首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of nonylphenol ethoxylates (NPEOn) and their derivatives of nonylphenol (NP) and nonylphenoxy ethoxy acetic acids (NPEnC) in the sediments of a relatively closed freshwater reservoir was investigated using sediment layers sliced from undisturbed sediment cores collected with a gravity core sampler at three sampling sites (St. 1, St. 2 and St. 3) along the water flow direction. The relationships between the bound content of these compounds and the sediment organic matter as well as the likely transformation pathways were evaluated. The total content of NPEOn (n?=?1–15) fell in 84.6–336.5, 59.9–135.5 and 77.0–623.4 μg/kg-dry for all sliced layers at St.1, St.2 and St.3, respectively, with the content of individual NPEOn species showing a general decreasing trend with the attached molar number of the ethoxy (EO) chain. Compared to each detected NPEOn species, the bound content of NP was much higher, falling in 73.2–248.4, 79.9–358.2 and 25.5–1,988.4 μg/kg-dry at St. 1, St. 2 and St. 3, respectively. A general increasing trend of the NP content along the water flow direction of the reservoir was revealed. NPEnC (n?=?1–10) varied in 1.93–4.12, 2.85–9.84 and 1.05–19.1 μg/kg-dry for sediment at the respective site of St. 1, St. 2 and St. 3, with the averaged values at these sites (2.91, 4.71 and 6.72 μg/kg-dry) showing an increasing trend from the upstream to the downstream. For NPEnC, a parametric trend of increases in the content of NPE1C, NPE2C and NPE3C with the bound sediment organic matter (9.06–11.8%) seemed to be existent. Furthermore, the computed magnitudes of NPEO1–2/NPEO1–15, NP/NPEO1–15 and NPEC1–10/NPEO1–15 suggested that non-oxidative hydrolytic transformation was probably prevailing within the sedimented mud phase of the reservoir, with the oxidative hydrolytic transformation pathway being less involved.  相似文献   

2.

Background, aim, and scope  

Nonylphenol polyethoxylates (NPEOs) are a widely used class of nonionic surfactants known to be toxic and endocrine-disrupting contaminants. Their use and production have been banned in the European Union and substituted by other surfactants considered as environmentally safer. However, their use continues in many countries without any legal control. Discharges of effluents from wastewater treatment plants and the application of sewage sludge application, landfilling, and accidental spillage to soils are the major sources of NPEOs in the environment. The biodegradation of these surfactants is relatively easy, leading to the accumulation of the simplest chemical forms of nonylphenol ethoxylates (NP, NP1EO, and NP2EO) and nonylphenol carboxy acids (NP2EC or NP1EC). However, these are also the most toxic end-products and have a higher environmental persistence. Compared to aquatic ecosystems, not much is known about the effects of NPEOs in terrestrial organisms, with few studies mainly centered on the effects on plants and soil microorganisms. The main aim of this study is to provide the range of concentrations of NPEOs with ecotoxicological effects on different plants and soil invertebrate species. In addition, we aim to identify the main soil properties influencing their toxicity.  相似文献   

3.
黑龙江农田土壤壬基酚及其短链聚氧乙烯醚残留调查   总被引:2,自引:0,他引:2  
对黑龙江土壤样品中的壬基酚(NP)、壬基酚一氧乙烯醚(NP1EO)和壬基酚二氧乙烯醚(NP2EO)的残留状况开展研究。结果表明,NP、NP1EO和NP2EO均有不同程度的检出,检出率在68.46%~95.38%之间;NP、NP1EO和NP2EO的浓度分别为ND~156.8μg kg-1、ND~15.70μg kg-1和ND~13.63μg kg-1,均值分别为22.02μg kg-1、4.04μg kg-1和2.15μg kg-1;进一步分析,已检出的样品中,NP在0~10μg kg-1的比重最大,NP1EO在4~6μg kg-1比重最大,NP2EO在1~2μg kg-1比重最大。NP的残留水平高于NP1EO和NP2EO,说明NP相对较难降解,更易在土壤中累积。  相似文献   

