首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Objective

To determine plasma bupivacaine concentrations after retrobulbar or peribulbar injection of bupivacaine in cats.

Study design

Randomized, crossover, experimental trial with a 2 week washout period.

Animals

Six adult healthy cats, aged 1–2 years, weighing 4.6 ± 0.7 kg.

Methods

Cats were sedated by intramuscular injection of dexmedetomidine (36–56 μg kg?1) and were administered a retrobulbar injection of bupivacaine (0.75 mL, 0.5%; 3.75 mg) and iopamidol (0.25 mL), or a peribulbar injection of bupivacaine (1.5 mL, 0.5%; 7.5 mg), iopamidol (0.5 mL) and 0.9% saline (1 mL) via a dorsomedial approach. Blood (2 mL) was collected before and at 5, 10, 15, 22, 30, 45, 60, 120, 240 and 480 minutes after bupivacaine injection. Atipamezole was administered approximately 30 minutes after bupivacaine injection. Plasma bupivacaine and 3-hydroxybupivacaine concentrations were determined using liquid chromatography–mass spectrometry. Bupivacaine maximum plasma concentration (Cmax) and time to Cmax (Tmax) were determined from the data.

Results

The bupivacaine median (range) Cmax and Tmax were 1.4 (0.9–2.5) μg mL?1 and 17 (4–60) minutes, and 1.7 (1.0–2.4) μg mL?1, and 28 (8–49) minutes, for retrobulbar and peribulbar injections, respectively. In both treatments the 3-hydroxybupivacaine peak concentration was 0.05–0.21 μg mL?1.

Conclusions and clinical relevance

In healthy cats, at doses up to 2 mg kg?1, bupivacaine peak plasma concentrations were approximately half that reported to cause arrhythmias or convulsive electroencephalogram (EEG) activity in cats, and about one-sixth of that required to produce hypotension.  相似文献   

2.
Kumar, V., Madabushi, R., Lucchesi, M. B. B., Derendorf, H. Pharmacokinetics of cefpodoxime in plasma and subcutaneous fluid following oral administration of cefpodoxime proxetil in male beagle dogs. J. vet. Pharmacol. Therap. 34 , 130–135. Pharmacokinetics of cefpodoxime in plasma (total concentration) and subcutaneous fluid (free concentration using microdialysis) was investigated in dogs following single oral administration of prodrug cefpodoxime proxetil (equivalent to 5 and 10 mg/kg of cefpodoxime). In a cross over study design, six dogs per dose were utilized after a 1 week washout period. Plasma, microdialysate, and urine samples were collected upto 24 h and analyzed using high performance liquid chromatography. The average maximum concentration (Cmax) of cefpodoxime in plasma was 13.66 (±6.30) and 27.14 (±4.56) μg/mL with elimination half‐life (t1/2) of 3.01 (±0.49) and 4.72 (±1.46) h following 5 and 10 mg/kg dose, respectively. The respective average area under the curve (AUC0–∞) was 82.94 (±30.17) and 107.71 (±30.79) μg·h/mL. Cefpodoxime was readily distributed to skin and average free Cmax in subcutaneous fluid was 1.70 (±0.55) and 3.06 (±0.93) μg/mL at the two doses. Urinary excretion (unchanged cefpodoxime) was the major elimination route. Comparison of subcutaneous fluid concentrations using pharmacokinetic/pharmacodynamic indices of fT>MIC indicated that at 10 mg/kg dose; cefpodoxime would yield good therapeutic outcome in skin infections for bacteria with MIC50 upto 0.5 μg/mL while higher doses (or more frequent dosing) may be needed for bacteria with higher MICs. High urine concentrations suggested cefpodoxime use for urinary infections in dogs.  相似文献   

3.
Malreddy, P. R., Coetzee, J. F., KuKanich, B., Gehring, R. Pharmacokinetics and milk secretion of gabapentin and meloxicam co‐administered orally in Holstein‐Friesian cows. J. vet. Pharmacol. Therap.  36 , 14–20. Management of neuropathic pain in dairy cattle could be achieved by combination therapy of gabapentin, a GABA analog and meloxicam, an nonsteroidal anti‐inflammatory drug. This study was designed to determine specifically the depletion of these drugs into milk. Six animals received meloxicam at 1 mg/kg and gabapentin at 10 mg/kg, while another group (n = 6) received meloxicam at 1 mg/kg and gabapentin at 20 mg/kg. Plasma and milk drug concentrations were determined over 7 days postadministration by HPLC/MS followed by noncompartmental pharmacokinetic analyses. The mean (±SD) plasma Cmax and Tmax for meloxicam (2.89 ± 0.48 μg/mL and 11.33 ± 4.12 h) were not much different from gabapentin at 10 mg/kg (2.87 ± 0.2 μg/mL and 8 ± 0 h). The mean (±SD) milk Cmax for meloxicam (0.41 ± 80.16 μg/mL) was comparable to gabapentin at 10 mg/kg (0.63 ± 0.13 μg/mL and 12 ± 6.69 h). The mean plasma and milk Cmax for gabapentin at 20 mg/kg P.O. were almost double the values at 10 mg/kg. The mean (±SD) milk to plasma ratio for meloxicam (0.14 ± 0.04) was lower than for gabapentin (0.23 ± 0.06). The results of this study suggest that milk from treated cows will have low drug residue concentration soon after plasma drug concentrations have fallen below effective levels.  相似文献   

