象,利用兴安落叶松林8块标准地每木定位数据,分析林木分布格局和样方(5 m×5 m)林木株数对枯立木株数影响,探讨了林分大树和更新幼树位置与枯立木位置的关系,阐明了枯立木分布格局形成机制。结果表明:1)各树种枯立木比例,随树种组成成数增加而增大。枯立木主要在更新幼树阶段形成,径级分布集中在4径阶以下,其株数占总数的比例平均达82.2%。在更新幼树(含枯立木)中,生成枯立木的比例平均达8.8%。2)枯立木分布格局为聚集分布。林木分布格局、样方林木株数和更新株数与枯立木株数有显著正相关关系,林木分布格局对枯立木分布格局无显著影响。林木聚集度越大,形成枯立木的可能性越大,数量也就越多。3)枯立木位置与更新幼树和大树位置有显著相关关系。主要表现为落叶松和白桦相互关系。枯立木出现位置主要在大树和更新幼树集聚区域。大树对枯立木形成影响较更新幼树大,而且均以落叶松较白桦明显。白桦更新幼树对落叶松枯立木的形成,无显著影响。受影响的枯立木主要是枯立木株数中所占比例和树种组成成数较高的树种。影响枯立木位置的林木主要取决于其样方内位置和林木株数。  相似文献   

7.
We compared the understory communities (herbs, shrubs, and tree seedlings and saplings) of old-growth and second-growth eastern hemlock forests (Tsuga canadensis) in western Massachusetts, USA. Second-growth hemlock forests originated following clear-cut logging in the late 1800s and were 108–136 years old at the time of sampling. Old-growth hemlock forests contained total ground cover of herbaceous and shrub species that was approximately 4 times greater than in second-growth forests (4.02 ± 0.41%/m2 versus 1.06 ± 0.47%/m2) and supported greater overall species richness and diversity. In addition, seedling and sapling densities were greater in old-growth stands compared to second-growth stands and the composition of these layers was positively correlated with overstory species composition (Mantel tests, r > 0.26, P < 0.05) highlighting the strong positive neighborhood effects in these systems. Ordination of study site understory species composition identified a strong gradient in community composition from second-growth to old-growth stands. Vector overlays of environmental and forest structural variables indicated that these gradients were related to differences in overstory tree density, nitrogen availability, and coarse woody debris characteristics among hemlock stands. These relationships suggest that differences in resource availability (e.g., light, moisture, and nutrients) and microhabitat heterogeneity between old-growth and second-growth stands were likely driving these compositional patterns. Interestingly, several common forest understory plants, including Aralia nudicaulis, Dryopteris intermedia, and Viburnum alnifolium, were significant indicator species for old-growth hemlock stands, highlighting the lasting legacy of past land use on the reestablishment and growth of these common species within second-growth areas. The return of old-growth understory conditions to these second-growth areas will largely be dependent on disturbance and self-thinning mediated changes in overstory structure, resource availability, and microhabitat heterogeneity.  相似文献   

8.
King DA 《Tree physiology》1991,9(3):369-381
Relationships between tree height and crown dimensions and trunk diameter were determined for shade-tolerant species of old-growth forests of western Oregon. The study included both understory and overstory species, deciduous and evergreen angiosperms and evergreen conifers. A comparison of adult understory species with sapling overstory species of similar height showed greater crown width and trunk diameter in the former, whether the comparison is made among conifers or deciduous trees. Conifer saplings had wider crowns than deciduous saplings, but the crown widths of the two groups converged with increase in tree height. Conifer saplings had thicker trunks than deciduous saplings of similar crown width, possibly because of selection for resistance to stem bending under snow loads. The results suggest that understory species have morphologies that increase light interception and persistence in the understory, whereas overstory species allocate their biomass for efficient height growth, thereby attaining the high-light environment of the canopy. The greater crown widths and the additional strength requirements imposed by snow loads on conifer saplings result in less height growth per biomass increment in conifer saplings than in deciduous saplings. However, the convergence in crown width of the two groups at heights greater than 20 m, and the proportionately smaller effect of snow loads on large trees, may result in older conifers equalling or surpassing deciduous trees in biomass allocation to height growth.  相似文献   

