首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Hydrothermal treatments, which are routine in oat processing, have profound effects on oat flour dough rheological properties. The influence of roasting and steam treatments of oat grain on dough mixing and breadbaking properties was investigated when hydrothermally treated oat flour was blended with wheat flour. Roasting of oat grain (105°C, 2 hr) resulted in oat flours that were highly detrimental to wheat flour dough mixing properties and breadbaking quality. Steaming (105°C, 20 min) or a combination of roasting and steaming of oat grain significantly improved the breadbaking potential of the oat flours. The addition of oat flours increased water absorption and mixing requirements of the wheat flour dough and also decreased bread loaf volume. However, at the 10% substitution level, steamed oat flours exhibited only a gluten dilution effect on bread loaf volume when wheat starch was used as a reference. Oat flour in the breadbaking system decreased the retrogradation rate of bread crumb starch. The results indicate that adequate hydrothermal treatments of oat grain are necessary for oat flour breadbaking applications. Steamed oat flours used at a 10% level retarded bread staling without adversely affecting the loaf volume.  相似文献   

2.
Diacetyl tartaric acid ester of monoglycerides (DATEM) is a kind of anionic emulsifier. To date, the positive effect of DATEM on the volume of bread has been reported, but the effects on Chinese steamed bread (CSB) quality and other parameters for bread quality are still unclear. The effects of DATEM on the characteristics of dough and the qualities of CSB and bread were investigated. The results showed that, the effects of DATEM on the rheological properties of dough were complex. Water absorption ratio of CSB dough decreased slightly, while that of bread dough increased slightly. But gas retention and structure improved and gluten strength increased for both CSB and bread doughs after DATEM was added. The studies also showed that structure, elasticity, tenacity, and whiteness of CSB were improved, but specific volume was almost unchanged. The structure, color, and smoothness were significantly improved for bread, and specific volume increased compared with the control. The optimal quantities of DATEM for CSB and bread were both ≈0.10% (on flour mass basis).  相似文献   

3.
Flour mill streams obtained by milling grain of 10 bread wheat cultivars grown in the Skopje region of Macedonia were analyzed for rheological and breadmaking quality characteristics and for composition of gliadins and HMW‐GS. The objective of this study was to examine the relationships between the composition of gluten proteins and breadmaking quality, as well as to determine the importance of gluten proteins for technological quality of flour mill streams. The grain was milled in an experimental mill according to a standardized milling procedure, with three break and three reduction passages. The addition of two vibratory finishers in the milling scheme enabled better separation of bran. A small‐scale baking method for evaluation of the breadmaking properties was developed, and electrophoretic methods including acid‐PAGE and SDS‐PAGE were used to determine the composition of the gluten proteins. There were significant differences in the degree of dough softening of individual and total flour fractions of the flour mill streams for cultivars with different alleles from six loci, for farinograph water absorption from seven loci, and for bread loaf volume and crumb quality score from six loci. The Glu‐1 quality scores for the wheat cultivars investigated were 3–9 and proved to be a useful indicator of breadmaking quality. The novel feature of the investigation related to the breadmaking potential of the flour mill streams compared with straight‐run flours.  相似文献   

4.
Transglutaminase (TG) catalyzes the formation of nondisulfide covalent crosslinks between peptide‐bound glutaminyl residues and ∊‐amino groups of lysine residues in proteins. Crosslinks among wheat gluten proteins by TG are of particular interest because of their high glutamine content. Depolymerization of wheat gluten proteins by proteolytic enzymes associated with bug damage causes rapid deterioration of dough properties and bread quality. The aim of the present study was to investigate the possibility of using TG to regain gluten strength adversely affected by wheat bug proteases. A heavily bug‐damaged (Eurygaster spp.) wheat flour was blended with sound cv. Augusta or cv. Sharpshooter flours. Dynamic rheological measurements, involving a frequency sweep at a fixed shear stress, were performed after 0, 30, and 60 min of incubation on doughs made from sound or blended flour samples. The complex moduli (G* values) of Augusta and Sharpshooter doughs blended with 10% bug‐damaged flour decreased significantly after 30 min of incubation. These dough samples were extremely soft and sticky and impossible to handle for testing purposes after 60 min of incubation. To test the possibility of using TG to counteract the hydrolyzing effect of bug proteases on gluten proteins, TG was added to the flour blends. The G* values of TG‐treated sound Augusta or Sharpshooter doughs increased significantly after 60 min of incubation. The G* values of the Augusta or Sharpshooter doughs blended with bug‐damaged flour increased significantly rather than decreased after 30 and 60 min of incubation when TG was included in the dough formulation. This indicates that the TG enzyme substantially rebuilds structure of dough hydrolyzed by wheat bug protease enzymes.  相似文献   