4.
Flunixin meglumine (FM, 1.1 mg/kg) and phenylbutazone (PBZ, 4.4 mg/kg) were administered intravenously (i.v.) as a single dose to eight sheep prepared with subcutaneous (s.c.) tissue-cages in which an acute inflammatory reaction was stimulated with carrageenan. Pharmacokinetics of FM, PBZ and its active metabolite oxyphenbutazone (OPBZ) in plasma, exudate and transudate were investigated. Plasma kinetics showed that FM had an elimination half-life (t½β) of 2.48 ± 0.12 h and an area under the concentration – time curve (AUC) of 30.61 ± 3.41 μg/mL.h. Elimination of PBZ from plasma was slow (t½β = 17.92 ± 1.74 h, AUC = 968.04 ± μg/mL.h.). Both FM and PBZ distributed well into exudate and transudate although penetration was slow, indicated by maximal drug concentration (Cmax) for FM of 1.82 ± 0.22 μg/mL at 5.50 ± 0.73 h (exudate) and 1.58 ± 0.30 μg/mL at 8.00 h (transudate), and Cmax for PBZ of 22.32 ± 1.29 μg/mL at 9.50 ± 0.73 h (exudate) and 22.07 ± 1.57 μg/mL at 11.50 ± 1.92 h (transudate), and a high mean tissue-cage fluids:plasma AUClast ratio obtained in the FM and PBZ groups (80–98%). These values are higher than previous reports in horses and calves using the same or higher dose rates. Elimination of FM and PBZ from exudate and transudate was slower than from plasma. Consequently the drug concentrations in plasma were initially higher and subsequently lower than in exudate and transudate.  相似文献   

5.
The target of the present study was to investigate the plasma disposition kinetics of levofloxacin in stallions (n = 6) following a single intravenous (i.v.) bolus or intramuscular (i.m.) injection at a dose rate of 4 mg/kg bwt, using a two‐phase crossover design with 15 days as an interval period. Plasma samples were collected at appropriate times during a 48‐h administration interval, and were analyzed using a microbiological assay method. The plasma levofloxacin disposition was best fitted to a two‐compartment open model after i.v. dosing. The half‐lives of distribution and elimination were 0.21 ± 0.13 and 2.58 ± 0.51 h, respectively. The volume of distribution at steady‐state was 0.81 ± 0.26 L/kg, the total body clearance (Cltot) was 0.21 ± 0.18 L/h/kg, and the areas under the concentration–time curves (AUCs) were 18.79 ± 4.57 μg.h/mL. Following i.m. administration, the mean t1/2el and AUC values were 2.94 ± 0.78 h and 17.21 ± 4.36 μg.h/mL. The bioavailability was high (91.76% ± 12.68%), with a peak plasma mean concentration (Cmax) of 2.85 ± 0.89 μg/mL attained at 1.56 ± 0.71 h (Tmax). The in vitro protein binding percentage was 27.84%. Calculation of efficacy predictors showed that levofloxacin might have a good therapeutic profile against Gram‐negative and Gram‐positive bacteria, with an MIC ≤ 0.1 μg/mL.  相似文献   