9.
We surveyed the germination number (N cs) of 2-year and a 1-year survival of Abies sachalinensis and Picea jezoensis seedlings and saplings on 29 fallen logs from 2004 to 2005 in a natural coniferous forest in Hokkaido, northern Japan, in relation to the surface and light conditions of fallen logs. Moss height (H moss), log hardness (Hardness), and the area of fallen log (Area) were measured as the surface conditions by each 1-m block from bottom to top of all fallen logs. The relative photosynthetic photon flux density (rPPFD) 10 cm above the tallest seedling in each block was measured as the light condition. In addition, the height of the tallest seedling or sapling in each block (H max), the difference between a height of each seedling and sapling and the H max (Shading), and a height of seedlings and saplings in 2004 (H ini) were considered. N cs of A. sachalinensis was affected by Hardness and Area, whereas N cs of P. jezoensis was affected by H moss, Hardness, Area, H max, and rPPFD. The survival of seedlings (height < 5 cm) and saplings (5 cm ≤ height < 50 cm) were affected by H ini, rPPFD, and shading for both species. However, the survival of P. jezoensis saplings was more sensitive to decrease in rPPFD and increase of shading than that of A. sachalinensis. Therefore, seedling emergence was influenced by surface conditions, whereas survival was affected by light conditions. Furthermore, P. jezoensis emergence and survival were more sensitive to surface and light conditions than that of A. sachalinensis.  相似文献   

10.
Tree retention is understood as a key practice in creating complexity, leading to heterogeneity in resources and habitats in managed stands. In this article, we clarify the long-term effects of tree retention on stand structure and tree-species composition in a 60-year-old Larix kaempferi plantation in central Japan. In our study plot (1.5 ha) there were 18 stems/ha of retained trees (determined by tree-ring analysis), mostly Quercus crispula. We conducted spatial analyses and tested the hypothesis that tree abundance, size structure, and species composition and diversity change with distance from the retained trees. Near the retained trees, L. kaempferi showed a reduction of 40%–60% in basal area, due presumably to the shading effect. In contrast, the nearby area showed greater species diversity in the canopy layer. The retained trees created patches of different species composition in the understory. The spatial gradient of shade and colonization opportunity provided by retained trees greatly affect the distribution of the colonized species, according to their shade tolerance and seed-dispersal ability, which resulted in the stand structure with a heterogeneous shrub-layer vegetation. Retention proved particularly important for the enhancement and long-term maintenance of structural and compositional complexity in L. kaempferi plantations.  相似文献   

11.
A study to determine the feasibility of producing forage for grazing livestock under trees was conducted as a step toward evaluating the potential for silvopasture systems in the northern and central Great Plains. The effects of overstory leaf area index (LAI), percentage understory light transmittance (LT), and soil moisture (SM) on yield and crude protein (CP) of big bluestem [Andropogon gerardii Vitman; (BB)], smooth bromegrass [Bromus inermis Leyss.; (SB)], and mixtures with birdsfoot trefoil [Lotus corniculatus L.; (BFT)] were examined. The study was conducted in both Scotch pine (Pinus sylvestris L.) and green ash (Fraxinus pennsylvancia Marsh.) tree plantations, at the University of Nebraska Agriculture Research and Development Center near Mead, Nebraska. Thirty-six plots representing a wide range of canopy cover were selected at each location and seeded in April 2000 to BB, SB, or mixtures with BFT. Measurements of LAI, LT, and SM were taken throughout the 2001-growing season and plots were harvested in June and September 2001. Soil moisture generally did not explain much of the variability in yield or CP for BB, SB, or BFT. Cumulative LAI or LT averaged over the growing season was the best predictor of yield or CP, particularly under the pine. Yields of BB and SB increased as LAI decreased or LT increased. Conversely, the CP of BB and SB increased as LT decreased for both the June and September harvests. Both BB and SB maintain relatively high productivity under partial shading; however, BFT yields were low at LT levels below 75%. At the time of the research, the senior author was research assistant, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68853-0915.  相似文献   