4.
Nonylphenol (NP), nonylphenol mono- and di-ethoxylate (NP1EO, NP2EO) and bisphenol A (BPA) were determined in water, suspended particulate matter (s.p.m.) and bed sediment collected from the most polluted stretch of Tiber river (Italy) in the neighbourhood of Rome. Analytes were recovered from water samples by solid-phase extraction (SPE) on Si–C18 cartridges and analysed by HPLC with fluorescence detection. Solid samples were extracted by using an aqueous solution of the non-ionic surfactant Tween 80. Results indicated that 2–42% of NP, 9–45% of NP1EO, 11–18% of NP2EO and 4–62% of BPA respectively occurred in the suspended phase. In general, for all compounds a higher affinity for s.p.m. than for bed sediments was observed, reflecting differences in the nature of particles and in their sorption capacity for organic micro-pollutants. The partition of target compounds in river compartments was affected by differences in hydrological conditions between the two sampling campaigns. Run-off from the basin or resuspension/redissolution from sediments was an important source of nonylphenol and bisphenol A during high discharge regimes. Partition coefficients of compounds (log K oc ) between water and s.p.m. were calculated under stable flow condition. K oc values, experimentally measured in the river, were higher than those predicted by K ow , implying that specific chemical interaction could occur in the sorption mechanisms for these group of compounds.  相似文献   

5.
Advanced oxidation processes (AOPs) are among the most efficient methods for wastewater treatment. To achieve the degradation of persistent organic pollutants (POPs), AOPs have been developed that employ Fenton reactions promoted by ultrasound (US) or microwaves (MW). Integrated methods combining AOPs with biological treatments are also of great interest. The present paper describes such an integrated approach for the decontamination of water from nonylphenol (NP), a common pollutant that accumulates in aquatic organisms and is quite resistant to biodegradation. Polluted water (containing 1,000 ppm of NP) was sequentially subjected to a sonochemical Fenton reaction and biosorption by the filamentous fungus Paecilomyces lilacinus. Although these methods can be used separately, the sequential approach proved more advantageous. In 1 h the sonochemical oxidation, carried out in a 300 kHz US-reactor equipped with a cooling system, halved NP content in polluted water, as determined by GC-MS analysis. The water was then inoculated with pure cultures of the fungus, whose mycelial biomass further reduced NP content in 7 days. Thus an initial NP concentration of 1,000 ppm was reduced approximately by 90%.  相似文献   

6.

Purpose

The aim of this study was to assess the applicability of ionic liquids (ILs) in the extraction of organic contaminants from sediments and in passive sampling as a receiving phase material.

Materials and methods

Solutions of two water-soluble ionic liquids (WSILs)—1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIm]BF4) and N-butyl-3-methyl pyridinium tetrafluoroborate ([BMPy]BF4)—were used for the extraction of endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), 17β-estradiol (E2), and nonylphenol (NP), from different sediments. Furthermore, a hydrophobic IL (1-hexadecyl-3-methyl imidazolium hexafluorophosphate) was filled in a polyethylene (PE) membrane tubing to build an IL-PE passive sampler for sediment pore water. Uptake kinetics were studied by exposing samplers to sediments artificially contaminated by EDCs and identified by exposing samplers to field-contaminated sediments.

Results and discussion

EDCs were efficiently extracted by WSIL solutions from the two artificially contaminated sediments, with maximum extraction efficiencies of 84.2–104.6 % by the [BMIm]BF4 solution and 74.9–103.7 % by the [BMPy]BF4 solution. However, WSIL solutions are not suitable for EDC extraction from sediment with very low organic carbon contents. EDCs in sediment pore water can be efficiently taken up by the IL-PE sampler, with uptake rate constants of 2.08?×?10?2?l?g?1?day?1 (BPA), 5.74?×?10?2?l?g?1?day?1 (E2), and 2.10 l?g?1?day?1(NP).