6.
Bistoletti, M., Alvarez, L., Lanusse, C., Moreno, L. Disposition kinetics of albendazole and metabolites in laying hens. J. vet. Pharmacol. Therap.  36 , 161–168. An increasing prevalence of roundworm parasites in poultry, particularly in litter‐based housing systems, has been reported. However, few anthelmintic drugs are commercially available for use in avian production systems. The anthelmintic efficacy of albendazole (ABZ) in poultry has been demonstrated well. The goal of this work was to characterize the ABZ and metabolites plasma disposition kinetics after treatment with different administration routes in laying hens. Twenty‐four laying hens Plymouth Rock Barrada were distributed into three groups and treated with ABZ as follows: intravenously at 10 mg/kg (ABZ i.v.); orally at the same dose (ABZ oral); and in medicated feed at 10 mg/kg·day for 7 days (ABZ feed). Blood samples were taken up to 48 h posttreatment (ABZ i.v. and ABZ oral) and up to 10 days poststart feed medication (ABZ feed). The collected plasma samples were analyzed using high‐performance liquid chromatography. ABZ and its albendazole sulphoxide (ABZSO) and ABZSO2 metabolites were recovered in plasma after ABZ i.v. administration. ABZ parent compound showed an initial concentration of 16.4 ± 2.0 μg/mL, being rapidly metabolized into the ABZSO and ABZSO2 metabolites. The ABZSO maximum concentration (Cmax) (3.10 ± 0.78 μg/mL) was higher than that of ABZSO2Cmax (0.34 ± 0.05 μg/mL). The area under the concentration vs time curve (AUC) for ABZSO (21.9 ± 3.6 μg·h/mL) was higher than that observed for ABZSO2 and ABZ (7.80 ± 1.02 and 12.0 ± 1.6 μg·h/mL, respectively). The ABZ body clearance (Cl) was 0.88 ± 0.11 L·h/kg with an elimination half‐life (T1/2el) of 3.47 ± 0.73 h. The T1/2el for ABZSO and ABZSO2 were 6.36 ± 1.50 and 5.40 ± 1.90 h, respectively. After ABZ oral administration, low ABZ plasma concentrations were measured between 0.5 and 3 h posttreatment. ABZ was rapidly metabolized to ABZSO (Cmax, 1.71 ± 0.62 μg/mL) and ABZSO2 (Cmax, 0.43 ± 0.04 μg/mL). The metabolite systemic exposure (AUC) values were 18.6 ± 2.0 and 10.6 ± 0.9 μg·h/mL for ABZSO and ABZSO2, respectively. The half‐life values after ABZ oral were similar (5.91 ± 0.60 and 5.57 ± 1.19 h for ABZSO and ABZSO2, respectively) to those obtained after ABZ i.v. administration. ABZ was not recovered from the bloodstream after ABZ feed administration. AUC values of ABZSO and ABZSO2 were 61.9 and 92.4 μg·h/mL, respectively. The work reported here provides useful information on the pharmacokinetic behavior of ABZ after both i.v. and oral administrations in hens, which is a useful first step to evaluate its potential as an anthelmintic tool for use in poultry.  相似文献   

7.
Javsicas, LH., Giguère, S., Womble, AY. Disposition of oral telithromycin in foals and in vitro activity of the drug against macrolide‐susceptible and macrolide‐resistant Rhodococcus equi isolates. J. vet. Pharmacol. Therap. doi: 10.1111/j.1365‐2885.2009.01151.x. The objectives of this study were to determine the serum and pulmonary disposition of telithromycin in foals and to determine the minimum inhibitory concentration (MIC) of telithromycin against macrolide‐susceptible and macrolide‐resistant Rhodococcus equi isolates. A single dose of telithromycin (15 mg/kg of body weight) was administered to six healthy 6–10‐week‐old foals by the intragastric route. Activity of telithromycin was measured in serum, pulmonary epithelial lining fluid (PELF), and bronchoalveolar lavage (BAL) cells using a microbiological assay. The broth macrodilution method was used to determine the MIC of telithromycin, azithromycin, clarithromycin and erythromycin against R. equi. Following intragastric administration, mean ± SD time to peak serum telithromycin activity (Tmax) was 1.75 ± 0.76 h, maximum serum activity (Cmax) was 1.43 ± 0.37 μg/mL, and terminal half‐life (t½) was 3.81 ± 0.40 h. Telithromycin activity, 4 h postadministration was significantly higher in BAL cells (50.9 ± 14.5 μg/mL) than in PELF (5.07 ± 2.64 μg/mL), and plasma (0.84 ± 0.25 μg/mL). The MIC90 of telithromycin for macrolide‐resistant R. equi isolates (8 μg/mL) was significantly higher than that of macrolide‐susceptible isolates (0.25 μg/mL). The MIC of telithromycin for macrolide‐resistant isolates (MIC50 = 4.0 μg/mL) was significantly lower than that of clarithromycin (MIC50 = 24.0 μg/mL), azithromycin (MIC50 =256 μg/mL) and erythromycin (MIC50 = 24 μg/mL).  相似文献   