12.
Survival and growth of planted white spruce was assessed under partial harvest treatments and different site preparation techniques in mixedwood forests of two compositions prior to logging: deciduous dominated (d-dom) – primarily comprised of mature trembling aspen (Populus tremuloides Michx.) and coniferous dominated (c-dom) – primarily comprised of mature white spruce (Picea glauca (Moench) Voss). Levels of overstory retention were 0% (clearcut), 50% and 75% of original basal area, and site preparation techniques were inverted mounding, high speed mixing, scalping and control (no treatment). The survival and growth of white spruce were assessed seven years after planting. The experiment was established as a part of the Ecosystem Management Emulating Natural Disturbance (EMEND) experiment located in northern Alberta, Canada. In the c-dom, the 50% and 75% retention of overstory resulted in reduced growth and survival of white spruce seedlings compared to clearcuts. In contrast, in the d-dom, the seedlings performed best in sites that had 50% of the overstory retained. For the c-dom, the mounding and mixing treatments yielded the best growth of spruce seedlings, while scalping yielded the worst. In the d-dom, spruce growth was highest in sites with the mixing treatment. In the d-dom, growth and survival of the planted spruce was greater than in the c-dom. The natural regeneration of deciduous trees was suppressed by the retention of canopy regardless of original composition.  相似文献   

13.
We investigated how richness and composition of vascular plant species in the understory of a mixed hardwood forest stand varied with respect to the abundance and composition of the overstory. The stand is in central Spain and represents the southernmost range of distribution of several tree and herbaceous species in Europe. Understory species were identified in 46 quadrats (0.25 m2) where variables litter depth and light availability were measured. In addition, we estimated tree density, basal area, and percent basal area by tree species within 6-m-radius areas around each plot. Species richness and composition were studied using path analysis and scale-dependent geostatistical methods, respectively. We found that the relative abundance of certain trees species in the overstory was more important than total overstory abundance in explaining understory species richness. Richness decreased as soil litter depth increased, and soil litter increased as the relative proportion of Fagus sylvatica in the overstory increased, which accounted for a negative, indirect effect of Fagus sylvatica on richness. Regarding understory species composition, we found that some species distributed preferentially below certain tree species. For example, Melica uniflora was most frequent below Fagus sylvatica and Quercus petraea while the increasing proportion of Q. pyrenaica in the overstory favored the presence of Cruciata glabra, Arenaria montana, Prunus avium, Conopodium bourgaei, Holcus mollis, Stellaria media and Galium aparine in the understory. Overall, these results emphasize the importance of individual tree species in controlling the assemblage and richness of understory species in mixed stands. We conclude that soil litter accumulation is one way through which overstory composition shapes the understory community.  相似文献   

14.
Forest grazing has been recognised as being a useful tool in fire-risk reduction, in addition to having the potential to preserve or enhance forest biodiversity if managed correctly. Concern for natural regeneration of forest trees in Europe has also prompted interest in the effects of large herbivores on seedling and sapling growth and mortality. An investigation was carried out into sapling damage and density of natural regeneration of oak (Quercus robur) in a mature, pony-grazed, Pinus radiata forest in Galicia, NW Spain under two different grazing regimes (continuous and rotational). In all treatments significantly more oak seedlings and saplings were recorded in areas of grass sward than areas dominated by taller ground flora species. Damage to oak saplings was assessed from the form (height and canopy) relative to stem diameter. The height and average canopy diameter of similar-aged saplings were found to be significantly greater in ungrazed (control) than both continuous and rotationally grazed treatments. Height and canopy diameters of similar-aged oak were not significantly different between the two grazing treatments. Significant differences were observed in tree form, with unbrowsed saplings having the greatest height to canopy width ratio and those in the continuously browsed plots having the smallest. An obvious decrease in the goodness of fit (R2) of regression analyses were found in continuously grazed areas compared to rotational and control plots for both height and canopy data. The differences in damage observed were not significantly different enough to suggest one method of grazing over the other as being better for minimising sapling damage. Management requirements are more likely to dictate grazing regime. Overall, stock density is likely to have a more significant effect on damage than stocking system.  相似文献   

