首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
本文以深色有隔内生真菌(dark septate endophyte,DSE)甘瓶霉Phialophora mustea不同来源的2氧化酶的影响。研究表明,在尖孢镰刀菌胁迫下,与不接种DSE的对照相比,DSE接种可以显著缓解尖孢镰刀菌抑制番茄生长的症状,接种菌株K36和Z48后,植物株高分别增长了46.4%、53.2%,地上、地下部分干重分别增长了60.6%、50%和63.7%、65.9%,明显促进番茄生长和生物量的增加。进一步研究发现DSE接种显著激活番茄叶片SOD、POD等抗氧化酶活性进而降低尖孢镰刀菌导致的细胞脂质过氧化胁迫,发现在尖孢镰刀菌胁迫下,与不接种DSE的对照相比,接种菌株K36和Z48后番茄叶片SOD的酶活性分别增加19.3%和8.1%,POD的酶活性分别增加14.0%和4.4%,而MDA含量则显著减少了22.3%和9.1%。DSE接种增强了植物抗氧化酶活性,缓解由尖孢镰刀菌导致的脂膜过氧化胁迫,从而提高植物对真菌病害的抗性,促进宿主植物生长。  相似文献   

2.
浙江省荸荠上镰刀菌种类及其致病性   总被引:8,自引:0,他引:8  
作者从浙江省11个县市采集病、健株及球茎标样共669个,经分离、纯化、鉴定,获以下7个镰刀菌种;尖孢镰刀菌(Fusarium oxysporum)、锐顶镰刀菌(F.acuminatum)、半裸镰刀菌(F.semitectum)、层出镰刀菌(F.proliferatum)、茄病镰刀菌(F.solani)、禾谷镰刀菌(F.graminearum)和木贼镰刀菌(F.equiseti)。田间观察和接种试验证明:F.oxysporum是引起荸荠茎秆枯萎的主要病原,这是一种新的危险性病害。病株矮小、黄化、基腐、后期倒伏。1986~1990年少数县市发病率达40%~50%。人工接种证明:F.acuminatum也属强致病性的种类。而F.proliferatum和F.solani则是引起贮藏期球茎腐烂的主要病原。其余种类仅具微弱或无致病性。  相似文献   

3.
为了明确海南省不同寄主植物炭疽病菌侵染油茶的潜力,本研究分离、鉴定海南省4个油茶林中不同寄主植物的炭疽病菌种类及其致病性。结果从油茶、葛根、山麻杆、飞机草、蒲葵、鲫鱼胆、桃花心木、黄兰、羊蹄甲、山矾、银柴、降香黄檀和檀香等13种植物上,共获得135株炭疽病菌,其中果生刺盘孢菌(Colletotrichum fructicola)85株、暹罗刺盘孢菌(C.siamense)45株,盘长孢状刺盘孢菌(C.gloeosporioides)3株,君子兰刺盘孢(C.cliviae)和山茶刺盘孢(C.camelliae)各1株;4个采样地的油茶树与葛根等当地其他12种植物具有相同的炭疽病菌C.fructicola和C.siamense,这两种菌占总分离炭疽菌的96%;通过致病性测定,不同寄主来源的这5种炭疽菌均能引起油茶炭疽病。海南省当地多种植物的炭疽病菌是油茶的潜在侵染源。  相似文献   

4.
产铁载体PGPR菌筛选及其对病原菌的拮抗作用   总被引:5,自引:0,他引:5  
采用改进的CAS定性、定量方法,从16株PGPR菌株中初步筛选出具有抗病原真菌作用的菌株,再利用平板对峙法将筛选出的5株PGPR菌与3种病原真菌进行拮抗试验。结果表明,LHS11对黄瓜枯萎病菌(Fusarium oxysporum f. sp. cucumerinum),西瓜枯萎病菌(Fusarium oxysporum f. sp. niveum)的抑制效果最好,抑菌率达到80%以上;其次是191对黄瓜枯萎病菌,抑菌率为74%,LHS11、191对立枯丝核菌(Rhizoctonia solani)的抑制效果相近,抑菌率分别为64%和65%。191和LHS11是抑菌效果较好的生防PGPR菌株,具有较好的应用潜力。  相似文献   