8.
Objective—To determine the plasma concentrations and cardiovascular changes that occur in healthy dogs and dogs with aortic stenosis that are given an infusion of lidocaine during isoflurane anesthesia. Study Design—Phase 1, controlled randomized cross-over trial; Phase 2, before and after trial Animals—Phase 1, 6 healthy dogs (4 female, 2 male) weighing 23.8 ± 7.4 kg; Phase 2, 7 dogs (4 female, 3 male) with moderate to severe subaortic stenosis (confirmed by Doppler echocardiography) weighing 31.1 ± 14.5 kg. Methods—After mask induction, intubation, and institution of positive pressure ventilation, instrumentation was performed to measure hemodynamic variables. After baseline, measurement at an end-tidal isoflurane concentration of 1.9% (phase 1) or 1.85% (phase 2), a loading dose infusion of lidocaine at 400 μg/kg/min was given. Phase 1: Maintenance doses of lidocaine were administered consecutively (40, 120, and 200 μg/kg/min) after the loading dose (given for 10, 10, and 5 minutes, respectively) in advance of each maintenance concentrations. Measurements were taken at the end of each loading dose and at 25 and 35 minutes during each maintenance level. The same animals on a different day were given dextrose 5% and acted as the control. Phase 2: Dogs were studied on a single occasion during an infusion of lidocaine at 120 μg/kg/ min given after the loading dose (10 minutes). Measurements occurred after the loading dose and at 25 and 35 minutes. A blood sample for lidocaine concentration was taken at 70 minutes. Data were compared using a one-way ANOVA for phase 1, and between phase 1 and 2. Statistical analysis for phase 2 was performed using a paired r-test with a Bonferroni correction. A P value ± .05 was considered significant. Results—Phase 1: Plasma lidocaine concentrations achieved with 40, 120, and 200 μg of lidocaine/kg/min were 2.70, 5.27, and 7.17 μg/mL, respectively. A significant increase in heart rate (HR) (all concentrations), central venous pressure (CVP), mean pulmonary areterial pressure (PAP), and a decrease in stroke index (SI) (200 μg/kg/min) were observed. An increase in systemic vascular resistance (SVR) and mean PAP, and a decrease in SI also followed the loading dose given before the 200 μg/kg/min infusion. No other significant differences from the control measurements, during dextrose 5% infusion alone, were detected. Phase 2: Plasma lidocaine concentrations achieved were 5.35, 4.23, 4.23, and 5.60 μg/mL at 10, 25, 35, and 70 minutes, respectively. They were not significantly different from concentrations found in our healthy dogs at the same infusions. A significant but small increase in CVP compared with baseline was noted after the loading dose. There were no significant differences from baseline shown in all other cardiovascular data. There were no statistically significant differences in any measurements taken during the lidocaine infusion between the dogs in phase 1 and phase 2. Dogs with aortic stenosis tended to have a lower cardiac index than healthy dogs at baseline (88 v 121 mL/kg/min) and during lidocaine infusion (81 v 111 mL/kg/min). A small, statistically significant difference in systolic PAP was present at baseline. Conclusions—There does not appear to be any detrimental cardiovascular effects related to an infusion of lidocaine at 120 μg/kg/min during isoflurane anesthesia in healthy dogs or dogs with aortic stenosis. The technique used in this study resulted in therapeutic plasma concentrations of lidocaine. Clinical Relevance—Methods shown in the study can be used in clinical cases to achieve therapeutic lidocaine levels without significant cardiovascular depression during isoflurane anesthesia.  相似文献   

9.
The purpose of this study was to determine an oral dosing regimen of zonisamide in healthy dogs such that therapeutic concentrations would be safely reached and maintained at steady‐state. Adult hound dogs (n = 8) received a single IV (6.9) and an oral (PO) dose (10.3 mg/kg) using a randomized cross‐over design. Zonisamide was then administered at 10.3 mg/kg PO every 12 h for 8 weeks. Zonisamide was quantitated in blood compartments or urine by HPLC and data were subjected to noncompartmental pharmacokinetic analysis. Comparisons were made among blood compartments (one‐way anova ; P ≤ 0.05). Differences among blood compartments occurred in all derived pharmacokinetic paramenters for each route of administration after single and multiple dosing. After single PO dosing, plasma Cmax was 14.4 ± 2.3 mcg/mL and elimination half‐life was 17.2 ± 3.6 h. After IV dosing, volume of distribution was 1.1 ± 0.25 L/kg, clearance was 58 ± 11 mL/h/kg and elimination t1/2 was 12.9 ± 3.6 h. Oral bioavailability was 68 ± 12%; fraction of unbound drug approximated 60%. At steady‐state (4 days), differences occurred for for all parameters except Cmax and Cmin. Plasma Cmax at steady‐state was 56 ± 12 mcg/mL, with 10% fluctuation between Cmax and Cmin. Plasma t1/2 (h) was 23.52 ± 5.76 h. Clinical laboratory tests remained normal, with the exception of total T4, which was below normal limits at study end. In conclusion, 10 mg/kg twice daily results in peak plasma zonisamide which exceeds the recommended human therapeutic range (10 to 40 μg/mL) and is associated with suppression of thyroid hormone synthesis. A reasonable b.i.d starting dose for canine epileptics would be 3 mg/kg. Zonisamide monitored in either serum or plasma should be implemented at approximately 7 days.  相似文献   