15.
云南松天然林的种内和种间竞争   总被引:3,自引:2,他引:1       下载免费PDF全文
[目的]通过对云南松天然林内云南松种内和种间竞争强度的测定,分析揭示竞争强度在云南松群落内的动态变化规律及云南松种群的生态适应机制.[方法]在云龙天池自然保护区云南松天然林设置样方进行群落学调查的基础上,采用Hegyi单木竞争指数模型,以云南松为对象木,定量分析林分、对象木、竞争木的竞争强度,采用回归分析方法建立对象木胸径与林分、种内、种间竞争强度的函数模型.[结果]天池自然保护区云南松天然林的种内和种间竞争强度分别为80.16%和19.84%;云南松种内与主要伴生树种种间竞争强度大小顺序为:云南松种内> 水红木> 华山松> 米饭花> 大白花杜鹃> 槲栎> 马缨花> 旱冬瓜;云南松与整个林分、伴生树种以及种内的竞争强度与对象木胸径之间存在显著负相关关系,对象木胸径越大,其竞争能力越强.[结论]云南松天然林内云南松的竞争压力主要来自种内竞争;林分种内及种间竞争强度与对象木胸径间存在CI=AD-B形式的幂函数关系;胸径20 cm以上云南松的竞争压力变化趋于平缓,胸径20 cm以下的云南松中、幼林是抚育管理的重点林分.  相似文献   

16.
When pine trees are invaded by pine wilt diseases, the severely infected pine trees will die and fall down, or they will be removed when found to be damaged by the disease. It gives rise to the invasion of other species in these empty niches originally occupied by pine trees, i.e., competing surrounding trees or understory shrubs will invade the empty niches during the following years. As a result, the spatial distribution and pattern of the main tree species in a pine forest will change, and a niche variety in the main population will occur. In the end, the direction of the succession and restoration of the pine forest ecosystem will be affected. In our study, a Pinus massoniana forest with the dominant shrub, Pleioblastus amarus, was invaded by pine wood nematode and was clear cut. Selecting this community as our research object, we studied the effect of the invasion of the pine wood nematode on the growth of the dominant shrub, P. amarus, in this Pinus massoniana forest. Our results show that, after the attacked pine trees were removed, the niche was occupied by Pleioblastus amarus and other shrubs, which benefited the growth of P. amarus to its climax. Growth of P. amarus at the climax stage was greater compared with the unhealthy pine forest and the control group.  相似文献   

17.
The objectives of this study were (1) to evaluate the effects of environmental factors derived from GIS on tree-height growth of Japanese larch (Larix kaempferi) and (2) to develop a best-fit regression model for its site index. Based on data from 40 sample plots situated in an even-aged (38 years), pure, and undamaged Japanese larch stand, multiple regression models for a site index of Japanese larch were constructed using environmental factors as independent variables. The average slope gradient, effective relief, distance from ridge, flow accumulation, degree of exposure, shading, solar radiation index, and gravitational water index were used as environmental factors and calculated on GIS using digital elevation model data. These factors were related to the Japanese larch site index through multiple-regression analysis. The result showed that the most effective factor for estimating site index was the degree of exposure. Through a backward stepwise procedure, the degree of exposure, shading, and average slope gradient were selected for a best-fit regression model. This model explained 72% of the variance in site index, with standard error estimates of 1.75 m. This strong relationship suggests that GIS-derived environmental factors can be used to predict site indices of Japanese larch. This study was supported by the experimental forest of Kyushu University.  相似文献   