Conclusion

BPA, E2, and NP can be extracted efficiently by IL water solution from most of the artificially and field-contaminated sediments used in this study. The IL ([HDMIm]PF6)-PE passive sampler can be used to monitor EDCs in the pore water of sediments. A good match between the calculated and measured concentrations of BPA and E2 in pore water of field-contaminated sediments was observed.  相似文献   

7.
Yak and Tibetan sheep graze extensively on natural grasslands in the Qinghai-Tibetan Plateau, and large amounts of excrement are directly deposited onto alpine grasslands. However, information on greenhouse gas (GHG) emissions from this excrement is limited. This study evaluated the short-term effects of yak and Tibetan sheep dung on nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) emissions from alpine steppe soil at a water holding capacity (WHC) of 40 or 60 % and from alpine meadow soil at a WHC of 60 or 80 % under laboratory conditions. Cumulative N2O emissions over a 15-day incubation period at low soil moisture conditions ranged from 111 to 232 μg N2O–N kg soil?1 in the yak dung treatments, significantly (P?<?0.01) higher than that of sheep dung treatments (28.7 to 33.7 μg N2O–N kg soil?1) and untreated soils (1.04–6.94 μg N2O–N kg soil?1). At high soil moisture conditions, N2O emissions were higher from sheep dung than yak dung and non-treated soils. No significant difference was found between the yak dung and non-treated alpine meadow soil at 80 % WHC. Low N2O emission in the yak dung treatment from relatively wet soil was probably due to complete denitrification to N2. Yak dung markedly (P?<?0.001) increased CH4 and CO2 emissions, likely being the main source of these two gases. The addition of sheep dung markedly (P?<?0.001) elevated CO2 emissions. Dung application significantly (P?<?0.01) increased global warming potential, particularly for alpine steppe soil. In conclusion, our findings suggest that yak and Tibetan sheep dung deposited on alpine grassland soils may increase GHG emissions.  相似文献   

8.
建立了环境内分泌干扰物辛基酚、壬基酚及短链壬基酚聚氧乙烯醚降解产物的高效液相色谱串联质谱分析方法。选择易受环境污染的玉米、白菜等农产品及目标物可能迁移到环境中的食品包装材料为研究对象,经过液液萃取、浓缩,乙腈甲苯(3:1)溶液溶解,经ENVITMCarblI/PSA氨基固相萃取柱净化,甲醇一二氯甲烷(4:3)溶液为洗脱液。采用Agilent ZORBAX RX-C18柱,以甲醇:10mmol·L^-1乙酸铵(9:1)为流动相,梯度洗脱分离后,在LC—MS/MS多反应监测模式下正负离子同时扫描进行定性与定量分析。结果表明,该方法对辛基酚、壬基酚、壬基酚一氧乙烯醚和壬基酚二氧乙烯醚的检出限分别为O.03、0.6、1.6、0.03μg·kg^-1,在不同基质中添加浓度为0.5-5μg·kg^-1的四种物质平均回收率在62%~113%之间。对实际样品进行检测时,在蔬菜和粮食作物及其包装材料中分别检测到不同含量的上述物质,表明该方法准确、快速、灵敏度高,可用于农产品和食品包装材料中该类物质的监控。  相似文献   

9.
Abstract

To evaluate the hypothesis that plant-mediated oxygen supplies decrease methane (CH4) production and total global warming potential (GWP) in a tropical peatland, the authors compared the fluxes and dissolved concentrations of greenhouse gases [GHGs; CH4, carbon dioxide (CO2) and nitrous oxide (N2O)] and dissolved oxygen (DO) at multiple peatland ecosystems in Central Kalimantan, Indonesia. Study ecosystems included tropical peat swamp forest and degraded peatland areas that were burned and/or drained during the rainy season. CH4 fluxes were significantly influenced by land use and drainage, which were highest in the flooded burnt sites (5.75 ± 6.66 mg C m?2 h?1) followed by the flooded forest sites (1.37 ± 2.03 mg C m?2 h?1), the drained burnt site (0.220 ± 0.143 mg C m?2 h?1), and the drained forest site (0.0084 ± 0.0321 mg C m?2 h?1). Dissolved CH4 concentrations were also significantly affected by land use and drainage, which were highest in the flooded burnt sites (124 ± 84 μmol L?1) followed by the drained burnt site (45.2 ± 29.8 μmol L?1), the flooded forest sites (1.15 ± 1.38 μmol L?1) and the drained forest site (0.860 ± 0.819 μmol L?1). DO concentrations were influenced by land use only, which were significantly higher in the forest sites (6.9 ± 5.6 μmol L?1) compared to the burnt sites (4.0 ± 2.9 μmol L?1). These results suggest that CH4 produced in the peat might be oxidized by plant-mediated oxygen supply in the forest sites. CO2 fluxes were significantly higher in the drained forest site (340 ± 250 mg C m?2 h?1 with a water table level of ?20 to ?60 cm) than in the drained burnt site (108 ± 115 mg C m?2 h?1 with a water table level of ?15 to +10 cm). Dissolved CO2 concentrations were 0.6–3.5 mmol L?1, also highest in the drained forest site. These results suggested enhanced CO2 emission by aerobic peat decomposition and plant respiration in the drained forest site. N2O fluxes ranged from ?2.4 to ?8.7 μg N m?2 h?1 in the flooded sites and from 3.4 to 8.1 μg N m?2 h?1 in the drained sites. The negative N2O fluxes might be caused by N2O consumption by denitrification under flooded conditions. Dissolved N2O concentrations were 0.005–0.22 μmol L?1 but occurred at < 0.01 μmol L?1 in most cases. GWP was mainly determined by CO2 flux, with the highest levels in the drained forest site. Despite having almost the same CO2 flux, GWP in the flooded burnt sites was 20% higher than that in the flooded forest sites due to the large CH4 emission (not significant). N2O fluxes made little contribution to GWP.  相似文献   