5.
《Cereal Chemistry》2017,94(5):827-833
Glutens isolated from 15 soft red winter (SRW) wheat flours were added into a SRW wheat flour to obtain protein levels of 9.6 and 11.3% for determination of the qualitative effect of added gluten on the dough properties and quality of northern‐style Chinese steamed bread (CSB). Sodium dodecyl sulfate sedimentation (SDSS) volume of the gluten source flour exhibited positive relationships with mixograph absorption, midline peak time (MPT), and midline peak value (MPV) of the gluten‐added flours and with surface smoothness, crumb structure, and total score of CSB prepared from the gluten‐added flours regardless of protein content. Positive correlations were also observed between SDSS volume of the gluten source flour and specific volume and stress relaxation score of CSB prepared from the gluten‐added flours of 11.3% protein. The increase in protein content from 9.6 to 11.3% by gluten addition raised mixograph absorption, MPT, and MPV but had no apparent effect on resistance breakdown, dough maximum force for extension, and extensibility, and it increased CSB specific volume and crumb structure score without affecting surface smoothness, stress relaxation, and total score. Mixograph parameters exhibited significant relationships with CSB total score, indicating that they could be effective predictors of the CSB‐making quality of flours.  相似文献   

6.
《Cereal Chemistry》2017,94(1):82-88
Pulse flour may be used to improve nutritional traits of gluten and gluten‐free formulations in traditional food such as bread or pasta. However, owing to some intrinsic nutritional, textural, and sensory properties, the use of pulses as ingredients for production of enriched food remains limited. In this study, we investigated the modification in macromolecules and micronutrients in industrial‐scale flour from partially sprouted chickpeas to define its possible use as an ingredient in cereal‐based foods. Controlled sprouting resulted in significant decrease of antinutritional compounds (e.g., phytic acid and serine protease inhibitors) and in an increase of free minerals and vitamins. Sprouting also affected the overall structural organization of proteins (such as aggregate formation) and their thiol/disulfide balance, and it promoted release of peptides. All of these had a positive effect on dough mixing properties, in particular for dough development. Formulations with enrichment in sprouted chickpea flour (wheat/chickpea ratio = 100:20) were tested also as for their dough leavening properties, which improved with respect to flour from nonsprouted chickpeas. Taking into account the modifications induced by partial sprouting on an industrial scale, we can conclude that sprouted chickpea flour represents an interesting ingredient for production of enriched cereal‐based food with better nutritional and rheological characteristics.  相似文献   

7.
The nicotinamide adenine dinucleotide coenzymes [NAD(P)(H)] are strong redox agents naturally present in wheat flour, and are indispensable cofactors in many redox reactions. Hence, it is not inconceivable that they affect gluten cross‐linking during breadmaking. We investigated the effect of increasing concentrations of NAD(P)(H) on gluten cross‐linking, dough properties, and bread volume using two flours of different breadmaking quality. Separate addition of the four nicotinamide coenzymes did not significantly affect mixograph properties. While addition of NAD+ hardly affected bread volume, supplementation with NADP(H) and NADH significantly decreased loaf volumes of breads made using flour of high breadmaking quality. Wheat flour incubation with NAD(P)H under anaerobic conditions increased wheat flour thiol content, while NAD(P)+ increased the extractability in SDS‐containing medium of the protein of the strong breadmaking flour. Based on the results, it was hypothesized that at least three reactions, competing for NAD(P)(H), occur during breadmaking that determine the final effect on protein, dough, and loaf properties. Next to coenzyme hydrolysis, the experiments pointed to coenzyme oxidation and NAD(P)(H) dependent redox reactions affecting protein properties.  相似文献   