5.
In a 4-year disease survey in commercial spinach fields, pathogens were isolated from spinach root pieces placed on selective agar media. Aphanomyces cladogamus was the most abundant pathogen, followed by Phytophthora. cryptogea and Fusarium oxysporum. Rhizoctonia solani was found only occasionally. Other pathogens isolated were F. redolens, F. sambucinum and Cylindrocarpon destructans. P. cryptogea was the most severe pathogen, causing death of most plants, but A. cladogamus also caused severe root damage. Isolates of F. oxysporum ranged from highly pathogenic, i.e. P. oxysporum f.sp. spinaciae race 1. to moderately pathogenic and non-pathogenic, Rhizoctonia solani isolates also varied widely in their pathogenicity. Only a small number of the F. redotens and F. sambucinum isolates were pathogenic and most C. destructans isolates were weakly pathogenic. Isolation frequencies were relatively stable from year to year, but P. cryptogea was isolated more frequently in autumn than in spring. No clear relationships were found between pathogen prevalence and disease severity index of surveyed field plants, between pathogen prevalence and plant developmental stage, or between prevalence of the different pathogens isolated.  相似文献   

6.
ABSTRACT Pectobacterium and Dickeya spp. are related broad-host-range entero-bacterial pathogens of angiosperms. A review of the literature shows that these genera each cause disease in species from at least 35% of angiosperm plant orders. The known host ranges of these pathogens partially overlap and, together, these two genera are pathogens of species from 50% of angiosperm plant orders. Notably, there are no reported hosts for either genus in the eudicots clade and no reported Dickeya hosts in the magnoliids or eurosids II clades, although Pectobacterium spp. are pathogens of at least one plant species in the magnoliids and at least one in each of the three eurosids II plant orders. In addition, Dickeya but not Pectobacterium spp. have been reported on a host in the rosids clade and, unlike Pectobacterium spp., have been reported on many Poales species. Natural disease among nonangiosperms has not been reported for either genus. Phylogenetic analyses of sequences concatenated from regions of seven housekeeping genes (acnA, gapA, icdA, mdh, mtlD, pgi, and proA) from representatives of these genera demonstrated that Dickeya spp. and the related tree pathogens, the genus Brenneria, are more diverse than Pectobacterium spp. and that the Pectobacterium strains can be divided into at least five distinct clades, three of which contain strains from multiple host plants.  相似文献   

7.
ABSTRACT The soilborne fungus Cylindrocarpon destructans (teleomorph: Neonectria radicicola) causes root rot in a wide range of plant hosts; the disease is of particular concern in ginseng production, and in conifer and fruit tree nurseries. beta-Tubulin gene and rRNA gene internal transcribed spacer (ITS) sequence data and pathogenicity assays were used to characterize isolates of C. destructans from ginseng and other hosts. The results of these studies demonstrated a high amount of sequence divergence among strains identified as C. destructans or N. radicicola, suggesting the existence of several phylogenetic species in this complex. Accordingly, we propose that the two varieties of N. radicicola be raised to species status. Certain highly aggressive ginseng isolates from Ontario, Korea, and Japan have identical ITS and beta-tubulin sequences, and form a monophyletic clade (designated "clade a"); these strains are identified as C. destructans f. sp. panacis. Other ginseng strains clustered in monophyletic groups with strains from angiosperm and conifers. A subtractive hybridization method was used to isolate genomic DNA sequences with diagnostic potential from the aggressive C. destructans Ontario ginseng isolate 1640. One of these sequences was similar to the rRNA gene intergenic spacer from a Fusarium oxysporum isolate from Pinus ponderosa, and hybridized to DNA from F. oxysporum and all C. destructans isolates tested. Primers were designed that could be used to amplify this sequence specifically from the highly aggressive, ginsengadapted C. destructans isolates from Ontario and Korea and other members of clade a.  相似文献   

8.
甘蓝枯萎病菌寄主范围研究   总被引:3,自引:0,他引:3  
<正>甘蓝枯萎病于2001年最先在北京延庆发现~([1]),目前已扩散到山西、河北、甘肃及陕西等北方甘蓝生产基地,重病区发病率高达80%以上,对甘蓝生产造成了严重的威胁。国内外对甘蓝枯萎病寄主范围的研究仅限于十字花科作物~([2-4]),对该病原菌是否侵入其他类蔬菜及1、2号生理小种侵染十字花科寄主的差异尚未见报道。本文采用人工接种的方法,综合分析甘蓝枯萎病菌对主要大田蔬菜作物的侵染寄生能力,为制定合理的轮作防病  相似文献   