10.
Amending vegetable soils with organic materials is increasingly recommended as an agroecosystems management option to improve soil quality. However, the amounts of NO, N2O, and N2 emissions from vegetable soils treated with organic materials and frequent irrigation are not known. In laboratory-based experiments, soil from a NO 3 ? -rich (340 mg N?kg?1) vegetable field was incubated at 30°C for 30 days, with and without 10 % C2H2, at 50, 70, or 90 % water-holding capacity (WHC) and was amended at 1.19 g?C kg?1 (equivalent to 2.5 t?C ha?1) as Chinese milk vetch (CMV), ryegrass (RG), or wheat straw (WS); a soil not amended with organic material was used as a control (CK). At 50 % WHC, cumulative N2 production (398–524 μg N?kg?1) was significantly higher than N2O (84.6–190 μg N?kg?1) and NO (196–224 μg N?kg?1) production, suggesting the occurrence of denitrification under unsaturated conditions. Organic materials and soil water content significantly influenced NO emissions, but the effect was relatively weak since the cumulative NO production ranged from 124 to 261 μg N?kg?1. At 50–90 % WHC, the added organic materials did not affect the accumulated NO 3 ? in vegetable soil but enhanced N2O emissions, and the effect was greater by increasing soil water content. At 90 % WHC, N2O production reached 13,645–45,224 μg N?kg?1 from soil and could be ranked as RG?>?CMV?>?WS?>?CK. These results suggest the importance of preventing excess water in soil while simultaneously taking into account the quality of organic materials applied to vegetable soils.  相似文献   

11.
Particulate matter measurements (PM10, PM2.5) using a beta radiation attenuation monitor were performed at the Akrotiri research station (May 2003–March 2006) on the island of Crete (Greece). The mean PM10 concentration during the measuring period (05/02/03–03/09/04) was equal to 35.0?±?17.7 μg/m3 whereas the mean PM2.5 concentration (03/10/04–04/02/06) was equal to 25.4?±?16.5 μg/m3. The aerosol concentration at the Akrotiri station shows a large variability during the year. Mean concentrations of particulate matter undergo a seasonal change characterised by higher concentrations during summer [PM10, 38.7?±?10.8 μg/m3 (2003); PM2.5, 27.9?±?8.7 μg/m3 (2004) and 27.8?±?9.7 μg/m3 (2005)] and lower concentrations during winter [PM10, 28.7?±?22.5 μg/m3 (2003/2004); PM2.5, 21.0?±?13.0 μg/m3 (2004/2005) and 21.4?±?21.9 μg/m3 (2005/2006)]. Comparative measurements of the PM10 concentration between the beta radiation attenuation monitor, a standardized low volume gravimetric reference sampler and a low volume sequential particulate sampler showed that PM10 concentrations measured by the beta radiation attenuation monitor were higher than values given by the gravimetric samplers (mean ratio 1.17?±?0.11 and 1.21?±?0.08, respectively). Statistical and back trajectory analysis showed that elevated PM concentrations (PM10, 93.8?±?49.1 μg/m3; PM2.5: 102.9?±?59.9 μg/m3) are associated to desert dust events. In addition regional transport contributes significantly to the aerosol concentration levels whereas low aerosol concentrations were observed during storm episodes.  相似文献   