8.
Bread made from a mixture of wheat and lupin flour possesses a number of health benefits. The addition of lupin flour to wheat flour during breadmaking has major effects on bread properties. The present study investigated the lupin and wheat flour protein interactions during the breadmaking process including dough formation and baking by using proteomics research technologies including MS/MS to identify the proteins. Results revealed that qualitatively most proteins from both lupin and wheat flour remained unchanged after baking as per electrophoretic behavior, whereas some were incorporated into the bread gluten matrix and became unextractable. Most of the lupin α-conglutins could be readily extracted from the lupin-wheat bread even at low salt and nonreducing/nondenaturing extraction conditions. In contrast, most of the β-conglutins lost extractability, suggesting that they were trapped in the bread gluten matrix. The higher thermal stability of α-conglutins compared to β-conglutins is speculated to account for this difference.  相似文献   

9.
The role of lipid-binding proteins from wheat seed (puroindolines) on the breadmaking properties of wheat flour was investigated by determining the relationship between breadmaking quality and puroindoline content in samples of 32 wheat cultivars. An inverse relationship was mainly explained by the link between hardness and puroindoline contents. This link is in agreement with previous results which have shown a close structural identity between basic friabilins and puroindolines. Next, the effect of puroindolines in breadmaking was investigated by performing reconstitution experiments with two puroindoline-free hard cultivars of opposite quality (Florence Aurore and Ecrin) as indicated in the screened wheat sample. Addition of 0.1% puroindolines to these flours drastically modified both the rheological properties of doughs and the structure of the bread crumb. Puroindolines are essential to the foaming properties of dough liquor, and a close relationship was found between the fine grain crumb provided by reconstituted flours with puroindolines and the fine structure of corresponding dough liquor foams. The effect of puroindolines on bread volume was mainly related to the rheological properties of wheat doughs.  相似文献   

10.
Flours obtained by a specific polishing process were used to prepare sourdough and bread. Three fractions designated C‐1 (100–90%), C‐5 (60–50%), and C‐8 (30–0%) were studied. The pH, total titratable acidity levels, and buffering capacity of sourdoughs made from polished flours were significantly different from those of the control sourdough with No. 1 Canada Western Red Spring (CW), and they provided sourdough breads with better qualities than that of CW. The growth of lactic acid bacteria and yeast in polished flour sourdoughs were significantly accelerated during fermentation over that in CW sourdough. Higher maturation of polished flour sourdoughs softened the hardness of mixed dough. The intricate network of honeycomb structure gluten and uneven surface of starch granules were distinctly observed in SEM images. Substitutions of C‐5 or C‐8 sourdoughs for CW significantly increased the loaf volume and softened breadcrumbs more than CW sourdough. Flour qualities of polished flours such as suitable acidity and good buffering capacity caused by the bran fraction were effective for better growth and longer life of yeast in the dough during fermentation. Therefore, application of polished flours in sourdough bread would improve rheological properties of dough and bread as compared with CW sourdough.  相似文献   

11.
In the previous study, we investigated effect of physical state of nonpolar lipids of gluten‐starch model dough. This experiment examined a real wheat flour dough system to assess the role of fat crystals in the breadmaking processes. These experiments were performed with a baking test and an investigation of wheat flour dough through rheological measurements (both large and small deformations), scanning electron microscopy, and ultracentrifugation. As a result, we found that the added oil was absorbed in the gluten structure, causing the aggregation of the gluten, which gave rise to more elastic behavior. In contrast, solid fat seemed to be distributed uniformly between the starch granules in the dough, reducing the friction between the starch granules and facilitating thin gluten gel layers. These properties lead to the lower G′ value and the increased viscous behavior, which yields an increase in loaf volume. In addition, the supposed mechanism behind the large loaf volume described in the previous study was that fat provides a uniform distribution of the dough components, and that the dough can thus expand easily, resulting in a larger loaf volume, which was supported in the wheat flour dough system. In conclusion, we found that thin, expandable gluten films and the uniform dispersion of gluten and starch granules in the dough are prerequisites for attaining better baking performance.  相似文献   