9.
What we know about the life history of fungi that cause disease in plants is commonly based on studies of the pathogen’s interaction with a susceptible host: how and when infection occurs, growth and reproduction within the host, and survival during the interval when a growing host is not available. This focus is appropriate, given the need for information that will facilitate management of disease affecting an economically important crop, but it can limit recognition of the full range of resources that may be utilized by fungi that we classify as plant pathogens. This was certainly the case for Fusarium circinatum, which causes a destructive disease of pines known as pitch canker. Although F. circinatum was initially known only as a necrotrophic, wound-infecting pathogen of coniferous trees, recent research has revealed that an isolate of this fungus that will kill shoot tissue when inoculated into a wound can also have a biotrophic relationship with roots of pine seedlings, infect and grow within grasses without causing symptoms, and cause ear rot of corn. Thus, although F. circinatum became known to science because it induced visible symptoms on pines, it has the capacity for a much broader range of ecological activities than is captured by its designation as a necrotrophic pathogen. The physiological plasticity manifested by F. circinatum illustrates the challenge of obtaining a comprehensive understanding of the life history of a plant pathogenic fungus.  相似文献   

10.
Ralstonia solanacearum causes bacterial wilt on a wide range of plant hosts. Most strains of R. solanacearum are nonpathogenic below 20°C; however, Race 3 Biovar 2 (R3B2) strains are classified as quarantine pathogens because of their ability to infect crops, cause disease, and survive in temperate climates. We have identified race 1 biovar 1 Phylotype IIB Sequevar 4 strains present in Florida which were able to infect and produce wilt symptoms on potato and tomato at 18°C. Moreover they infected tomato plants at rates similar to strains belonging to R3B2. We determined that strains naturally nonpathogenic at 18°C were able to multiply, move in planta, and cause partial wilt when inoculated directly into the stem, suggesting that low temperature affects virulence of strains differently at early stages of infection. Bacterial growth in vitro was delayed at low temperatures, however it was not attenuated. Twitching motility observed on growing colonies was attenuated in nonpathogenic strains at 18°C, while not affected in the cool virulent ones. Using pilQ as a marker to evaluate the relative expression of the twitching activity of R. solanacearum strains, we confirmed that cool virulent strains maintained a similar level of pilQ expression at both temperatures, while in nonpathogenic strains pilQ was downregulated at 18°C.  相似文献   

11.
尖镰孢菌(Fusarium oxysporum)的快速分子检测   总被引:1,自引:0,他引:1  
 由尖镰孢菌(Fusarium oxysporum Schlecht.)引起的大豆枯萎病是危害大豆生产的主要土传病害[1]。该菌在土壤和病残体上均可长期生存造成危害。快速准确地在发病初期植株和带病土壤中进行鉴定和检测对防治该病害至关重要。  相似文献   

12.
ABSTRACT We have characterized strains of Fusarium oxysporum from common bean fields in Spain that were nonpathogenic on common bean, as well as F. oxysporum strains (F. oxysporum f. sp. phaseoli) pathogenic to common bean by random amplified polymorphic DNA (RAPD) analysis. We identified a RAPD marker (RAPD 4.12) specific for the highly virulent pathogenic strains of the seven races of F. oxysporum f. sp. phaseoli. Sequence analysis of RAPD 4.12 allowed the design of oligonucleotides that amplify a 609-bp sequence characterized amplified region (SCAR) marker (SCAR-B310A280). Under controlled environmental and greenhouse conditions, detection of the pathogen by polymerase chain reaction was 100% successful in root samples of infected but still symptomless plants and in stem samples of plants with disease severity of >/=4 in the Centro Internacional de Agricultura Tropical (CIAT; Cali, Colombia) scale. The diagnostic procedure can be completed in 5 h and allows the detection of all known races of the pathogen in plant samples at early stages of the disease with no visible symptoms.  相似文献   