12.
Biogas must be pretreated before its use; thus, both physical and chemical methods have been implemented to remove the fuel’s principal pollutants (CO2 and H2S). Additional removal methods that use microorganisms’ biological processes to eliminate pollutants have also emerged. A selection was made from six bacterial isolates to obtain consortia that removed CO2 and eventually H2S through the enrichment of cultures and the construction of clone libraries of gene 16S ribosomal DNA (rDNA). The results indicate that the principal differences between consortia were determined in the culture medium. C5 and C6 consortia had photosynthetic biomass 1.42 and 1.52 μg/ml, respectively, and concentration of dissolved CO2 100.6 and 99.1 mg/l, respectively. The clone libraries showed that Rhodopseudomonas sp. had percentages 46.6, 42.5, and 86.8 % in C4, C5, and C6, respectively; Xanthobacter sp., 24.5 %, Castellaniella sp., 18 % in C5, and Sphingobium sp., 39.2 % in C4.  相似文献   

13.

Purpose

Rice-paddy-dominated watersheds in eastern China are intensively cultivated, and lands with two crops receive as much as 550–600 kg?ha–1?year–1 of nitrogen (N), mainly through the addition of N-based fertilizers. However, stream N concentrations have been found to be relatively low. Waterways in the watersheds are assumed to be effective “sinks” for N, minimizing its downstream movement. We directly measured net sediment denitrification rates in three types of waterways (ponds, streams/rivers, and a reservoir) and determined the key factors that control net sediment denitrification. Such information is essential for evaluating the impact of the agricultural N cycle on the quality of surface water.

Materials and methods

The pond–stream–reservoir continuum was sampled every 2 months at nine sites in an agricultural watershed between November 2010 and December 2011. Net sediment N2 fluxes/net sediment denitrification rates were determined by membrane inlet mass spectrometry and the N2/Ar technique. A suite of parameters known to influence denitrification were also measured.

Results and discussion

Net denitrification rates ranged between 28.2?±?18.2 and 674.3?±?314.5 μmol N2–N?m–2?h–1 for the streams, 23.7?±?23.9 and 121.2?±?38.7 μmol N2–N?m–2?h–1 for the ponds, and 41.8?±?17.7 and 239.3?±?49.8 μmol N2–N?m–2?h–1 for the reservoir. The mean net denitrification rate of the stream sites (173.2?±?248.4 μmol N2–N?m–2?h–1) was significantly higher (p?<?0.001) than that of the pond sites (48.3?±?44.5 μmol N2–N?m–2?h–1), and the three types of waterways all had significantly higher (p?<?0.01) mean net denitrification rates in summer than in other seasons. Linear regression and linear mixed effect model analysis showed that nitrate (NO3 ?–N) concentration in surface water was the primary controlling factor for net sediment denitrification, followed by water temperature. Using monitoring data on NO3 ?–N concentrations and temperature of the surface water of waterways and an established linear mixed effect model, total N removed through net sediment denitrification in the pond–stream–reservoir continuum was estimated at 46.8?±?24.0 t?year–1 from July 2007 to June 2009, which was comparable with earlier estimates based on the mass balance method (34.3?±?12.7 t?year–1), and accounted for 83.4 % of the total aquatic N. However, the total aquatic N was only 4.4 % of the total N input to the watershed, and thus most of the surplus N in the watershed was likely to be either denitrified or stored in soil.