12.
The effects of endogenous protein disulfide isomerase (PDI) family proteins on the properties of gluten proteins in dough during breadmaking were determined using bacitracin, an inhibitor of PDI. Bread loaf volume in the presence of bacitracin was increased to 118% of that in the absence of bacitracin. The addition of bacitracin caused a decrease in the extension tolerance of the dough. The amount of sodium dodecyl sulfate (SDS)-insoluble glutenin macropolymer (GMP) in dough decreased to approximately 70% of that in flour during the 20 min of mixing for doughmaking. The addition of bacitracin to dough caused a dramatic GMP decrease, corresponding to ~20-30% of that in flour during the 20 min of mixing. The decrease in GMP was compensated by an increase in SDS-soluble glutenin polymer. Taken together, these results suggest that the endogenous PDI family proteins in flour suppress the depolymerization of GMP during dough mixing.  相似文献   

13.
Barley is rich in nutritionally positive compounds, but the quality of bread made of wheat–barley composite flours is impaired when a high percentage of barley is used in the mixture. A number of enzymes have been reported to be useful additives in breadmaking. However, the effect of β‐glucanase on breadmaking has scarcely been investigated. In this paper, the influence of different levels (0.02, 0.04, 0.06, and 0.08%, based on composite flour) of β‐glucanase (100,000 U/g) on the properties of dough and bread from 70% wheat, 30% barley composite flour were studied. Although dough development time, dough stability, and protein weakening value decreased after β‐glucanase addition, dough properties such as softness and elasticity as well as bread microstructure were improved compared with the control dough. β‐Glucanase also significantly improved the volume, texture, and shelf life of wheat–barley composite breads. The use of an optimal enzyme concentration (0.04%) increased specific volume (57.5%) and springiness (21%), and it reduced crumb firmness (74%) and staling rate. Bread with added β‐glucanase had a better taste, softness, and overall acceptability of sensory characteristics compared with the control bread. Moreover, the quality of wheat–barley composite bread after addition of 0.04% β‐glucanase was nearly equal to the quality of pure wheat bread. These results indicate that dough rheological characteristics and bread quality of wheat–barley composite flour can be improved by adding a distinct level of β‐glucanase.  相似文献   

14.
The rheological properties of dough and gluten are important for end‐use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small‐deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G′], large negative loadings for tan δ and steady state compliance [Je0]), the presence of high molecular weight glutenin subunits (HMW‐GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high‐end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.  相似文献   

15.
《Cereal Chemistry》2017,94(4):670-676
Wheat grain may be attacked by different insect species. Among them, some Heteroptera species (e.g., Aelia spp. and Eurygaster spp.) reduce wheat breadmaking quality; others, such as Nysius simulans , commonly extract water and nutrients from soy plants. The aim of this study was to assess the effect of N. simulans infestation on breadmaking quality of different bread wheat cultivars. Twelve wheat cultivars (damaged and undamaged by N. simulans ) were studied. Infested grain percentage varied between 51 and 78%, depending on cultivar. Protein and gluten quantity and quality were significantly reduced in damaged flours, as shown by gluten index, solvent retention capacity, and SDS sedimentation index. SDS‐PAGE from water‐extractable proteins evidenced an important proteolytic activity in damaged samples. Dough rheological properties showed a reduced dough viscoelasticity in damaged samples. Microbread specific volume changed from 3.26 cm3/g for samples made with undamaged flour to 2.77 cm3/g for bread made with damaged flour. No evidence for modification in starch properties was found. The infestation by N. simulans reduced wheat breadmaking quality in all cultivars studied, as a result of proteolytic activity occurring after dough hydration. Results suggest that the presence of N. simulans should be considered as a factor affecting wheat crops, mainly those located next to soy crop areas, which is the usual host for this insect.  相似文献   

16.
The objective of this study was to evaluate how Rhyzopertha dominica infestation of stored wheat grain affects the rheological and baking properties of bread made with the milled flour. Wheat samples were infested with R. dominica and stored for up to 180 days at room temperature. Every 45 days, samples of wheat were collected and evaluated for insect population and flour yield. Flour milled from these wheat samples was evaluated for color reflectance, pH, fat acidity, and rheological properties which were measured by a farinograph. Loaves of bread were baked using a straight-dough procedure. Volume, height, and weight of the loaves were evaluated. None of the analyses performed on the control wheat flours showed any changes during the storage period, and they were similar to the initial wheat. The insect population increased during storage of the wheat up to 90 days, and the flour yield decreased with the storage up to 180 days. Flours from insect-infested wheat absorbed more water than did flours from control wheat. Dough stability and dough development times of infested flours decreased. Bread volume showed a progressive decline throughout the storage experiment. In conclusion, flour from insect-infested wheat exhibited changes in rheological properties such as dough stability, dough development times, water absorption, and mixing stability; bread had an offensive odor; and volume and loaf characteristics were negatively affected.  相似文献   