13.
镰刀菌对大蒜根系分泌物的敏感性与其致病力相关分析   总被引:2,自引:0,他引:2  
试验采用菌丝生长速率法测定了大蒜根系分泌物对3种供试植物病原镰刀菌的抑菌活性, 并进一步分析了18株从腐烂蒜瓣上分离的尖孢镰刀菌和12株从小麦赤霉病样分离的禾谷镰刀菌对大蒜根系分泌物的敏感性及致病力之间的关系。研究结果表明, 大蒜根系分泌物对供试镰刀菌均具有抑制活性, 但从腐烂蒜瓣上分离的尖孢镰刀菌对根系分泌物的敏感性低于其他菌株。致病力分析结果表明, 供试的18株尖孢镰刀菌均能使蒜瓣发病, 但致病力与其对根系分泌物的敏感性无明显相关性; 供试的禾谷镰刀菌中对根系分泌物不敏感的4株菌株能侵染蒜瓣, 但敏感性高的菌株不能侵染蒜瓣, 且根系分泌物对禾谷镰刀菌的抑制率与禾谷镰刀菌致病力之间呈显著的负相关。这表明大蒜根系分泌抑菌物质是根系抵御镰刀菌侵染的重要机制, 但一些菌株能对根系分泌物产生抗性, 从而侵染大蒜。综上所述, 大蒜根系分泌物对镰刀菌具有抑制活性, 可以利用大蒜和其他作物间作或轮作控制镰刀菌枯萎病的发生和蔓延, 但长期利用大蒜轮作或间作控制土传病害可能面临镰刀菌对大蒜根系分泌物产生抗性, 导致防效降低的风险。  相似文献   

14.
<正>果胶杆菌(Pectobacterium)可引起马铃薯、黄瓜等多种作物的软腐病,具有十分广泛的寄主范围。近年来,随着甜瓜种植规模的不断扩大,山东、河北、辽宁等多个甜瓜种植区出现茎秆严重腐烂的现象,发病初期甜瓜茎秆出现褐色病斑,然后逐渐腐烂,导致植株整株死亡,造成了严重的经济损失。本研究对山东寿光、昌乐和莱西疑似甜瓜茎软腐病的病株进行调查采样(图1-A、B),通过病原菌分离鉴定和致病性测定,为该地区细菌病害的病原分析提供实验参考。  相似文献   

15.
ABSTRACT The spatial distribution and temporal development of tomato crown and root rot, caused by Fusarium oxysporum f. sp. radicis-lycopersici, were studied in naturally infested fields in 1996 and 1997. Disease progression fit a logistic model better than a monomolecular one. Geostatistical analyses and semivariogram calculations revealed that the disease spreads from infected plants to a distance of 1.1 to 4.4 m during the growing season. By using a chlorate-resistant nitrate nonutilizing (nit) mutant of F. oxysporum f. sp. radicis-lycopersici as a "tagged" inoculum, the pathogen was found to spread from one plant to the next via infection of the roots. The pathogen spread to up to four plants (2.0 m) on either side of the inoculated focus plant. Root colonization by the nit mutant showed a decreasing gradient from the site of inoculation to both sides of the inoculated plant. Simulation experiments in the greenhouse further established that this soilborne pathogen can spread from root to root during the growing season. These findings suggest a polycyclic nature of F. oxysporum f. sp. radicis-lycopersici, a deviation from the monocyclic nature of many nonzoosporic soilborne pathogens.  相似文献   

16.
Adaptation of plant pathogens to disease control measures (both chemical and genetic) is facilitated by the genetic uniformity underlying modern agroecosystems. One path to sustainable disease control lies in increasing genetic diversity at the field scale by using genetically diverse host mixtures. In this study, a robust population dynamics approach was used to model how host mixtures could improve disease control. It was found that when pathogens exhibit host specialization, the overall disease severity decreases with the number of components in the mixture; this finding makes it possible to determine an optimal number of components to use. In a simple case, where two host varieties are exposed to two host‐specialized pathogen species or strains, quantitative criteria for optimal mixing ratios are determined. Using these model outcomes, ways to optimize the use of host mixtures to decrease disease in agroecosystems are proposed.  相似文献   

17.
ABSTRACT In the rice blast fungus pathosystem, cerebroside, a compound categorized as a sphingolipid, was found in our previous study to be a non-racespecific elicitor, which elicits defense responses in rice. Here we describe that cerebroside C is produced in diverse strains of Fusarium oxysporum, a common soilborne agent of wilt disease affecting a wide range of plant species. In addition, some type of cerebroside elicitor involving cerebroside A, B, or C was detected in other soilborne phytopathogens, such as Pythium and Botrytis. Treatment of lettuce (Lactuca sativa), tomato (Lycopersicon esculentum), melon (Cucumis melo), and sweet potato (Ipomoea batatas) with cerebroside B resulted in resistance to infection by each pathogenic strain of F. oxysporum. Induction of pathogenesis-related genes and H(2)O(2) production by treatment with cerebroside B were observed in tomato root tissues. The cerebroside elicitor showed no antifungal activity against F. oxysporum in vitro, indicating that the cerebroside elicitor activates defense mechanisms to confer resistance to Fusarium disease. These results suggest that cerebroside functions as a non-race-specific elicitor in a wide range of plant-phytopathogenic fungus interactions. Additionally, cerebroside elicitor serves as a potential biologically derived control agent.  相似文献   