10.
Intra‐articular bupivacaine helps alleviate pain in animals receiving joint surgery, but its use has become controversial as ex vivo studies have illuminated the potential for chondrotoxicity. Such studies typically involve cell cultures incubated in solutions containing high bupivacaine concentrations for long durations. The aim of this study was to measure the actual synovial fluid bupivacaine concentrations after intra‐articular injection. Eight healthy beagles with normal stifles and 22 large and giant‐breed dogs with stifle osteoarthritis (OA) were treated with a single intra‐articular injection of bupivacaine (1 mg/kg) into a stifle. Joint fluid samples were taken from the treated stifle immediately after injection and 30 min after injection and analyzed for bupivacaine concentrations. Immediately after injection, the median bupivacaine concentrations in normal and OA stifles were 3.6 and 2.5 mg/mL, respectively. Thirty minutes after injection, bupivacaine concentrations in normal and OA stifles were 0.4 and 0.6 mg/mL, respectively. These results provide insight into the pharmacokinetics of bupivacaine after injection into a joint. Given its immediate dilution and rapid drop in synovial fluid concentration, bupivacaine is unlikely to damage chondrocytes when administered as a single intra‐articular injection.  相似文献   

11.
Zhao, Z., Xue, F., Zhang, L., Zhang, K., Fei, C., Zheng, W., Wang, X., Wang, M., Zhao, Z., Meng, X. The pharmacokinetics of nitazoxanide active metabolite (tizoxanide) in goats and its protein binding ability in vitro. J. vet. Pharmacol. Therap. 33 , 147–153. The pharmacokinetics of tizoxanide (T), the active metabolite of nitazoxanide (NTZ), and its protein binding ability in goat plasma and in the solutions of albumin and α‐1‐acid‐glycoprotein were investigated. The plasma and protein binding samples were analyzed using a high‐performance liquid chromatography (HPLC) assay with UV detection at 360 nm. The plasma concentration of T was detectable in goats up to 24 h. Plasma concentrations vs. time data of T after 200 mg/kg oral administration of NTZ in goats were adequately described by one‐compartment open model with first order absorption. As to free T, the values of t1/2Ka, t1/2Ke, Tmax, Cmax, AUC, V/F(c), and Cl(s) were 2.51 ± 0.41 h, 3.47 ± 0.32 h, 4.90 ± 0.13 h, 2.56 ± 0.25 μg/mL, 27.40 ± 1.54 (μg/mL) × h, 30.17 ± 2.17 L/kg, and 7.34 ± 1.21 L/(kg × h), respectively. After β‐glucuronidase hydrolysis to obtain total T, t1/2ke, Cmax, Tmax, AUC increased, while the V/F(c) and Cl(s) decreased. Study of the protein binding ability showed that T with 4 μg/mL concentration in goat plasma and in the albumin solution achieved a protein binding percentage of more than 95%, while in the solution of α‐1‐acid‐glycoprotein, the percentage was only about 49%. This result suggested that T might have much more potent binding ability with albumin than with α‐1‐acid‐glycoprotein, resulting from its acidic property.  相似文献   

12.
Intravenous benzodiazepines are utilized as first‐line drugs to treat prolonged epileptic seizures in dogs and alternative routes of administration are required when venous access is limited. This study compared the pharmacokinetics of midazolam after intravenous (IV), intramuscular (IM), and rectal (PR) administration. Six healthy dogs were administered 0.2 mg/kg midazolam IV, IM, or PR in a randomized, 3‐way crossover design with a 3‐day washout between study periods. Blood samples were collected at baseline and at predetermined intervals until 480 min after administration. Plasma midazolam concentrations were measured by high‐pressure liquid chromatography with UV detection. Rectal administration resulted in erratic systemic availability with undetectable to low plasma concentrations. Arithmetic mean values ± SD for midazolam peak plasma concentrations were 0.86 ± 0.36 μg/mL (C0) and 0.20 ± 0.06 μg/mL (Cmax), following IV and IM administration, respectively. Time to peak concentration (Tmax) after IM administration was 7.8 ± 2.4 min with a bioavailability of 50 ± 16%. Findings suggest that IM midazolam might be useful in treating seizures in dogs when venous access is unavailable, but higher doses may be needed to account for intermediate bioavailability. Rectal administration is likely of limited efficacy for treating seizures in dogs.  相似文献   

13.
Terbinafine is an allylamine antifungal prescribed for the treatment of mycoses in humans. It is increasingly being used in veterinary patients. The purpose of this study was to evaluate the pharmacokinetic properties of terbinafine in dogs after a single oral dose. Ten healthy adult dogs were included in the study. A single dose of terbinafine (30–35 mg/kg) was administered orally, and blood samples were periodically collected over a 24 h period during which dogs were monitored for adverse effects. Two of 10 dogs developed transient ocular changes. A high‐performance liquid chromatography assay was developed and used to determine plasma terbinafine concentrations. Pharmacokinetic analysis was performed using PK Solutions® computer software. Area under the curve (AUC) from time 0 to 24 h was 15.4 μg·h/mL (range 5–27), maximal plasma concentration (Cmax) was 3.5 μg/mL (range 3–4.9 μg/mL) and time to Cmax (Tmax) was 3.6 h (range 2–6 h). The time above minimal inhibitory concentration (T > MIC) as well as AUC/MIC was calculated for important invasive fungal pathogens and dermatophytes. The T > MIC was 17–18 h for Blastomyces dermatitidis, Histoplasma capsulatum and dermatophytes (Microsporum spp. and Trichophyton mentagrophytes), while the MIC for Sporothrix schenckii and Coccidioides immitis was exceeded for 9.5–11 h. The AUC/MIC values ranged from 9 to 13 μg h/mL for these fungi. Our results provide evidence supporting the use of terbinafine as an oral therapeutic agent for treating systemic and subcutaneous mycoses in dogs.  相似文献   