18.
We investigated the effects of selective logging on stand structure and regeneration in selectively logged subboreal forests in Taisetsuzan National Park in Hokkaido in northern Japan. The basal area decreased and the size structure of trees altered in the stands studied due to repeated, intense selective logging, in which larger trees were cut down as a priority. Sapling density in the stands was much lower than that in primary forests. In the simple and multiple regression analyses that were used to estimate the effects of selective logging on sapling density, sapling density had a significant positive correlation with tree density and had little correlation with the density of logged stumps or the height ofSasa (dwarf bamboo) growing on the forest floor. These results suggest that the establishment sites around canopy trees influenced the establishment of saplings, rather than the gaps caused by selective logging. However, both the coefficient of determination and the standardized partial regression coefficient of multiple regression analysis were higher for the stand with a dense cover ofSasa than for the stand with a sparse cover ofSasa. Thus, the success of regenerating forests with selective logging depends on both the site of advanced regeneration and the light conditions that regulate growth.  相似文献   

19.
Regeneration of beech (Fagus crenata) forests depends on the formation of canopy gaps. However, in Japan Sea-type beech forests, a dwarf bamboo (Sasa kurilensis) conspicuously occupies sunny gaps. Therefore,F. crenata seedlings must escape the severe interference ofS. kurilensis in the gaps and persist beneath a closed canopy of the beech forest. We hypothesized that the growth ofF. crenata seedlings in the understory would be favored by their being more plastic thanS. kurilensis in photosynthetic and morphological traits, which would support the matter production ofF. crenata seedlings in a wide range of light availabilities. To examine this hypothesis, the photosynthetic-light response of individual leaves and the biomass allocation in aboveground parts (i.e., the culm/foliage ratio) were surveyed at sites with contrasting light availabilities in a Japan Sea-type beech forest in central Japan. InF. crenata, photosynthetic light utilization efficiency at relatively low light was greater, and the dark respiration rate was smaller in the leaves of seedlings (10 cm in height) beneath the closed canopy than in the leaves of saplings at the sunny forest edge. The culm/foliage (C/F) ratio of theF. crenata seedlings at the shady site was small, suggesting effective matter-production beneath the beech canopy. On the other hand,S. kurilensis both in the gap and beneath the beech canopy showed low plasticity in photosynthesis and the culm/foliage ratio. Because the shoot density ofS. kurilensis was smaller beneath the beech canopy than in the gap, the light availability at the bottom of theS. kurilensis layer was greater beneath the beech canopy. These results suggest that the photosynthetic productivity of theF. crenata seedlings would be enough for the seedlings to survive in the understory with a low density ofS. kurilensis shoots beneath the closed beech canopy.  相似文献   

20.
小陇山锐齿栎天然林结构动态分析   总被引:3,自引:0,他引:3       下载免费PDF全文
[目的]为了解锐齿栎天然林群落动态变化过程。[方法]采用每木定位监测样地重复观测的方法,对甘肃小陇山林区百花林场王安沟营林区内的锐齿栎天然林进行研究,从树种组成及多样性结构、径级结构、空间结构等几方面分析了锐齿栎天然林群落的结构动态特征。[结果]表明:2次调查群落树种组成和优势树种的重要值排序变化不大,有2个稀少种退出群落,死亡林木40株,死亡率8.3%;群落乔木层的物种丰富度和树种空间多样性下降,优势树种的集中性变大,物种个体数目分配的均匀程度下降。林分径级结构由典型的反"J"型分布变化为左偏的单峰状曲线;群落的空间结构没有发生显著变化,林木分布格局仍为随机分布,中林层和上林层林木个体增加,垂直结构更趋复杂;树种隔离程度下降,建群种锐齿栎的优势度增强,膀胱果、白桦和青榨槭种群的优势度下降。[结论]锐齿栎天然林群落组成和结构变化是一个复杂和缓慢的过程,6年间仅发生了一些微小的波动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号