18.
盛强  罗明  张祥林 《植物保护》2017,43(1):173-177
由黄褐假单胞Pseudomonas fulva侵染引起的辣椒细菌性叶斑病是近期在新疆北疆加工辣椒生产区发现的一种新病害。为评估辣椒品种对细菌性叶斑病的抗性水平,采用苗期人工接种结合田间调查,鉴定了生产中13个主栽辣椒品种对细菌性叶斑病的抗性。结果表明,供试材料对细菌性叶斑病均无免疫性,但不同辣椒品种对辣椒叶斑病抗性差异较大,‘改良佳线1号’和‘丰力红冠’为抗病品种;‘佳线4号’、‘新丰6号’、‘秦椒王’、‘陕早红’、‘宝丰2号’为耐病品种;‘红安6号’、‘朝天椒’为感病品种,高感品种为‘金塔’、‘铁皮椒’、‘红龙13’和‘超级韩国甜椒’。研究结果为辣椒的抗病育种和病害防治提供了基础。  相似文献   

19.
Tomato cultivar Moneymaker was independently inoculated with Alternaria alternata, Cunninghamella elegans, Fusarium culmorum, F. oxysporum f.sp. lycopersici, F. oxysporum f.sp. pisi and Stromatinia gladioli and analysed ultrastructurally. The extent and amount of superficial fungal growth on tomato roots was similar but C. elegans , a saprophyte, was exceptional in that hyphae were not closely appressed to plant surfaces and did not adhere to plant cell walls.
In general, the type of plant responses to fungal colonization and infection were similar in all of the interactions studied, with the exception of C. elegans which did not infect tomato root tissue. The failure to penetrate tomato roots by C. elegans may have been associated with the lack of hyphal adhesion to plant cell walls. Migration of cytoplasm and wall apposition/penetration papilla formation were regularly observed in tomato root tissue beneath appressed hyphae and at sites of fungal infection. Specific cellular reactions in the exodermis, namely the formation of wall 'inclusions' and appearance of 'sensitive' cells, indicated that exodermal cells were particularly responsive to fungal challenge.
Fusarium oxysporum f.sp. lycopersici , a pathogen of tomato, invaded tomato root tissue more extensively than the other fungi inoculated onto tomato roots. Infection of tomato by the other fungi studied was variable, and the extent and success of fungal invasion was tentatively associated with their necrotrophic capability and typical host range.  相似文献   

20.
 近年来,大蕉枯萎病在广东省东莞市发生严重,为了有效控制病害发生蔓延,生产上急需明确大蕉枯萎病的病原。本研究收集了我国华南地区的12株大蕉枯萎病病原菌及19株包括1号及4号生理小种的单孢菌株,以来源于澳大利亚的1号、2号、3号和亚热带4号生理小种以及4株非病原尖孢镰孢菌作对照,通过病原菌形态鉴定、致病性测定、4号小种(Foc 4)及热带4号小种(TR4)的分子特异检测、以及基于翻译延伸因子(TEF-1α)序列的系统发育分析,对大蕉枯萎病病原菌进行鉴定。同时,对我国华南地区不同来源的香蕉枯萎病病原菌的遗传发育关系及致病性分化情况进行了研究。结果表明:(1)引起大蕉枯萎病的病原菌主要是1号生理小种或者是与1号生理小种亲缘关系较近的一个新的系统发育谱系,该谱系可能为 1 号生理小种变异演化而来;(2)大蕉枯萎病病原菌对大蕉和粉蕉都有较强的致病力,但不能侵染香蕉;我国的1号小种存在一定的分化,其中有一个类群只能感染粉蕉,另一个类群既能感染粉蕉也能感染大蕉;(3)大蕉与粉蕉枯萎病的病原菌在致病性及遗传发育关系上都存在一定的交叉和分化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号