14.
Lucas, M. F., Errecalde, J. O., Mestorino, N. Pharmacokinetics of azithromycin in lactating dairy cows with subclinical mastitis caused by Staphylococcus aureus. J. vet. Pharmacol. Therap. 33 , 132–140. Azithromycin is a time‐dependent antimicrobial with long persistence. The main characteristics of azithromycin suggest that it could be useful for treating bovine mastitis caused by Staphylococcus aureus. To investigate this possibility, its pharmacokinetic (PK) behavior was studied. Six Holstein lactating cows with subclinical mastitis were administered two 10 mg/kg intramuscular (i.m.) doses of azithromycin, with a 48‐h interval. Milk and plasma concentrations were measured by microbiological assay. The MIC90 was determined in 51 S. aureus isolations to calculate pharmacokinetic/pharmacodynamic (PK/PD) parameters. Milk maximal concentration (Cmax) was 7.76 ± 1.76 μg/mL (16.67 h post‐first administration) and 7.82 ± 2.18 μg/mL (14 h post‐2nd administration). In plasma Cmax was 0.18 ± 0.03 μg/mL (2 h post‐1rst administration) and 0.11 ± 0.03 μg/mL (14 h post‐2nd administration). Azithromycin was eliminated from the milk with a half‐life (T½λ) of 158.26 ± 137.7 h after 2nd administration, meanwhile plasma T½λ resulted shorter(13.97 ± 11.1 h). The mean area under the concentration vs. time curve from 0 to 24 h (AUC0‐24h) was 153.82 ± 34.66 μg·h/mL in milk secretion and 2.61 ± 0.59 μg·h/mL in plasma. Infection presence in the quarters had a significant effect (P < 0.05) on the area under the concentration vs. time curve from 0 to infinity (AUC0‐) and clearance from the mammary gland (Clmam/F). Moreover, it had influence on milk bioavailability (Fmilk), T½λ, AUC0‐ and mean residence time (MRT) in milk, which values resulted increased in mastitic quarters. In this study, it was determined that the production level and the mammary health status have an influence on PK parameters of azithromycin treatments in bovine mastitis.  相似文献   

15.
Holmes, K., Bedenice, D., Papich, M. G. Florfenicol pharmacokinetics in healthy adult alpacas after subcutaneous and intramuscular injection. J. vet. Pharmacol. Therap.  35 , 382–388. A single dose of florfenicol (Nuflor®) was administered to eight healthy adult alpacas at 20 mg/kg intramuscular (i.m.) and 40 mg/kg subcutaneous (s.c.) using a randomized, cross‐over design, and 28‐day washout period. Subsequently, 40 mg/kg florfenicol was injected s.c. every other day for 10 doses to evaluate long‐term effects. Maximum plasma florfenicol concentrations (Cmax, measured via high‐performance liquid chromatography) were achieved rapidly, leading to a higher Cmax of 4.31 ± 3.03 μg/mL following administration of 20 mg/kg i.m. than 40 mg/kg s.c. (Cmax: 1.95 ± 0.94 μg/mL). Multiple s.c. dosing at 48 h intervals achieved a Cmax of 4.48 ± 1.28 μg/mL at steady state. The area under the curve and terminal elimination half‐lives were 51.83 ± 11.72 μg/mL·h and 17.59 ± 11.69 h after single 20 mg/kg i.m. dose, as well as 99.78 ± 23.58 μg/mL·h and 99.67 ± 59.89 h following 40 mg/kg injection of florfenicol s.c., respectively. Florfenicol decreased the following hematological parameters after repeated administration between weeks 0 and 3: total protein (6.38 vs. 5.61 g/dL, P < 0.0001), globulin (2.76 vs. 2.16 g/dL, P < 0.0003), albumin (3.61 vs. 3.48 g/dL, P = 0.0038), white blood cell count (11.89 vs. 9.66 × 103/μL, P < 0.044), and hematocrit (27.25 vs. 24.88%, P < 0.0349). Significant clinical illness was observed in one alpaca. The lowest effective dose of florfenicol should thus be used in alpacas and limited to treatment of highly susceptible pathogens.  相似文献   