Conclusions

High doses of N in a rice-paddy-dominated watershed did not lead to high stream N concentrations due to limited input of N into waterways and the high efficiency of waterways in removing N through denitrification.  相似文献   

14.
The goal of this research was the electrooxidation (EO) of a nonionic surfactant nonylphenol decaethoxylate (NP-10) in aqueous solution and denim wastewater. Three different configuration systems were evaluated in batch cells using a boron-doped diamond (BDD) anode; copper, iron, and BDD were used as cathodes. The EO process was carried out in a batch process, in a glass cell with a capacity of 1000 mL. The anode surface area was 0.0307 m2 and 1–3 A of current intensity were applied (3, 6, 10 mA/cm2) with an electrolysis time of 240 min for aqueous solution and 780 min for denim wastewater in order to investigate the degradation of the surfactant. The processes were analyzed in terms of chemical oxygen demand (COD) and total organic carbon (TOC). The maximum mineralization efficiency in aqueous solution for the BDD-Cu electrooxidation system was 92.2% for COD and 45.6% for TOC at pH 2 and 3 mA/cm2 of current intensity. For denim wastewater, the removal efficiency was 44.1% for COD and 26.5% for TOC at pH 4.5 and 6 mA/cm2 of current intensity, using a BDD-BDD system. The raw and treated (aqueous solution and denim) wastewater were characterized by UV-Vis and infrared spectroscopy.  相似文献   

15.
Black carbon (BC) is considered to be a promising novel material for controlling organic contaminants due to its strong adsorption property, low production cost, and less secondary pollution. However, seldom systemic research was conducted to investigate adsorption-desorption characteristics and interaction mechanism between BC and nonylphenol (NP), one kind of endocrine-disrupting contaminants (EDCs) and persistent organic pollutants (POPs). Therefore, in the present study, adsorption characteristics of NP on two BCs (rice straw black carbon (RC) and fly ash carbon (FC)) involving adsorption isotherm, kinetics, effect of pH, as well as desorption kinetics, were investigated to explore the feasibility of BC for remediation of NP pollution in a water environment. Adsorption isotherm data showed that Q max was 61,889.21 ± 2777.68 and 6538.99 ± 606.72 mg/kg and n was 0.39 ± 0.037 and 0.55 ± 0.043 for RC and FC, respectively, suggesting the sorption capacity and nonlinearity of RC to NP is far higher than FC and indicating BC was an effective sorbent for NP pollution control, especially RC. The pH affected BC sorption capacity to NP by influencing the surface properties of BC and the NP speciation together. Desorption kinetics data indicated that more than 80% NP could not be released from both BCs, suggesting that BC could reduce NP releasing risk in a water environment evidently when BC is applied for NP pollution remediation.
Graphical Abstract ?
  相似文献   

16.
Cassava is an important subsidiary food in the tropics. In Tamil Nadu, India, microbial cultures were used to eradicate the tuberous root rot of cassava. Hence, an experiment was conducted for two consecutive years to test the effects of coinoculation of microbes on soil properties. The surface soil from the experimental site was analysed for soil available nutrients, soil enzyme activities and microbial biomass carbon. The treatment of Azospirillum with Trichoderma at the 50% recommended N:P2O5:K2O (NPK) rate (50:25:50 kg ha?1) significantly increased soil available nitrogen (142.81 kg ha?1) by 72.66% over uninoculated control. There was a significant increase in available phosphorus in soil by the inoculation of AM (arbuscular mycorrhizal) fungi with Trichoderma at the 50% recommended NPK rate (41.04 kg ha?1) compared to other treatments. The application of Pseudomonas fluorescens with Trichoderma at the 50% recommended NPK rate significantly increased available iron (19.34 µg g?1) in soil. The treatment of Azospirillum with Trichoderma increased urease enzyme activity at the recommended NPK rate (816.32 μg urea hydrolyzed g?1 soil h?1). Soil application of all cultures at the 50% recommended NPK rate significantly increased dehydrogenase activity (88.63 μg TPF g?1 soil) and β-glucosidase activity (48.82 μg PNP g?1 soil) in soil. Inoculation of Trichoderma alone at the 50% recommended NPK rate significantly increased microbial biomass carbon (3748.85 μg g?1 soil). Thus, the microbial inoculations significantly increased soil available nutrient contents, enzyme activities such as urease, dehydrogenase and β-glucosidase activity and microbial biomass carbon by reducing the amount of the required fertilizer.  相似文献   