17.
This research was initiated to investigate associations between flour breadmaking traits and mixing and empirical dough rheological properties under thermal stress. Thirty hard spring wheat flour samples were analyzed by a Mixolab standard procedure. Mixolab profiles were divided into six different stages, and torque measurements of individual stages were modeled by nonlinear curve fitting using a compound of two solution searching procedures, multidimensional unconstrained nonlinear minimization and genetic algorithm. Mixing patterns followed exponential equations. Dough torque patterns under heat constraint, specifically dough thermal weakening and pasting profiles, were described by a sigmoid logistic equation as a function of time. Dough stability during heating appeared important for bread loaf volume increase from significant correlations between bread loaf volume and parameters generated from models of a dough thermal weakening stage. Multivariate continuum regression was employed to calibrate prediction models of baking traits using Mixolab parameters. Coefficients of determination estimated from prediction models and cross‐validation were greater than 0.98 for bake water absorption, mixing time, and bread loaf volume, indicating that the Mixolab parameters have a potential to enhance evaluation of flour breadmaking quality.  相似文献   

18.
To clarify the effects of solid fat and liquid oil on dough in more detail in a simpler system, gluten‐starch doughs with different gluten contents were investigated. The results from rheological measurements indicate that dough with a higher starch content has less resistance to strain and dough with a lower starch content has a rubber‐like structure. The effects of the physical state of nonpolar lipids such as fat and oil on gluten‐starch doughs and wheat flour doughs were investigated using rheological measurements and scanning electron microscopy. Fat‐containing dough had more gas cells and a very smooth gluten gel surface with few holes, which may provide higher tolerance to strain. Moreover, the fat seemed to uniformly distribute the gluten gel between the starch granules in the dough, which reduced the friction between starch granules and led to a lower storage modulus. A mechanism governing the effect of fats on loaf volume is proposed based on the phenomena observed in the fat‐containing dough.  相似文献   

19.
《Cereal Chemistry》2017,94(3):581-587
Wheat bran is a low‐cost by‐product abundantly produced by the wheat flour industry. As a staple food of China, Chinese steamed bread (CSB) represents about 40% of China's wheat consumption. This study investigated the effects of incorporating wheat bran into the CSB at different levels (5, 10, and 15%). The dough behavior was measured by analyzing rheological properties. Quality of CSB was analyzed from two perspectives: physical properties and nutritional quality. For physical properties, specific volume, loaf height, moisture, and texture were measured by 1 . The predicted glycemic response of the bread was analyzed by using an in vitro digestion method. The results illustrated that the incorporation of wheat bran into wheat flour reduced the extensibility of the dough, decreased specific volume, and increased bread hardness, gumminess, and chewiness. However, this study also showed that addition of wheat bran can decrease the predicted glycemic response of steamed bread by up to 39%.  相似文献   

20.
The effect of protein quality, protein content, bran addition, diacetyl tartaric acid ester of monoglycerides (DATEM), proving time, and their interaction on hearth bread characteristics were studied by size‐exclusion fast protein liquid chromatography, Kieffer dough and gluten extensibility rig, and small‐scale baking of hearth loaves. Protein quality influenced size and shape of the hearth loaves positively. Enhanced protein content increased loaf volume and decreased the form ratio of hearth loaves. The effect of protein quality and protein content was dependent on the size‐distribution of the proteins in flour, which affected the viscoelastic properties of the dough. Doughs made from flours with strong protein quality can be proved for a longer time and thereby expand more than doughs made from weak protein quality flours. Doughs made from strong protein quality flours tolerated bran addition better than doughs made from weak protein quality flours. Doughs made from high protein content flours were more suited for hearth bread production with bran than doughs made from flours with low protein content. DATEM had small effect on dough properties and hearth loaf characteristics compared with the other factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号