16.
Cefuroxime pharmacokinetic profile was investigated in 6 Beagle dogs after single intravenous, intramuscular, and subcutaneous administration at a dosage of 20 mg/kg. Blood samples were withdrawn at predetermined times over a 12‐h period. Cefuroxime plasma concentrations were determined by HPLC. Data were analyzed by compartmental analysis. Peak plasma concentration (Cmax), time‐to‐peak plasma concentration (Tmax), and bioavailability for the intramuscular and subcutaneous administration were (mean ± SD) 22.99 ± 7.87 μg/mL, 0.43 ± 0.20 h, and 79.70 ± 14.43% and 15.37 ± 3.07 μg/mL, 0.99 ± 0.10 h, and 77.22 ± 21.41%, respectively. Elimination half‐lives and mean residence time for the intravenous, intramuscular, and subcutaneous administration were 1.12 ± 0.19 h and 1.49 ± 0.21 h; 1.13 ± 0.13 and 1.79 ± 0.24 h; and 1.04 ± 0.23 h and 2.21 ± 0.23 h, respectively. Significant differences were found between routes for Ka, MAT, Cmax, Tmax, t½(a), and MRT. T > MIC = 50%, considering a MIC of 1 μg/mL, was 11 h for intravenous and intramuscular administration and 12 h for the subcutaneous route. When a MIC of 4 μg/mL is considered, T > MIC = 50% for intramuscular and subcutaneous administration was estimated in 8 h.  相似文献   

17.
Albarellos, G. A., Montoya, L., Denamiel, G. A. A., Velo, M. C., Landoni, M. F. Pharmacokinetics and bone tissue concentrations of lincomycin following intravenous and intramuscular administrations to cats. J. vet. Pharmacol. Therap.  35 , 534–540. The pharmacokinetic properties and bone concentrations of lincomycin in cats after single intravenous and intramuscular administrations at a dosage rate of 10 mg/kg were investigated. Lincomycin minimum inhibitory concentration (MIC) for some gram‐positive strains isolated from clinical cases was determined. Serum lincomycin disposition was best‐fitted to a bicompartmental and a monocompartmental open models with first‐order elimination after intravenous and intramuscular dosing, respectively. After intravenous administration, distribution was rapid (T1/2(d) = 0.22 ± 0.09 h) and wide as reflected by the volume of distribution (V(d(ss))) of 1.24 ± 0.08 L/kg. Plasma clearance was 0.28 ± 0.09 L/h·kg and elimination half‐life (T1/2) 3.56 ± 0.62 h. Peak serum concentration (Cmax), Tmax, and bioavailability for the intramuscular administration were 7.97 ± 2.31 μg/mL, 0.12 ± 0.05 h, and 82.55 ± 23.64%, respectively. Thirty to 45 min after intravenous administration, lincomycin bone concentrations were 9.31 ± 1.75 μg/mL. At the same time after intramuscular administration, bone concentrations were 3.53 ± 0.28 μg/mL. The corresponding bone/serum ratios were 0.77 ± 0.04 (intravenous) and 0.69 ± 0.18 (intramuscular). Lincomycin MIC for Staphylococcus spp. ranged from 0.25 to 16 μg/mL and for Streptococcus spp. from 0.25 to 8 μg/mL.  相似文献   

18.
Objective—To determine the neuromuscular effects of doxacurium chloride and to construct a dose-response curve for the drug in isoflurane-anesthetized dogs. Design—Randomized, controlled trial. Animals—Six healthy, adult, mixed-breed dogs (five female, one male) weighing 24.8 ° 2.8 kg. Methods—Anesthesia was induced with isoflurane in oxygen and maintained with 1.9% to 2.3% end-tidal isoflurane concentration. Paco2 was maintained between 35 and 45 mm Hg with mechanical ventilation. Mechanomyography was used to quantitate the evoked twitch response of the paw after supramaximal train-of-four stimulation of the superficial peroneal nerve. After baseline values were recorded, the dogs received one of three doses of doxacurium (2.0, 3.5, 4.5 μg/kg of body weight) or a saline placebo intravenously in random order. All dogs received all treatments with at least 7 days between studies. After drug administration, the degree of maximal first twitch depression compared with baseline (T,%) was recorded. Dose-response relations of doxacurium were plotted in log dose-probit format and analyzed by linear regression to determine effective dose (ED50 and ED90) values for doxacurium. Results—The median log dose-probit response curve showed good data correlation (r= .999) with estimates of the ED50 (2.1 μg/kg) and ED90 (3.5 μg/kg) for doxacurium in isoflurane-anesthetized dogs. Mean ± SD values for T1% (first twitch tension compared with baseline) at maximal depression after drug administration, onset (time from drug administration to maximal depression of T1%), duration (time from maximal depression of T1% to 25% recovery of T1%), and recovery (time from 25% to 75% recovery of T1%) times were 92%± 4%, 40 ± 5 minutes, 108 ± 31 minutes, and 42 ± 11 minutes for dogs treated with 3.5 μg/kg of doxacurium and 94%± 7%, 41 ± 8 minutes, 111 ± 33 minutes, and 37 ± 10 minutes for dogs treated with 4.5 μg/kg of doxacurium. Conclusion and Clinical Relevance—We conclude that doxacurium is a long-acting neuromuscular blocking agent with a slow onset of action. Doxacurium can be used to provide muscle relaxation for long surgical procedures in isoflurane-anesthetized dogs. Interpatient variability, particularly of duration of drug action, may exist in the neuromuscular response to the administration of doxacurium in dogs.  相似文献   