17.
Variation of mercury (Hg) in sediments and biota from Coatzacoalcos estuary during the dry, rainy and windy seasons was estimated. In sediments, Hg concentrations ranged from 0.07 μg g?1 in site 13 (Ixhuatepec) located upstream, to 1.06 μg g?1 in site 3 (Coatzacoalcos river), located in the industrialized area. Highest enrichment factor (EF) and index of geoaccumulation (I geo) in surficial sediments were 53 and 5.1 respectively. From EF and I geo, it is considered that Coatzacoalcos estuary is from moderately contaminated to contaminated. In most fish species from Coatzacoalcos estuary, the sequence of Hg concentration was liver>muscle>gills. Average Hg concentrations in soft tissue of bivalves ranged from 0.09 μg g?1 in Corbicula fluminea to 0.18 μg g?1 in Polymesoda caroliniana. Biota-sediment accumulation factor (BSAF) ranged from 0.9 in P. caroliniana during the rainy season (site 4) to 3.8 in P. caroliniana from the same site during the windy season.  相似文献   

18.
Diazinon Mitigation in Constructed Wetlands: Influence of Vegetation   总被引:1,自引:0,他引:1  
In intensively cultivated areas, agriculture is a significant source of pesticides associated with storm runoff. When these pollutants enter aquatic receiving waters, they have potential to damage nearby aquatic ecosystems. Constructed wetlands are a best management practice (BMP) designed to help alleviate this potential problem. A constructed wetland system (180?×?30 m) comprised of a sediment retention basin and two treatment cells was used to determine fate and transport of a simulated storm runoff event containing the insecticide diazinon and suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results indicated that 43% of the study’s measured diazinon mass was associated with plant material, while 23 and 34% were measured in sediment and water, respectively. Mean diazinon concentrations in water, sediment, and plants for the 55-d study were 18.1?±?4.5 μg/l, 26.0?±?8.0 μg/kg, and 97.8?±?10.7 μg/kg, respectively. Aqueous concentrations fluctuated in the wetlands between 51–86 μg/l for the first 4 h of the experiment; however, by 9 h, aqueous concentrations were approximately 16 μg/l. During the 55 d experiment, 0.3 m of rainfall contributed to fluctuations in diazinon concentrations. Results of this experiment can be used to model future design specifications for mitigation of diazinon and other pesticides.  相似文献   

19.
The evaluation of DNA damage in aquatic organisms represents one of the most widely used biomarkers in the assessment and monitoring of marine pollution. Our previous research highlighted the presence of DNA damage in hepatic nuclei and blood cells of Coris julis specimens collected from Augusta harbor (Syracuse, Italy), a site highly polluted. In this work, we investigated on the ability of different natural compounds with antioxidant and immunostimulating properties, such as resveratrol (50 μM, 100 μM), amygdalin (100 μM, 200 μM), and Urtica dioica roots extract (50 and/or 100 μg/ml), in reducing DNA damage of C. julis. Blood cells were analyzed by atypical cellular comet assay. The results confirmed that Augusta specimens are the most damaged and showed that resveratrol, followed by amygdalin and U. dioica roots extract, drastically reduced DNA damage. This finding evidences the effectiveness of three natural compounds for DNA protection suggesting the possible use of feed enriched with antioxidant compounds in aquaculture practices for organisms damaged by natural and anthropic insults.  相似文献   

20.
Relative control of soil moisture [30, 60, and 80 percent water-holding capacity (WHC)] on nitrous oxide (N2O) emissions from Fargo-Ryan soil, treated with urea at 0, 150, and 250 kg N ha?1 with and without nitrapyrin [2-chloro-(6-trichloromethyl) pyridine] (NP), was measured under laboratory condition for 140 days. Soil N2O emissions significantly increased with increasing nitrogen (N) rates and WHC levels. Urea applied at 250 kg N ha?1 produced the greatest cumulative N2O emissions and averaged 560, 3919, and 15894 µg kg?1 at 30, 60, and 80 percent WHC, respectively. At WHC ≤ 60 percent, addition of NP to urea significantly reduced N2O losses by 2.6- to 4.8-fold. Additions of NP to urea reduced N2O emission at rates similar to the control (0 N) until 48 days for 30 percent WHC and 35 days for 60 and 80 percent WHC. These results can help devise urea-N fertilizer management strategies in reducing N2O emissions from silty-clay soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号