19.
The disposition of an aqueous suspension of procaine penicillin G (300 000 U/ mL) was studied in feedlot steers. Four groups of three steers were used. Steers in groups 1 and 2 received procaine penicillin G once daily for 5 days intramuscularly (i.m.) at a dose of 24 000 U/kg (group 1) or of 66 000 U/kg (group 2). The injection on the last day was administered in the gluteal muscle. Steers in group 3 (i.m. neck injection) and group 4 [subcutaneous (s.c.) injection] each received a single dose of procaine penicillin G at a dose of 66 000 U/kg. From every animal, after the last injection in groups 1 and 2 and following the single injection in groups 3 and 4, a series of blood samples was taken at fixed time intervals. The plasma from these samples was analysed for penicillin G by a high performance liquid chromatography (HPLC) assay in order to determine the disposition of penicillin. The maximum plasma concentration (Cmax) and the area under the curve (AUC) were significantly different between groups 1 and 2, but we found no difference in the disappearance rate constant between these two groups. Group 4 single s.c. injections produced a lower mean Cmax (1.85 ± 0.27 ng/mL) than the mean Cmax (4.24 ± 1.08 μg/mL) produced in group 3 by i.m. injections into the neck muscle or the mean Cmax (2.63 ± 0.27 μg/mL) produced in group 2 by i.m. injections into the gluteal muscle. However the mean Cmax produced by i.m. injections into the neck muscles (group 3) was higher than the mean Cmax produced by i.m. injections into the gluteal muscle (group 2). Additionally, the disappearance t½, was longer (18.08 h) in group 4 following the s.c. injection and shorter (8.85 h) in group 3 following the i.m. neck injection, than the t½ following administration of the same dose i.m. into the gluteal muscle (15.96 h) in group 2. In this study, when procaine penicillin G was injected into the gluteal muscle, doses of 66 000 U/kg were necessary to produce plasma concentrations that were above a minimum inhibitory concentration (MIC) for penicillin G of 1.0 μg/mL as compared to doses of 24 000 U/kg.  相似文献   

20.
Objective To compare the cardiopulmonary effects and sensory blockade of epidural bupivacaine and ropivacaine. Study Design Prospective randomized study. Animals Six young adult medium‐sized crossbred dogs weighing 25.7 ± 7.1 kg. Method Dogs were chronically implanted with a lumbosacral epidural catheter. Acepromazine sedated dogs received all treatments: 0.5% bupivacaine at 0.14 mL kg?1 (LB5) or 0.22 mL kg?1 (HB5); 0.5% ropivacaine at 0.14 mL kg?1 (LR5) or 0.22 mL kg?1 (HR5); 0.75% bupivacaine at 0.22 mL kg?1 (HB7.5) or 0.75% ropivacaine at 0.22 mL kg?1 (HR7.5). Loss of sensation was tested at the level of the perineum, hind toe webs, flank, and caudodorsal rib areas before injection, and post‐injection (PI) up to 150 minutes PI. Systemic arterial blood pressure and heart rate were recorded before injection, and every 10 minutes PI until 150 minutes PI. Arterial blood gas analyses were performed prior to injection, and at 30, 60 and 150 minutes PI. Results No statistical differences existed between groups for the cardiopulmonary data or time to onset of block. Group HR7.5 had lower systolic (10–70 minutes PI) and diastolic (10–70 minutes PI) blood pressures and group HR5 had lower mean (10–90 minutes PI) and diastolic (10–90 minutes PI) blood pressures compared to baseline. Heart rate was lower compared to baseline in groups LR5 and HB7.5. A significant, but mild metabolic acidosis developed in groups LR5 and HB7.5 (150 minutes PI). No differences were present for the duration of block between groups, but duration of block in the dorsocaudal rib area was shorter in group HR5 compared to HR7.5. Conclusion Epidural ropivacaine and bupivacaine at the doses used have mild effects on the cardiopulmonary system, and extent of block are similar. Clinical Relevance The 0.75% concentration of bupivacaine and ropivacaine at 0.22 mL kg?1 appeared to contribute to greater success of block (>80%) at dermatomes L5–L7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号